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SUNG GUEN KIM AND CHANG YEOL LEE

ABsTrRACT. We characterize smooth points of unit balls in some spaces of bilinear
forms on R2. We find that for some special cases of hexagonal norms, the set of
smooth points of the unit ball of symmetric bilinear forms coincides with the set of
those smooth points of the unit ball of bilinear forms that are symmetric.

Hanano xapakTepucTuKy IJIaJKHUM TOYKaM OJUHUYHUX KYyJIb B JESKHAX IPOCTOPax
Giminiitanx dpopm Ha R?. 3HaiimeHO, IO A/ JeSKUX YaCTHHHUX BUIAIKIB TeKCATOHAb-
HUX HOPM MHOXKHHA IVIQJIKUX TOYOK OJUHUYHOI KyJIi CIIBIAJa€ 3 MHOXKXUHOIO THUX
IJIAJKUX TOYOK OFUHUYHOI Kyuii 6LmiHIMHNX dOpM, SKi € CUMETPUIHUMUA.

1. INTRODUCTION

We write Bg for the closed unit ball of a real Banach space E. A point x € Bg is
called a smooth point of B if there is a unique f € E* so that f(z) = 1 = || f|. We
denote by sm Bg, the set of smooth points of Bg.

A mapping P : £ — R is a continuous 2-homogeneous polynomial if there exists a
continuous bilinear form L on the product E x E such that P(z) = L(z,z) for every
x € E. We denote by L(2E) the Banach space of all continuous bilinear forms on E
endowed with the norm || L|| = sup) =y =1 |L(z, y)|. By Ls(2E), we donote the closed
subspace of L(2E) consisting of all continuous symmetric bilinear forms on E. The
Banach space of all continuous 2-homogeneous polynomials from E into R endowed with
the norm || P|| = sup, =1 |P(2)] is denoted by P(2E). For more details on the theory of
multilinear mappings and polynomials on a Banach space, we refer to [3].

The main result about smooth points is known as "the Mazur density theorem." Recall
that the Mazur density theorem [5, p. 171] says that the set of all the smooth points of a
solid closed convex subset of a separable Banach space is a residual subset of its boundary.

Choi and Kim [1, 2] initiated and characterized the smooth points of the unit balls
of P(2¢3) and P(?¢3). Grecu [4] characterized the smooth 2-homogeneous polynomials
on Hilbert spaces. Kim [7] classified the smooth points of the unit ball of P(3d.(1,w)?),
where d,(1,w)? = R? with the octagonal norm of weight w. Kim [6, 8, 9] classified
the smooth points of the unit balls of £4(262)), Ls("¢7), and Ls(™07), where (T = R™
with the supremum norm. Kim [10] characterized the smooth points of the unit balls of
Ls(2Ls(20%)). Kim [11] classified the smooth points of the unit ball of P(zR}QZ(%)), where

Ri( 1y = R? with the hexagonal norm of weight 3.
2

Let 0 < wy,ws < 1. We denote by Ri(wl ws) the plane with the hexagonal norm

1@, 9) sy = max { [y, wila] + wsly }-

We denote by R? the plane with the hexagonal norm

R’ (w1,ws)

1@ )y = {2l o] + walyl}.
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In this paper, we characterize the smooth points of the unit balls of £(2X) and £,(2X),
where X = R,Ql ) or Ri, . Using this, we prove that

(w1,w2 (w1,w2)

Schs(QX) = SmBﬁ(zx) N £5<2X).

2. RESULTS

Throughout the paper, we let 0 < wy,ws < 1,k = Z—f and ko = 1=%2 Note that

w1
1<ki+ky Let T € [,(ZR%L(WI w2)). Then there are a, b, c,d € R such that
T((x1,91), (22, 92)) = ax122 + by1y2 + cr1y2 + dray:.

For simplicity, we write T by (a,b,c,d). Recently, Kim [12] showed the following
Theorems 2.1-2.3.

T}tleorem 2.1. Let 0 < wy,we < 1 and T((z1,y1), (x2,¥2)) := (a,b,¢,d) € ﬁ(zRi(wth))'
Then

T[] = max {(kl + ka2)?lal, (lalke + [e) (k1 + k2), (lalks + [d])(k1 + k2),
|ak2 + b| + | + d|ks, |ak§—b\+|c—d|k2}.

Note that if [|T|| = 1, then |a| < w?, |b] < 1,|c| < w; and |d| < wy.
Let 0 < wy < wy < 1. U T((z1,11), (22,92)) = ax1me + by1y2 + cx1ys + droyy €

L(Q]R,%(whwz)) for some reals a, b, c,d, we denote T = (a, b, c,d).
Note that {z1z2, y1y2, T1y2 + x2y1} is a basis for LS(QRi(whW)). If T = (a,b,c,c) €
Es(zRi(wl’wz)), we will write T' = (a, b, ¢).

