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REGULARIZED SOLUTIONS FOR ABSTRACT
VOLTERRA EQUATIONS

FOUAD MARAGH AND AHMED FADILI

ABsTRACT. The aim of this work is to introduce the domain and the Favard spaces
of order o where « €]0, 1] for k-regularized resolvent family, extending some of the
well-known theorems for semigroup and resolvent family. Furthermore, we show some
relationship between the Favard temporal spaces and the Favard frequential spaces
for scalar Volterra linear systems in Banach spaces, extending some results in [8, 3].

Meroro 1i€l poboru € BBecTHu 06J1acTh Ta rnpocropu Pasapa MOpsaKy a, Je « €
10,1] anst k — perynsapusoBaHol ciM'I pe30JIBBEHT, Ta PO3MIMPUTH JesKi 3 1o6pe
BiZIOMUX TeopeM [yl HamiBrpyn i cimeil pe3onbBeHT. Kpim Toro, Mm mokasyemo
JesIKIil B3a€MO3B’SI30K MiXK yacoBuMu npocropamu Papapa Ta IPOCTOPOBUMU IIPOCTO-
pamu PaBapa s CKaJISPHUX JIHIKHUX cucTeM Bosbpreppa B 6aHAXOBHX IIPOCTOPAaX,
POSIIUPIOIOYH JesiKi pe3ysibraTy B [8, 3].

1. INTRODUCTION

A Favard class for semigroups was developed as early as 1967 by B. L. Butzer and
H. Berens, which is presented in the monograph [4]. In semigroup theory, the Favard class
plays an important role particularly in perturbation theory. The body of knowledge has
been increasing steadily since then, and the recent monograph [8] gives a good account of
modern developments. Applications appear, in particular, in [7, 16, 19], but are certainly
not restricted to this. However, these concepts have been slightly introduced to Volterra
integral equations in [11, 14, 3|, although they are closely related to perturbation theory,
which plays an important role in various fields and has been treated in terms ofo Favard
spaces. The aim of this paper is to give an extension to Favard classes for a k-regularized
resolvent family of scalar Volterra integral equations similar to the one for semigroups
and resolvent families. In fact, we recover several well-known results for semigroups if we
counsider k (t) = a(t) = 1 and for the resolvent family, if we consider k (t) = 1 and a (¢) is
arbitrary.

In Section 2, we give some preliminaries about the concept of a k-regularized resolvent
family, and discuss a relationship between linear integral equations of Volterra type with
scalar kernel. It is well-known that for a Cauchy problem there are strong relations
connecting its semigroup solution and its associated generator. Likewise, for a Volterra
scalar problem, there are some results connecting its k-regularized resolvent family and
the domain of the associated generator, which will be reviewed in Section 3. In Section 4,
we define the Favard spaces “temporal and frequency” for a k-regularized resolvent family
of scalar Volterra integral equations, and for these spaces we account for some results
which are similar to those of semigroups and resolvent families (see e.g. [8, 3]).

2. PRELIMINARIES

In this section we collect some elementary facts about scalar Volterra equations and
a regularized resolvent family. These topics have been covered in detail in [13, 15]. We
refer to these works for reference to the literature and further information.

2020 Mathematics Subject Classification. 45D05, 45E05, 47D06.
Keywords. Semigroups, Volterra integral equations, regularized resolvent families, Favard spaces.

309


https://doi.org/10.31392/MFAT-npu26_4.2022.04

310 F. MARAGH AND A. FADILI

Let (X, ||-]]) be a Banach space, A be a linear closed densely defined operator in X

and a € L}, (R") be a scalar kernel. We consider the linear Volterra equation

x(t) = /0 a(t—s)Ax(s)ds + f(t), t>0, (2.1)

where f € C(R", X).

Definition 2.1. [13, Definition 2.1] Let k& € C(R*). A strongly continuous family
(R(t));>¢ C L£(X) is called a k-regularized resolvent family for equation (2.1), if the
following three conditions are satisfied:
(R1) R(0) = k(0)I.
(R2) R(t) commutes with A, which means R(t)(D(A)) C D(A) for all t > 0, and
AR(t)x = R(t)Az for all z € D(A) and ¢t > 0.
(R3) For each x € D(A) and all ¢ > 0 the resolvent equations hold:

Rt)x=k(t)x+ /0 a(t —s) AR(s)xds.