Theorem 2.2. Let 0 < wi,we < 1 and f € E(gRi(wl,wz))*. Let o = f(z122),8 =
fpy2),u = f(z1y2), v = fza2y1).
(a) If wy < 3, then

Il = max{|5|, |w%aiw§6|+w1w2|uiv|, |w%a¥w2(2—w2)5|—|—w1w2|uiv|,

wslBl + wilul, waB| + wifvl}.
(b) If 3 < w,, then
Il = maX{'ﬁ‘v [wia £ w3B| + wiwalu £ o], walB] +wilul, wa|B] + wilvl,
2wz = D)|B] +wi(ful +[v]), [wia F (w] —wa +1)B| + wi|wou £ (1 — ws)v],
lw?a F (w3 —wy + 1)) 4+ w1 |(1 — wa)u £ wov),
lw?a F wo (2 — wa)B| + w1 (1 — ws)|u+ v,
lw?a F (3ws — 4ws + 2)0| +w1w2|u:|:v|}.

By Theorem 2.1, if f € £(?R?

h(wl,wg)

)* with ||f|| = 1, then
1 1 1
wy w1 w1
Note that {z1z2, y1y2, 1y2 + x2y1} is a basis for ES(QR%L(M w2)). Thus, if f €
LoCRE )" we will write f = (f(2122), [(y192), f(2ry2 + w291) ).
Theorem 2.3. Let 0 < wy,we < 1 and f € £S(2Ri(wl wp)) " Let a = f(z122), B =
f(y1y2),0 = f(z1y2 + 2291)-
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(a) Ifws < 3, then
171 = max {18, Jw}a + wdBl + wiwal6l, [wie — wa(2 — wz)8] + wrwald]}.
(b) If% < wo, then

11 = max 18], [w? + FwdB] + wiwsl6], (2w — 18] +walo],
[wior — wa(2 — wa) Bl + wi (1 — wa) 0], [wier — (Bw; — 4wa + 2)] + w1w2|9|}-

Note that if f € £,(?R?

h(w1 ,’wz)

)* with ||f|| = 1, then

1 1
w1 w1

Theorem 2.4. Let 0 < wy,ws < 1.
(a) Let f = (a,B,u,v) € L(°R}

h(whwz))*, and

g1 :(a3671)7u)7 92:(a7_63ua _U)v 93:(0[7_63 —U,’U),
94 = (_a’ —B,u,v), 95 = (_a’ —B,—u,—v) € E(QRIQz(whwz))*-
Then, || fIl = llg;ll for j=1,....5.
(b) Let T = (a,b,c,d) € LR},

following are equivalent:
(1) T is smooth;

with |T|| =1,a >0 and ¢ > d > 0. Then the

w1,w2))

(2) Th = (a,b,d, c) is smooth;

(3) Tz = (a,—b, ¢, —d) is smooth;

(4) T3 = (a,—b, —c,d) is smooth;

(5) Ty = (—a,—b,—c,—d) is smooth;

(6) Ts = (a,b,—c,—d) is smooth.

Proof. (a) It follows that
loill = sup{|gi(T)| = |aa+ b3 +dv+ cu| : T = (a,b,d,c) € Sﬁ(zRi(wl,W))}

= sup{|f(T)| =laa+ b8+ cu+dv|:T = (a,b,c,d) € SE(QR%L(M w))}
= I/l

Similarly, || f|| = ||g;l| for j =2,...,5.

(b) We only show that (1)<>(2) since the proofs of the other cases are similar.
(1)=(2): Let f = (o, B,u,v) € ﬁ(QRi(whw))* be such that f(71) = ||f|| = 1. Let

g1 = (o, B,0,u) € ‘C(zR%(wl,wg))*' Then ¢1(T) = f(T1) = 1. By (a), Hglll = Hf” =L
Since T is smooth, g1 is unique. Thus, f is unique. Therefore, T3 is smooth.

The proof of (2)=-(1) is similar. O

Theorem 2.5. Let 0 < wi,ws <1 and T = (a,b,¢,d) € £(2R%(
0andc>d>0. Let

with |T] = 1,a >

w1,w2))

Q= { (k1 + k2)%a, (akz +)(ky + k), ok +b] + (¢ + d)kz, [ak§ — bl + (c — d)ka }.
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o) if and only if
((/g1 Y ke)2a=1, <1 forall l € Q\{(k + k2)2a}),
((ak2 to)ki+ ko) =1, a>0, c>d, 1 <1 forall 1 €Q\{(aks+c)(ky + kg)}),
(\ak§+b|+(c+d)k2 =1,a>0,0<|ak?+b <1, 1<1 forall

1€ Q\{|ak? +b| + (c + d)kz}>,

1
(|ak§+b|+(c+d)k2 =1 a=0wy>z I<1lforalle Q\{\ak§+b|+(c+d)k2})

or (|ak§ bt (e—dka=1, c>d, | <1 forall 1€ \{|ak? —b|+ (c — d)kQ}).

Proof. For X,Y € {(k1 + k2,0), (ko,1), (ko,—1)}, we let d(x,y) € E(QRi(whwz))* be
such that 6. x y(S) = S(X,Y) for every S € ﬁ(zR%(wl)wz)). Note that ||§(x,yy| = 1 and
5(X1,Y1) 75 5(X2,Y2) if (Xl, Yl) 75 (XQ, Yg) Notice that

(42,0, (k1 +12,00) (T) = (k1 4 k2)? @, O((ky+12.,0),(ka,1)) (T) = (aka + ¢) (k1 + k2),

O (ko 1), (k1 +k,00) (T) = (ak + d) (k1 + k2), O((ka 1), (ke (T) = ak3 + b+ (¢ + d)ko.
8((ka—1), (k1)) (T) = ak3 — b+ (¢ — d)ka, O((ky1),(ka,—1))(T) = aki — b+ (—c+ d)ko,
8((ka—1),(ka—1))(T) = ak3 + b — (c + d)ko.

Thus, if there are two t1,ts €  such that t; = t3 =1, then T ¢ sm Br(2r2 )-

h(wy,wa)

By Theorem 2.1,
1 = ||T| =max{l:1e€Q}.

Thus, we consider the following four cases:

Case 1. (k1 + ko)?a = 1,1 < 1 for every | € Q\{(k; + k2)?%a}

Claim. T € sm Bﬂ(zki( SE
Let f = (o, B,u,v) € E(QRi(whwz))* be such that 1 = ||f|| = f(T).

We will show that f = (% 0, 0, 0). Note that [b] < 1. Choose n € N such that

1 1 1
bt —| <1 |ak+bs—|+(c+dha<l, |okf—bt—|+(c—dk <1
no no o

Note that by Theorem 2.1,

H(a,b:l: n%),c,d)H =1.

Thus,

s [r{(oss )] = s ()51 (L)

Hence, 5 = 0.

Note that ¢ < wiws because 1 > (aks + ¢)(k1 + k2). Choose ng € N such that

1 1
’c:l:—’<w1w2, ‘ak2+c:|:—'(k1+k2)<1,
no o

1 1
a3 40+ et dt k<1, Jakd — b+ [e—d |k <1
no no

Note that by Theorem 2.1,

H(mb,cj: nio’d)H =1.
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h (wy,wg)

Thus,
2 [r{(wes )| =l (S =1 ()

Hence u = 0. Choose ng € N such that
1 1
‘di—‘<w1w2, ‘ak2+di—‘(l€1+k2)<1
no no
1 1
|ak§+b|+‘c+di—‘k2<1, |ak§—b|+’c—di—‘kz2<1.
no no

Note that by Theorem 2.1,

H(a,b,c,d:ﬁ: nio)H =1.

1 > ’f((a,b,c,di nio))‘ - ‘f(T) + (i)u’ 1+ (i)w.

Hence v = 0. It follows that

Thus,

1l=aa+ b8+ cu+ dv =aq,
so, a = + = L Thus, f = (ﬁ, 0, 0, O) Therefore, T' € sm B (2g2
1 1

h(wy, wz)).

Case 2. (akz + ¢)(k1 + ko) =1 < for every | € Q\{(aks + ¢)(k1 + k2)}
Note that 0 < a < w?.
Claim. T € sm B£(2]R2 y if and only if @ > 0 and ¢ > d.

h(wy,wa

Suppose that ¢ > 0 and ¢ > d. Then ¢ < w;. We will show that 7' € sm B£(2R2( L
wi,wy
Let f = (« ,ﬁ,u v) € L(®R?2 )™ be such that 1= || f|| = f(T). We will show that

h(wy,w2)
f= (1;7;’27 0, o= O) Note that |b| < 1. Indeed, if |b] = 1, then a = ¢ = d = 0, which is
1

impossible.
Note that (aks + d)(k1 + k2) < [. Choose ng € N such that

1 1 k k
0<a——<a+—<w§, d<c— 2 <ct 22 <y,
no no no o

;2 2
‘(a:ﬁ: )k2+d’k1+k2) 1, ‘ak§+bi—2‘+’c+di—2‘k2<l,
no no
2 k
‘ak fbi—‘wL’ fdi—k2<1
Note that by Theorem 2.1,
1 k
H(a:l:—,b,c:F—Q,d)Hzl.
no n

Thus,

—
v

(a2 o rvem 2 )] =[x ()= (2))
1+!(;0)a— (%)U\-

Choose ng € N such that

| 1
‘bi— <1, ‘ak§+bﬁ:—‘+(c+d)k2<1, ak? b+ — |+ (c— d)ks < 1.
no no
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H(a,b:l: nio,c,d)H =1.