Ifk(t) =1, (R(t));> is called a resolvent family.

Definition 2.2. [18, Definition 1.3] Let a € L}, (RT). A strongly continuous family
(S(t));>¢ C L(X) is called a resolvent family for equation (2.1), if the following three
conditions are satisfied:
(S1) S(0) =1.
(S2) S(t) commutes with A, which means S(¢)(D(A)) € D(A) for all ¢ > 0, and
AS(t)x = S(t)Azx for all x € D(A) and ¢ > 0.
(S3) For each x € D(A) and all t > 0 the resolvent equations hold:

St)r =z + /0 a(t —s)S(s)Axds.

Note that the k-regularized resolvent family for (2.1) is uniquely determined and further
information on the k-regularized resolvent family can be found by C. Lizama in [13]. We
also notice that the choice of the kernel a classifies different families of strongly continuous
solution operators in £(X). For instance if k () = a(t) = 1, then R(t) corresponds to a
Co-semigroup and if k(t) = 1 and a(t) = ¢, then R(t) corresponds to the cosine operator
function.

We define the convolution product of a scalar function a with a vector-valued function

f by
(a*f)(t)::/oa(t—s)f(s)ds, t>0.

We start with the following important theorem. In what follows, R denotes the range
of a given operator.

Theorem 2.3. [13, Lemma 2.2] If (2.1) admits a k-regularized resolvent family (R (t)),>
then R (a* R (t)) C D (A) for allt >0 and

Rt)xr=Fk(t)x + A/O a(t — s) R(s)xds. (2.2)

for each z € X, t > 0.

From this we obtain that if (R(t))¢>0 is a k-regularized resolvent family of (2.1), we
have A(a * R)(-) is strongly continuous.
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Definition 2.4. A k-regularized resolvent family (R (t)),5, is called exponentially
bounded, if there exist M > 0 and w € R such that ||R(¢)]] < Me*! for all t > 0
and the pair (M,w) is called the type of (R (t)),5,- The growth bound of (R (t)), is

wo = inf {w € R, [|R(t)|| < Me“!, ¢t >0, M > 0}.

Note that, contrary to the case of Cy-semigroup, a k-regularized resolvent family for
(2.1) need not to be exponentially bounded (see [6, 18, 13]). However, there are verifiable
conditions guaranteeing that (2.1) possesses an exponentially bounded k-regularized
resolvent operator.

Remark 2.5. We note that if k() = 1 and a € C>° (RT) N L' (RT) with a (0) = 1 and
such that @ (\) admits zeros with arbitrary large real part, problem (2.1) cannot admit
an exponentially bounded regularized resolvent (for more details see [18, Page 45-46]).

We will use the Laplace transform at times. Suppose g : RT™ — X is measurable and
there exist M > 0, w € R, such that [|g (¢)|| < Me** for almost ¢ > 0. Then the Laplace
transform

G0N = / oy

exists for all A € C with ReX > w.
A function a € L, (R") is w (resp. w™)-exponentially bounded if [~ ™% |a (s)| ds <

+oo for some w € R (resp. w > 0.)

The following proposition stated in [13, Proposition 3.1], establishes a relation between
k-regularized resolvent family and Laplace transform.

Proposition 2.6. Let a, k € L}, (RT) be w-exponentially bounded and let (R (t)>0 C
L(X) be a strongly continuous exponentially bounded such that the Laplace transform
R (\) ewists for A > w. Then (R (t)),;~q is a k-reqularized resolvent family of (2.1) if and

only if the following conditions hold:
(1) a(A) #0and ﬁ € p(A4), for all X > w.

. —1
(2) H(\) = ’Zgg (ﬁ[ - A) , called the resolvent associated to R(t), satisfies

||H(") ()\)H <Mnl(\— w)_(n+1)for all A\ >w and neN

Under these assumptions the Laplace-transform of R (-) is well-defined and it is given

~

by R(\) = H (X) for all A > w.

Remark 2.7. Proposition 2.6 is a well known result.

(1) In the case where k (t) = 1, if a(¢) = 1, it is the Hille-Yosida theorem and if
a(t) =t it is the generation theorem for generators of cosine functions due to
Sova and Fattorini [20] and for arbitrary a (¢) it is the generation theorem due
essentially to Da Prato and Iannelli [17].