2 [r{(oss )] =l (2)3]=1+ (2

no
Hence, 5 = 0.
Choose ng € N such that

Note that by Theorem 2.1,

Thus,

1 1
0<d——<d+—<eg, |ak2+b|+(c—|—di )k2<1
o no

1
ak2+din—‘(k1+k:2) <1, ok —bl+(c—dF = )k2 <1.
0

Note that by Theorem 2.1,
1
H(a,b,c,dﬂ: —)H =1.
no

2 [p{(anea= )] == (L) =1e ()

no

Thus,

Hence, v = 0. It follows that
1=aa+bB+ cu+ dv = aa + cu = u(aks + ¢) = vwy,

S0, U = wil and f = (1;?2’ 0’ wil’ 0) Therefore T e meL(th(wl w2>)

Suppose that a = 0.
Let g1 = (1;?2, 0, =, 0), g2 = (0, 0, L, 0) € LRy, )" Obviously,

w1 w1

g;(T) =1 for j =1,2. By Theorem 2.4, 1 = ||g;|| 7 = 1,2. Thus, T is not smooth.

Suppose that ¢ = d.
We will show that 7' ¢ sm B (°R2, ot
wy,wa

Let g1 = (182, 0, 1, 0), g0 = (1282, 0, 0, L) € LCRY,, )" Obviously,

7wy Y w

g;(T) =1for j =1,2. By Theorem 2.4, 1 = ||g]|| j =1,2. Thus, T is not smooth.
Case 3. |ak3 + b| + (¢ + d)ky = 1 > [ for every | € Q\{|ak3 + b| + (c + d)k2}
Note that 0 < a < w?.

Claim. T € sm B£(2R2 o) ) if and only if @ > 0 and 0 < |ak3 + b| < 1.

Let @ > 0 and 0 < |ak3 + b] < 1. We will show that T € sm Bﬁ(th( ok
wy,wa
Let f = (o, B,u,v) € L(°R? ))* be such that 1 = [|f|| = f(T). Note that c+d > 0.

h(wi,w2)
Suppose that 0 < ak3 + b < 1.
Note that ak3 + b+ (¢ + d)ka = 1 > [ for every | € A\{|ak3 + b| + (¢ + d)k2}. We will

show that f = ((1;1‘;2)2’ 1, lowe 17w2>

wy w1

Note that |b| < 1. Choose ng € N such that
1 1 k3 k
O<a——<a+f<w1, ‘bi—Q‘<1, ‘akg—l—cii < wy,
o o no

’akQ—bi
no

’—i—(c—d)k:g <1.
Note that by Theorem 2.1,

[

no
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(o7 oo o)) | = 0= (= ()a+ (2)3)]
= (G Gl

Hence, a = k3. Choose ng € N such that
1
o

Thus,

>—~
Y

k 1 k
‘bj:—z‘<l, O<ecdd— —, ‘ak2+c:t—’<w1, O<ak+bt 2 <1,
no no no
9 ko 1

‘akQ fbﬁ:—‘ + ’c—dﬁ:—‘kg <1
no o
Note that by Theorem 2.1,

[

(w0 2o o)) = 0= ((2) - (5,)0)
= ()8 ()l

Hence, (’”)B (—)u =0, so, u = kof.
Choose ng € N such that

Thus,

1 1 k
0<a— — <at — <w? ’bi—<1 ‘akz—i—cj:i < wi,
no no no

w1y k3
0<etd—gt 0<akd bl <1,
2’110

jakQ —bi—‘ + ‘c— i—‘kQ <1.
Note that by Theorem 2.1,

H(ai;,wﬁ,c,dw)uzl_

0 2 2ng
Thus,
V2 [f((0 v w e ® 52)) = [0 = (7)o (22)5 - (55)1)
2
=1+ )a- (gio)ﬂ (3l
Hence, ni)a— (%)ﬁ (2’;2[))71—0 so, v = ko 3. It follows that