(2) In the case where k (t) = % and a (t) = 1, it is the generation theorem for n-times
semigroups due to H. Kellermann and M. Hieber [12] and if &k (¢) = % and a (t)
is arbitrary, it corresponds to the generation theorem for integrated solutions of
Volterra equations due to W. Arendt and H. Kellermann [2].

3. DoMAIN OF A

Assuming the existence of a k-regularized resolvent family (R(t));>o for (2.1), it is
natural to ask how to characterize the domain D(A) of the operator A in terms of the
k-regularized resolvent family. This is important, for instance in order to study the Favard
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class in perturbation theory (see [11, 14, 3]). For a very spacial case, the answer to the
above question is well-known. For instance, if k (t) = 1 and a(t) = 1 or a(t) = ¢, A is the
generator of a Co-semi-group (T(t)),, or a cosine family (C(t)),, and we have

{zGX: lim T(t)“:Ax},

t—0+ t

D(A)
and

t—0+ 2
respectively (see [20, 8]). It was observed in [11] that D (A) has the following characteri-
zation in terms of the resolvent family.

D(A):{xeX: 1im2~0(t)x_x:Ax},

Proposition 3.1. Let (2.1) admit a resolvent family (i.e, a k-regularized resolvent family
with k (t) = 1) with growth bound w (such that the Laplace transform of the resolvent
exists for X\ > w) for w-exponentially bounded a € L, (RT). Set, for 0 < 6 < 5 and
€ >0,

1
Qf = {a()\) : Red >w+e¢, larg)| < 0}.
Then the following characterization of D (A) holds:
D(A) = {x eX: lim pApl-A)"'z em’sts} .
|ul—o0, neQy

We give the following characterization of D (A) in terms of a k-regularized resolvent
family, which is a consequence of [18, Corollary I1.1.6].

Proposition 3.2. Let (2.1) admit a k-regularized resolvent family with growth bound w
(such that the Laplace transform of the resolvent exists for A > w) for w-exponentially
bounded a,k € L}, (RT). Then the following characterization of D (A) holds:

loc

. ~ 1 1 -1 .
D(A) = {x e X: |>\l|lgloo Ak (N) i (do\)l— A> x emsts} :

Proof. Under Theorem 2.6 with n = 0 and for all A > w, we have
M
A—w’

~ o1 1 -
li I-A ists for all D(A).
|)\‘15100 Ak (N ey (d o ) x exists for all z € D (A)

1H XN <

e

< )
A—w

then

O

Without loss of generality we may assume that fot la(t—s)k(s)|"ds#0 forallt >0
and some 1 < p < co. Otherwise we would have for some ¢y > 0 and py > 1 that a (t) =0
or k(t) = 0 for almost all ¢t € [0,t0] and thus, by definition of k-regularized resolvent
family, R(t) =k (t) or R(t) = (ax AR) (¢t) for ¢ € [0,t0]. This implies that A is bounded,
which is the trivial case with X = D (A).

In what follows, we will use, in the forthcoming sections, the following assumption on
a and k:

/O|a(t—s)k(s)|pds;é0

for all ¢ > 0 and some 1 < p < co. It corresponds to
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— [3, Assumption H1] if k (¢) =1
— [15, Assumption Ha] if p = 1 and |k (t)] is increasing and satisfies the condition
t
menp 2O
ot K ()]
— [11, Assumption 2.3] if k£ (¢) =1 and p = 1.
Assumption A1l: There exist €, > 0 and ¢, 5 > 0 such that, for all 0 < ¢t <t j, we

have ,
/a(t—s)k ) ds >eak/ la(t — s)k(s)|" ds.
0

This is the case for functions a and k that are positive (resp. h(I) CJ0,1], with
h(t) =a(t—s)k(s), s € [0,t], t € I) on some interval I = [0,t, %[ for p = 1, (resp.

p>1).
In fact that, if @ and k are positive and p = 1, there exist 0 < g < 1 and £, > 0
such that, for all 0 < ¢ <1, 1, we have

/0 a(t—s)k(s)dszea,k/o a(t—s)k(s)ds.

On the other hand for p > 1 and ¢ €]0, 1], we have

/\a(t—s |pd8—/|h |pd8</ |h(s)|Pds <1,
0

t 1 t
/ |k (s)|P ds < / h(s)ds
0 €ak 1J0

it is necessary and sufficient that

< 400

so that, for

)

1 t
1< / h(s)ds|,
€a,k 0
ie.,
t
€ak < / h(s)ds|.
0

Then we have

/Oth(s)ds

/Oth(s)ds >1
z/ot|h<s>|”ds.

Hence, there exist €, > 0 and ¢, > 0 such that, for all 0 <t <, , we have

t
/a(t—s)k ) ds >eak/|a (t —s)k(s)|" ds.
0
It is easy to see that almost all reasonable functions in applications satisfy this assump-
tion. There are nonetheless examples of functions that do not satisfy this assumption.
Now let us define the set D (A) as follows:

D =z : imM exists
D(A).—{ e X: th eva) () t}.

> €a,k>y

ie.,
1

€a.k
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It was proved in [11] under Assumption Al with p = 1 and k(¢) = 1 and in [15]

under Assumption Al with p = 1 and |k (t)| increasing with limsup,, ,q+ H‘I;((tt))l” < o0,

respectively, that

D(A)=D(A) = freX: lim ZHT—kBz

dm Ak (3:3)

In view of this result we say that the pair (4,a) is a generator of a k-regularized
resolvent family (R (t)),~-

Remark 3.3. When a = 1+ 1 %[ with [ € L}, (R"), the Volterra system (2.1) with

loc
f (t) = z¢ is equivalent to the following integro-differential Volterra system:

i (1) = Az (1) + /O "1t — 5) Ax(s)ds, £ > 0. (3.4)

Furthermore, if (3.4) admits a k-regularized resolvent family (R (t)),-, with £ (0) =1,
then we have B

_ . RWz—k(t)x
D(A) ={z € X/ tl_lféi B (1+1x0)](t)

:{xGX/ lim M:AI}.

t—0+ t

= Az},

In fact, we have that

i XA LD 1(/Otk(s)ds>+ lim 1</Ot(k*l)(s)ds> =1 (3.5)

t—0+ t t—0+ ¢ t—0t+ t

and we write

lim Rt)yx—k(t)r lim Rt)x—k(t)x
t—0+ [kx (14+1xD)](t) 50+ t ’

hence, we obtain

t—0+ t

E(A)_{;z:eX/ lim R(t)xk(t)x_m}.

In the case k(t) = 1 and | € BV, (RT), the space of functions of locally bounded
variation, the operator A becomes a generator of a Cy-semigroup (T(t));>0, which is a
necessary and sufficient condition for existence of a resolvent family (see [18]). Whence
D (A) is also characterized in terms of (T(¢))t>0, and we have

E(A){:EEX: limT(t)xxAx}{meX: lim R(t)HAQ:}
t—0+ t t—0+ t

(see [18, Corollary 1.4, Page 40] and [3, Remark 3.2]).

4. FAVARD SPACES FOR k-REGULARIZED RESOLVENT FAMILY WITH KERNEL

The following definition that corresponds to a natural extension, in our context, of
the Favard class frequently used in approximation theory for semigroups and resolvent
families (see e.g., [16, 8, 14, 3]).

Definition 4.1. Let (2.1) admit a bounded k-regularized resolvent family (R(t)),, on
X, for wh-exponentially bounded a, k € L}, (RT). For 0 < a <1 we define the Favard

loc
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space (frenquency) and the Favard space (temporal) of order « associated to (A, a) as

follows:
k(N ( 1 >1
Fe(A) =<z € X/ sup |[|A\= Al - I—A || < ooy,
) { I T VR ey
:{:E € X/ sup ||A\“AH (\) z|| < oo}.
A>w
and

ein Loy IR k@]
F (A)"{ X S B }

Remark 4.2. (i) It is clear that D (A) C F! (A) and, in virtue of Proposition 3.2,
we have D (A) C F!(A).
(i) If a(t) = k(¢t) = 1, we recall that (R (t));>0 corresponds to a bounded Cp-
semigroup generated by A. In this situation we obtain