1 =aa+b3+cu+dv=p(aki+b+ (c+d)ks) = 5,
so, f = ((1 wz)” )1, 1;7“1”2, 1w“’2> Therefore, T' € sm B 2p:
1
Suppose that —1 < ak3 +b < 0.
Note that —ak3 — b+ (c + d)ka = 1 > [ for every | € A\{|ak3 + b| + (c + d)ka}. We

will show that f = (— %, -1, iZwe 1o “’2) Choose ng € N such that

wi w1 w

h(wy, wz))

1 k
0<a—f<a—i—f<wl7 ‘bii’<1, ’ak2+ci—2 < w,
No no no

2k2
’ak% b+ 22| 4 c—d)ks < 1.

no
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Note that by Theorem 2.1,

(o7 s 2 ) =1

Thus,
Uz [r((or Loe B ) = = (- 2+ (B))
k}2
= 14— n—0+ (no)ﬁ‘-

Hence, a = k30.
Choose ng € N such that

k 1 1 k
‘bii’a, O<etd— —, ‘ak2+c:t—‘<w1, l<ak?+b+ 2 <o,
o no no no

k 1
‘ak%—bi —2‘+‘c—dﬁ:—‘k2<1.
no no

Note that by Theorem 2.1,

H(a,bj: LERp i@)H — 1.
o no

7((abs 2ex )| =[r@) = ((32)5+
kQ 1
+\(770)5+ (%)“W

Hence, (%)ﬂ + (nio)u =0, so, u = —kyf.
Choose ng € N such that

Thus,

,_.
Y

1 k3 k
0<a——<a—|——<w17 ’b:l: 2‘<17 ‘ak2+c:|:—2<w1,
no no 2ny no

w1 2 k%
O<c+d——, —-1l<ak;+bEt—— <0,
2710 27?,0

ko
‘aktbi—‘+’ dt 2 ey < 1
2ng
Note that by Theorem 2.1,

(0% 20w g2 e 2 ) =1,

2n, 0’ “ 2ng
Thus,
2 2
t2fr((at vw geed= g )| = o= (0 )e - (55)8+ (35)0)]
2
=1+](5)e = (5o)a+ (o)l

Hence, ni)a — (Qno)ﬁ + ( )v =0, so, v = —ky3. It follows that
1 =aa+b3+cu+dv=pB(aks +b— (c+dky) = —p,

2

so, f = (— (1:;%2) , —1, 1;71”2, 1T> Therefore, T € smBﬁ(z]Rh(wl )"

Suppose that |ak3 + b| = 0 or 1. We will show that T' ¢ sm By 2ge

)
h(wy,w3z)

Let |ak3+b| = 0. Let g* = (#1550, 41, Lowe, Lowa) € £(3R2 )" Obviously,
g (T) = 1. By Theorem 2.4, 1 = ||gi|| Thus, T is not Smooth
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Let |ak3 + b| = 1. Then, ¢ = d = 0. Let g* = (i e +i0e, i—lgfz) €
L(Q]R%L(whw))*. Obviously, g*(T) = 1. By Theorem 2.4, 1 = ||g*||. Thus, T is not smooth.
Let a = 0.

Claim. T' € sm B (2pz y if and only if wy > %
h(wy,wg)
Let wy < % and
_ ].—’LU2 ]-_w2 212 —3’LU%+4’LU2—]. (1—’[1)2)2
go = (a1, o ) € LCR ) for S cac B

Note that
—3w3 + 4w, — 1 - (1 —ws)?
wi wi

| = 1. Note that g,(T") = 1. Thus, T is not smooth.

By Theorem D (a), ||ga
Let we > %

Claim. b# 0
Suppose not. Then

wy
— Wy

2w1§c+d=1 < 2c¢ < 2wi,

which is impossible. Thus, the claim holds.
Suppose that b > 0.
Choose ng € N such that

k 1 1
0<bt2 1, O<ceqd——, )c:l:—<w1,
no no no

k 1
‘fbi —2’+‘cfdj:—’k2 <1
no no
Note that by Theorem 2.1,

H(a,b:l:z—z,cqi nio,d)H =1= H(Cl’biv%’c’d:F ni())H

Uz fp((wos 2iew D)) == ()5 ()
= 1+ )l

Lz [r((ae e ) == ()5 ()0
= 14| )

Hence, (%)B — (n—lo)u =0, s0, u=v=kof3.
It follows that

Thus,

)

l=aa+bf+cu+dv=p3>0b+ (c+d)ke) =p.

Thus, u =v = % and

f:(a 1 1—w2 1—’[1.)2)
s Ly wy s wy .

By some calculation, by Theorem 2.4 (b), a = “:ﬂ# Thus, T is smooth.
1
Analogous arguments as in the case b > 0 lead to

f:<_(1—u}2)2 ) 1 — wsy 1—w2).