Fe(A) = {me X/ sup
A>0

ACA (M — A)! xH < oo}

and F*(A) = F*(A). This case is well know (see e.g., [8]).
(iii) The Favard class of A with kernel a (t) can alternatively be defined as a subspace
k(X 1

of X given by
—1
R | I—A .
Qey (aw ) . <°O}

As a consequence of R(t) being bounded, the above space coincides with F'* (A)
in Definition 4.1 and

e Lo ey o IR@E kO]
E (A>"{ XS Tl F - }

(iv) Let a =1+ 1 with [ € L} . (R") and (A, a) being a generator of a bounded

loc

k-regularized resolvent family (R(t)),», with k(0) # 0 on X. In this case, we

have
Fe (A) = {x € X: sup 17 (t)x — k() 2l < oo}
0<t<1 t>

A— 00

{J; € X/ limsup

In fact that, by (3.5), we write

et Loy IR@ k@]
F (A){ X S e O }

tyx —k(t 1
=qzxe€X: sup IR (#) ()a:||>< o 00
0<t<1 te ‘ ((kmxt))
t
R(t)x—Fk(t
z{xeX: sup [Z(t)e ()$”<oo}
0<t<1 28

(due to limt%mw = constant = k (0) with k (0) # 0).
We prove that F'® (A) is stable with respect to R (t) for any scalar kernel a.
Proposition 4.3. We have R (t) (F* (A)) C F*(A), for all a €]0,1] and t > 0.



316 F. MARAGH AND A. FADILI

Proof. For all © € D(A) and ¢ > 0, we have by (R2) that
AR(t)x = R(t)Ax.
Then

ie.,

(d(lA)I—A> R() = R(1) (d(l)\)I—A> .

Then it follows from Proposition 2.6 that
i (A) # 0and ﬁ € p(A),

hence we have

_ (A)tgd(l/\)IA>lR(t)R(t)(&(lA)IA)l. (4.6)
ow, if z € F™ en

- -1
sup )\O‘k()\)A< 1 IA) z|| < oo.

el a(d) \a(d)
y (4.6) and the boundedness of R (t), we have

)\C’k()\)A(AlI—A)_lR(t)x

)\“]%()\)AR(t)< ! I—A>_1az

su = = su = =
ool A T\am el Y a()
k(N ( 1 )1
=sup [|A*= RA)A| ——I—-A T
e R TeV AR \PY
k(N) < 1 )1
<|[|R(@®)||sup |\ —=A| ——T—-A T
=IR@Tw X En A am
< + o0.
Then R (t) z € F* (A) for all t > 0, hence we deduce that R (t) (F* (A4)) C F* (A) for all
a €]0,1] and t > 0. O

The proof of the following is immediate.

Proposition 4.4. The Favard classes of order a of A with kernel a(t), F* (A) and
F*(A) are Banach spaces with respect to the norms

)\“I%()\)A< ! I—A)_lx

€T « = ||T +Sup A a
2]l pe ) == [l sl a(d) \a(N)
and | R (¢) k(t)z|]
te—k(t)x
T =, = || + Sup ’
e cay = llell+ sup =0 O
respectively.

As for the semigroups and the resolvent families cases (see [8, 3]), we obtain natural
inclusions between the Favard classes for different exponents.

Proposition 4.5. Let (2.1) admit a bounded k-regularized resolvent family (R(t)),~, on
X for wt-exponentially bounded a, k € L}, . (RT). For all0 < 3 < a < 1, one has N

(1) D(A) C F*(A) C FP(A).

(ii) D (A) C F~(A) C F? (A).
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Proof. (i) Let z € F* (A), then for all A > w, one has:

v () o =i ()
g (st —4) o)

which implies that € F# (4) and from Remark 4.2 (i) we deduce that D (A) C
F1(A) C F*(A).
(i) Let z € F*(A), 0 <t <1 and K > 0 such that |k (¢)] < Ke*! forall 0 <t <1

then
IRz — k()| _ 1 [R(t)z— k()|
|(k = a) (1) |(kxa) ()" |(kxa) (@)

< (Ke¥ (1xe™ |a(-)]) (1))%5 Sup IR&)EG—) ft)(fi”“"”

Hence z € FP (A) and that D (A) C F (A) due to Remark 4.2 (i).

O

Note that under Assumption Al with p = 1 and k (£) = 1, we have (i) F! (4) C F! (A)
(see [11, Assumption 2.3] ) where as the inclusion (i) F' (A) C F! (A) was proved under
the a strong assumption in [11, Assumption 3.1].

Note that if the kernel a € L] (R™) is non negative and k (t) = 1, then F! (4) = F! (A)
(see [3, Proposition 4.5]).

Now we will prove that F' (A) = F' (A) holds for all non negative a and k in L}, _ (R*)
such that k is bounded.

Proposition 4.6. Let (2.1) admit a bounded k-regularized resolvent family (R(t)),~, on
X for wt-exponentially bounded a, k € L}, (RT). We assume that Assumption A1 with

loc

p =1 is salisfied and there is a constant N such that 1 <k (t) < N for allt > 0. Then
F'(A)=F'(A).

Proof. Let Assumption Al holds with p = 1: Jeg, > 0 and tq, > 0 such that, for all
0<t<ton,

/Oa(tfs)k(s)ds Zeak/o la (t — )k (s)|ds.

Take z € F'(A), and let |[R(s)| < M for some M > 0 and for all s € [0,t], where
0<t<tgr. Since 1 <k(t) <N for all t > 0, we have for A > w that

1< Ak(A\) <N,

which implies that

1 1
— < —
N = Mk ()

Under Assumption A1 with p = 1, we have

<1

|(a*k)(t)|:/0a(t—s)k(s)ds Zea’k/o la (t—s)k(s)|ds

> €a7k/0 la(s)|ds = €qr (1%]al) (¢).
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Then

(Axfa) () _ 1
[Fea) (O] = cur

and, by Theorem 2.3 and under the stability of F! (A) by R (t), we have

ROz — k)] _ H
|(kxa) (1)] I(k*a )|

a(t—s)R(s)xds

/Ota(ts)R(s) ﬁA (6L(1)\)IA>1xds

<—— limsup
|[(k*a) ()] xoto0

<¥
|(kxa) (8)]

1 k() 1 !
“ifﬁi‘if/ alt=s) R WA)%(A)A(&@)I‘A) s

M(1xfa) ()
S eay @ e

<— .
=k H$||F1(A)

Hence, we obtain o € F'! (4).

Conversely, let z € F (A) and set

ap IRO2 k021 _ ;o

o<t<t [(kxa) (1)

We write
. @ A L —_A - — \NAH
A &(x\) <€L()\)I ) A ()\)’

for all A > w.
Using the integral representation of the resolvent (see Proposition 2.6) we obtain

_A kWY
MAH ()& =205 H ) = Az
6&) [H(A)xfk()\)x]
Y

:Zi()\ /Oooe_’\s (R(s)x —k(s)x)ds

A ooef)\s ca) (s R(s)x—k(s)z <
a0

Since ‘)\12; ()\)‘ < N for A > w, ||R(t)|| £ M for some M > 0, for all ¢ > 0 and under the
hypothesis Assumption Al with p=1and 1 <k (t) <N for all ¢t > 0, we have
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A Y xa)(s)ds
A CTIOr

< a()\/\) /Oooeks(k*a)(s)ds

o IR (02 = E(0) ]

D k) (1)
IRz — k()

Lzl =+ s )

IAAH (X) ]| <

)

A
= a(}\)k*a(A)‘(LHxH—I—JI)
A~

~ |55 WA @l + 2

=Mk )] (Nl + 22)
<N (L||2] + J.),

with L = % This implies that supy,, |[NAH (A) z|| < oo, which ends the

proof. O

s

Note that in the semigroup case, i.e., for a(t) = k (t) = 1, we have the well-known result
that F* (A)=F* (A) (see. [8]) and in the resolvent families case, we have F'® (A) = F* (A)
if the kernel a satisfies Assumption A1 with p =1 and & (¢) = 1 and if Ad () is bounded
for all A > w and under another assumption [3, Proposition 4.7].

In what follows, we investigate conditions on the kernels a and k to prove that this is
the case for the (A, a) generator of the k-regularized resolvent families.

Note that for all wT-exponentially bounded functions a and k, it is clear that (k x a)®
is also wT-exponentially bounded (due to z* < 1+ z for z > 0 and « €]0, 1]).

We will consider the following assumption on a, k € LlloC (RT) and 0 < a < 1.