2 ’ ) ’
w1 w1 w1
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Thus, the claim holds.
Case 4. |ak3 —b| + (c — d)ky = 1 > [ for every | € Q\{|ak3 — b| + (¢ — d)k2}.
Note that 0 < a < w? and b < 0.

Claim. T € sm B£(2R2 ) y if and only if ¢ > d.
Suppose that ¢ > d. We will show that T" € sm Bﬁ(zR
Let f = (o, B,u,v) € L(°R? )* be such that 1=

h(w1 ’wg)

h(wy, wr_;))

f: (1 wz) -1 l—wy _ 1— wg
w? ) y w0
Note that —-1<b<0. Indeed if b > 0, then
1> |ak3 + b + (c + d)kg > |aks — b + (c — d)ks = 1,
which is a contradiction. If b = —1, then a = ¢ = 0 = d, which is a contradiction.
Note that 0 < |ak3 — b| = ak3 —b < 1, and ak3 — b+ (c — d)kz = 1.
Choose ng € N such that

1 1 9 k3 k2 ko
0<a——<a+—<wi, —-l<b——<b+—=<0, ’ak2+c:|:— < wi,
no no no Nno No

L2
]akQ bt T’ Y (et dky < 1.
0
Note that by Theorem 2.1,

(o - o0x 2 ) =1

no n
Thus,

—
Y]

(o v e == () + (32)2)

v | (o ()]
no no
2
Hence, (n—lo)a + (%)B =0, so, a = —k3p.
Choose ng € N such that

1 1 2 k
0<a——<a+—<u, ‘bi—z‘<1, ‘akﬁcii < wi,
no no no

k
‘ak2+bi—‘+ c+dky <1, 0<akf—bE 2 <l
no

Note that by Theorem 2.1,

(bt 22 ) -

#((ab 2 ek a))| <[y = ((32)8+
kQ 1
*\(770)5* (770)“’~

Hence, (kz)B—I— ( )u =0, so, u = —kof3.
Choose ng € N such that

Thus,

—_
v

1 k
0<a——<a+f<w1, ’bi ‘<17 ‘ak2+ci—2‘<w1,

no 2710

‘ak2+di—‘<w1, ‘akz—&-bj: 2’+‘(c+d)k2 ‘<1
nO

2710

fll = f(T). We will show that
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h (wy,wg)

Note that by Theorem 2.1,

H(aii,bi LA ki)H —1.

no 2ng 2ng
Thus,
| > yf((ainiobi k dij%))Hf(ni(TjoM;;m(;;)v)

= 1|t ant (ga)el
Hence, o+ 27120,8 + (%O)v =0, so, v = ko 5. It follows that
1 =aa+ b3+ cu+dv=p(—ak? +b— cky + dky) = —B(aks — b+ cko — dky) = —J3,
so, f=—land f = ((1_132)2, —1, Lowe _1w1 ) Therefore, T' € sm By (g2

wi w1 h(wy, wz))

Suppose that ¢ = d.
We will show that T' ¢ sm B 2g:

Lot h(wl,mz))'
€
_ ((1—w2)2 . 1—wsy _1—w2)
g1 UJ% ) ’ wy ’ w, )
. (1—’[1)2)2 1—11)2 1—11)2 %
g2 = (T%’ -1, T Twr Tl) € LR h(w1 wg))

Obviously, g;(T") =1 for j = 1,2. By Theorem 2.2, 1 = ||g;|| for j = 1,2. Thus, T is not
smooth.
This completes the proof. O

We are in a position to characterize the smooth points of the unit ball of LR ,,, ,,))-

Theorem 2.6. Let 0 < wi,we < 1. Then
sm B2 R ) = { + (a,b,¢,d), £(a,b,d,c), +(a,—b,—c,d), £(a,—b,c,—d),
+ (a,b,—c, —d), +(a,-b,—d, ), £(a,—b,d,—c), £(a,b,—d,—c) :
T = (a,b,c,d) is smooth in Theorem 2.5 with a > 0,c > d > 0}.
Proof. 1t follows from Theorems 2.4 and 2.5. O