Assumption A2: a and k are wt-exponentially bounded and there exists €, > 0,
such that for all A > w

@) zewv/ =M |(k + a) (1)]* dt.
0

Example 4.7. (i) The famous case a(t) = k (t) = 1 satisfies the condition of As-
sumption A2 for all a > 0 due to

D e
- / e M((kxa)(t)*dt =T (a+1) forall A >0,
a(A) Jo
which corresponds to the semigroup case (here I' denotes the Gamma function).

(ii) Consider the standard kernel a (t) = 1 and k (¢) = % for > 1. a is nonnegative

and, for all A > 0,

A - 67>\t *xQ « _ )\a(liﬁ)r (O[B + 1)
auxﬂ (ke a) (£)*dt = ——ar gy

Thus a and k satisfy Assumption A2 for 5 > 1 and « €]0, 1]. This case corresponds
to a [-times integrated semigroup. (see [9, 5, 10]).
(iii) Let a(t) =t and k (t) =7, =1 < B <0, v > 1. We have a()\) = F‘ﬁi}) for all

)
A>0and (kxa)(t) = %t”’*‘ﬂ“ for all ¢ > 0. Hence

2 Ooe*t % a o aiprn T +DT(B+1)” Weita(v )
6()\)/0 M((k * a) ()dt = TP+ r(5+1)(r(7+5+1))a/0 N galr+B1) gy
_yp—atn L+ D) Ty +af+a+1)
CE+1) ([ (y+8+1)"
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Then a and k satisfy Assumption A2 for —1 < § <0 and v > 1.
(iv) Leta()—u—l—utﬁ 0<p<l,p>0v>0, andk:()—l Thenwehave

a(\) =5+ 575=L(B+1) for A > 0 and (kxa)(t) = ut—l—uﬁ Further, for
a €]0, 1] we have

)\7& Ooe—)\t xa « _ A% ooe—)\t Vtﬁ+1 «
Zo | M O = 2 [ e vy

@ 1 ﬂ+1 2\ [e%s} t6+1
= / e*’\t(,ut—ﬁ—l/ )O‘dt—i— / e Mut + v )*dt
0 1

a(A) B+ a(A) B+1
T

Thus Assumption A2 is satisfied. Note that, in a particular case where g = 1,
a(t) = p+ vt, Eq. (2.1) corresponds to a model of a solid of Kelvin-Voigt
(see [18]).

(v) Let a(t) =1 and k =1+ 11 with [ (t) = e~*. We have @(\) =  for all A > 0
and (kxa)(t) =2t +e t —1 <2t for all t > 0. Hence,

aA(C;) /OOO e M((k*a) (2)¥dt < ! /OOO e M (2t)dt,

=2°T (e +1).
Thus a and k satisfy Assumption A2.

(vi) Let a(t) =1and k=141 with [ ({) = —e~". We have @ (\) = § for all A >0
and that (k*a)(t) =1—e~t <t for all ¢ > 0. Hence

;Ei) /OOO e M((kxa) (t)%dt < X+ /OOO e Mt%dt =T (o),

for all A > 0. Thus a and k satisfy Assumption A2.

The following result establishes a relation between the spaces F* (A) and F* (A) and
therefore generalizes [8, Proposition 5.12] and [3, Proposition 4.7].

Proposition 4.8. Let (2.1) admit a bounded k-regularized resolvent family (R(t)),>

on X for wt-exponentially bounded a,k € Li,, (RT) and 0 < a < 1. Assume that
1<k(t) <N forallt>0.

(i) If a and k satisfy Assumption A1 and a(’\i are bounded for A > w, then F* (A) C
Fo (4).
(ii) If a is nonnegative satisfying Assumption A2, then F* (A) C F* (A).

Proof. (i) Let z € F*(A) and 0 < t < 1. Then sup,., |[A\*"AH (\) z| = K, < oo.
Using the integral representation of the resolvent (see Proposition 2.6), we obtain

x :;H Nx— §()\)
k(N\) k()

AH (N z for A > w,
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Since z € D (A) and using (R2) — (R3) we have

IR (t)zx —k(t) za] = ‘ /0 a(t—s)R(s)Azxyds

< / la (t — )] [|R (s)]] [ Az | ds

t
<M || Azy| / la (s)|ds
0

=M X AH ()l | — PIGRAL
1
<MK, YR (1% [a]) (£) .
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On the other hand, (R (t));>, and k (¢) are bounded by M and N respectively,

and we have

IR @)yx = k@) yall <[[B @) yall + [IF (@) val
SR @ yall + [F @ lyall
< (M +N) [yl