Theorem 2.7. Let 0 < wy,wy < 1 and T = (a,b,c) € ES(QRi(wl,wz)) with |T|| = 1,a >0
and ¢ > 0. Let

a0 = {(k1+k2)2a, (aks + ¢) (k1 + ko), |ak2 + b| + 2cks, |ak§—b|}.
Then, T € sm B 2p2 y if and only if
s h(wy,wg)
((k1 tho)2a=1, 1<1 foralll e Q\{(ki + k2)2a}),
((akz to) ki + ko) =1, a>0, [ <1 foralll € Q\{(aks +c)(k1 + kg)}),
(|ak§+b\+20k2 =1,a>0,0<|ak?+b <1, I <1 for all
le Q’\{|ak§ +b| +20k2}>
(|ak2 F b+ 2k =1, a=0, wy > =, 1 <1 for all | € Q' \{|akZ + b| + 20k2})

or (|ak§ _p=1,1<1 for all 1 € Q\{|ak? — b\}).
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Proof. For X,Y € {(k1 + k2,0), (ko2,1), (k2,—1)}, we let §(x,y) € £5(2R,21(w17w2))* be
such that §(x,y(S) = S(X,Y) for every S € ES(QR,ZL(wsz)). Note that [|dx,yy|| = 1 and
5(X1,Y1) 7& 5(X2 Y2) if (Xlayl) 7é (XQa}/Q) and (Xh}/l) 7& (Y27X2)
Thus, if there are two tq,ty € Q' such that t1 =ty =1, then T ¢ sm B, (°R2
By Theorem 2.1,

h(wy, w2>)

1 = |T|=max{l:1eQ}.
Thus, we consider the following four cases:
Case 1. (ky + kg)?a = 1,1 < 1 for every I € Q' \{(k1 + k2)%a}

Claim. T' € sm B _ (th( ot
w1 w2
Let f = (o, 3,0) € Ls(°R w17w2))* be such that 1 = ||f]| = f(T). We will show that

f= (ﬁ, 0, O). Note that |b| < 1. Choose ng € N such that
1

1 1
‘bi— <1, ‘ak§+bi—‘+20k2<l, ‘ak%—bi— <1
no

ng
Jfwos 2 =

s [r{(os )] = s (D)a] =1 (L)

Hence, 5 = 0.
Note that ¢ < wijws because 1 > (aks + ¢)(k1 + k2). Choose ng € N such that

Note that by Theorem 2.1,

Thus,

1 1
’c:l:—’<w1w2, ‘ak2+c:|:—’(k1+k2)<l,
no o

1
k6] 2o — |k <1, JakE — b < 1.
0

Jfwnes )]

s (o )] =l (=1 (o

Hence 6 = 0.
It follows that

Note that by Theorem 2.1,

Thus,

1 =aa+ b8+ cl = aaq,
S0, o = é = # Thus, f = (%, 0, O) Therefore, T' € sm B _2p2
1 1

w h(wy, w2))

Case 2. (aky + ¢)(ki 4 ko) = 1 < [ for every | € Q' \{(aky + ¢) (k1 + k2)}.
Note that 0 < a < w?.
Claim. T € sm By (2p2 y if and only if a > 0.

h(wy, w2)
Suppose that a > 0.
Then ¢ < w;. We will show that T' € sm B (2R2 NE
wy wg

Let f = (a,,0) € Ls(*R3(,,, ,,))" e such that 1 = |[f|| = f(T'). We will show that
f= (1 2.0, w%) Note that |b| < 1. Indeed, if |b|] = 1, then a = ¢ = 0, which is
1

impossible.
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h (wy,wa)
Choose ng € N such that
1 1 2k32 k k2
O<a— — <a+t— <uw? ‘ak§+bi—2’+2‘c¢—2‘k2 <1, ‘akg—bii <1.
no no no no no
Note that by Theorem 2.1,
1 k
s Lse 2y
o no
Thus,

—
\%
~
—
—
S
}+
@
o
+|
?r
l\')
~—
~—
|
=
N
~—
H-
—
~
| —
~—

I
~
_|_

~
§\H
N—
Q
|
A
v
=

Hence, a = k20.
Choose ng € N such that

1 1
‘bi— <1, ‘ak§+bin—‘+2ck2<1, ‘akg—bi— <1.
0

no
1
H (a,b:l: —,c)
no

s (o )] = s (21 ()

0

Note that by Theorem 2.1,

‘ ~1.
Thus,

Hence, 5 = 0.
It follows that

l=aa+ b8+ ch = aa + cd = O(aks + ¢) = Owy,

s0, 0 = 171 and f = (1 72, 0, = ) Therefore, T' € sm B _2p2
wy
Suppose that a = 0.
Let g1 = (17;2”27 0, wl); g2 = (0 0, wi) € LR} (4, 1))+ Obviously, g;(T) =1
for j = 1,2. By Theorem 2.3, 1 = ||g;|| j = 1,2. Thus, T is not smooth.
Case 3. |ak3 + b| + 2cky = 1 > [ for every | € Q' \{|ak3 + b| + 2¢ks}

Note that 0 < a < wi.

h(wy, w2))

Claim. T € sm By _(op2 ) if and only if a > 0 and 0 < |ak3 4 0] < 1.