=(M+ N)

a)

<(M+N)K,|—= )
Ak (N)

This implies that

R0 — k()] M |5t | A la) 0 00+ 3) K|S
kra)OF = |(kra) @ e a) (O
MEr L (1w fa) (1))
r e k(A)‘
MM K| G [
e s sl @)
= A= (1 [a]) (1))
ak ‘)\k ’
M+ N) K [0y o o1y
S AT )7

The third inequality holds, since 1 < k (¢) < N for ¢ > 0 and using Assumptlon Al

with p =1, [(k * a) (t)] > €qx (|k] * [a]) () a

AE(A) <1 and

aN) | <
k(X)

for some K’ > 0. Substituting A, = (1*]‘\;““)( 7y > w fort €]0,1] (A > o0 as t — 0)
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with N, =14+ w (1 x]a|) (1), we obtain

IRz — k()| - MEN,™ L M+ N) K,K N;©
((kxa) @) = €y €ak ’

IR()z—k(t)z]
[(kxa)(t)]*

ii) Let 2 € F* (A) be given. Then sup, IB®zk)z]] Jy < 00. For A > w, we
0<t<1"(k*a)(t)]

write

for all 0 < ¢ < 1. Thus supg.,<; < 00, and hence z € F (A).

Then

e 0N
a(\)
_A
Sa()
—Ai ooe_)\s s)lx—k(s)x)ds
i ACRGIOERIOB L

I R (O R IO L
_a(A)/O ((kxa)(s)) ((k*a)(s)"

Using the fact that a and k satisfy Assumption A2, we obtain

ANAH (M) z =

ds.

La z) . M+ N
IN*AH (\) = < (La 2l + Jz) with L, = ;a
€a,a (I*a)” (1)

Therefore, supy~., |A*AH (A) z|| < co which ends the proof. O
Remark 4.9. Note that conditions Assumption A2 and %8; is bounded for A > w, are
independent.

(i) Let a(t) =t and k () = 1. We have % =2 Then % is bounded for all

A > 0. But

A, wo  NTOT (204 1)
a(/\)/o e M((kxa)(t)¥dt = 5a 71_‘(2)

Assumption A2 is not satisfying for all a €]0,1].

(ii) Let a(t) =t% and k (t) =7, =1 < 8 <0, v > 1. We have % = /\’Y*B%.

Then %8; is not bounded for all A > 0, but Assumption A2 is satisfied for all
a €]0,1] (see Example 4.7 (iii)).

Example 4.10. Let a €]0,1].
(i) Let a(t) =k (t) = 1. Then % is bounded for all A > 0 and a satisfies Assumption

Al with p = 1. Furthermore a satisfies Assumption A2 (see Example 4.7 (i)) and
by virtue of Proposition 4.8 we obtain F* (A) = F* (A). Hence we recover a
result for Cp-semigroups case which corresponds to [8, Proposition 5.12].

(ii) Let a(t) = 1 and k = 1+ 1% with [ (¢) = e~t. Then %8; = 2% which is bounded

for all A > 0, and a satisfies Assumption Al with p = 1. Furthermore o satisfies
Assumption A2 (see Example 4.7 (v)) and by virtue of Proposition 4.8 we obtain
F (A) = F> (A).

(iii) Let a(t) =t and k(t) = 1. Then %8; = @ which is bounded for all A > 0 and
a satisfies Assumption Al with p =1 and k& (¢) = 1. By virtue of Proposition 4.8
(1) we obtain F (A) C F* (A).
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1) Let a(f) =1 an =14+1%[ wit S , wT-exponentially bounded.
iv) L land £k =14+ 1% with [ Llloc]R+ + ially b ded

Then %8; is bounded for all A > 0, according to the Riemann-Lebesgue Lemma

(see, e.g [1]). If I(t) is negative with [(0) > —1, then we obtain that k() is
nonnegative and 0 < (k x a) (t) < t. Hence, both the Assumption Al with p =1
is satisfied, since a and k are nonnegative, and the Assumption A2 is satisfied,
since

i 0067” *q « «
Zo [ MG @ra <T@

Die to Proposition 4.8, we have F® (A) = F (A).
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