h(wy,ws)
Let a > 0 and 0 < |ak3 + b| < 1. We will show that T € sm B/ _ CR2 )
Let f = (o, B8,0) € S(QRi(wth)) be such that 1 = || f|| = f(T). Note that ¢ > 0.
Suppose that 0 < ak3 + b < 1. Note that ak3 + b+ 2cky = 1 > [ for every | €
A\{|ak2 + b| + 2cks}. We will show that f = (“—;%2)2, 1, 1;;1”2).
Note that |b| < 1. Choose ng € N such that

1 1 k
0<a7—<a+f<w1, ’b:l:—’<1 ’ak2+c:|:—2’<w1,
o o

2k3
‘akg—bi—Q <1.
no

Note that by Theorem 2.1,

1 k32
H(a$—,b:|:—2,c)H =1.
no N
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Thus,

SR >a+<:2>6\-

Hence, o = k3.
Choose ng € N such that

2k 2 1 2k
2‘<1 0<2c——, ‘akg—i—c:lz—’<wl7 0<ak2—|—b:|:—2<1

Nno
‘ 2]{)2

’bi

aky —b+ 2| < 1.
1o

Note that by Theorem 2.1,

2k 1
s 22 e 1) =
o no

(w0307 npo)) [ =[rn= ((G2)s - ()0
- |G- ()1

Hence, (%)B - (%)0 =0, so0, 0 = 2k, /3.
It follows that

Thus,

—_
v

1 :aa+b5+09:3(ak§+b+2ck‘2) =P,
so, f = ((1 w2) o1, 2(1*“’2)) Therefore, T' € sm By (2g2

w1

h(wy, wg))

Suppose that —1 < ak3 + b < 0. Note that —ak3 — b+ 2cky = 1 > [ for every [ €
A\{|ak2 + b] + 2cks}. We will show that f = (— Oowe)® g, @)
1
Choose ng € N such that
1 1 ko
0<a——<a+f<w1, ‘bi— <1, ‘ak2+ci—)<w,
no No
2k3
)akz s —2‘ <1.

Note that by Theorem 2.1,

no 0
Thus,
U (e ) = (< (B)s)
= 1+ f—+(k—g)ﬂ‘
nQ no

Hence, o = k3.
Choose ng € N such that

2k 2 1 2k

‘bﬁ: P21 0<2e- 2, ’ak2+c:|:—’<w1, 1<ak2+bj:—2<0
no

2k
‘akQ—bﬁ:—z <1.

no
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h (wy,wg)

Note that by Theorem 2.1,

s 22 s )=
o no

Thus,

—
v

(woe T2ex )| = = ((G2)s+ (3)9)

() + (5,

Hence, <2k2)ﬂ n ( )9 — 0, 50, 0 = —2ko3. Tt follows that

1 =aa+bB+ch = B(aki + b — 2cks) = —J3,

so, f = (, %7 -1, M) Therefore, T' € sm By _(2g2

w7 w1 h(wy, wz))

Suppose that |ak3 + b = 0 or 1. We will show that T' ¢ sm B, _zp>

Let |ak3 + b = 0. Let g* (:I: M +1, W) € LsCRE (1, )
g (T) = 1. By Theorem 2.3, 1 = ||gi|| Thus T is not smooth.

Let |ak3+b| = 1. Then, ¢ = 0. Let g* = (:t a 1;%2) 1, +20- w2)) €L (2R%(wl w))
Obviously, g*(T') = 1. By Theorem 2.3, 1 = ||g*||. Thus, T is not smooth.

Let a = 0.

h(wq, 102))

)*. Obviously,

Claim. T' € sm B _(2p2 ) if and only if we > %

h(wy,wg)
Let wqy < 5 and

2(1 — wa) 919 —3w3 + 4wy — 1
Ja = (04, 1, T) € Ly( Rh(wl,wz)) for w—% w2

Note that
—3w3 + 4wy —1 (1 —wsy)?
w? < wi
By Theorem 2.3, ||go|| = 1. Note that go(T") = 1. Thus, T is not smooth.
Let wy > %

Claim. b# 0
Suppose not. Then

2wy < = 2c < 2wy,

— Wy
which is impossible. Thus, the claim holds.
Suppose that b > 0. Choose ng € N such that
2k 2 1
O<b:|:—2<1, 0<2c——, |ct—|<uw.
) o o
Note that by Theorem 2.1,

Thus,

—
\%
~
—
—
S3
H-
2
—_
~—
~—
I
~
—
3
H-
—
~—
[\
glE
~—
I
~—
HE
~—
>
~—
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Hence, (%)ﬂ - (ni)a — 0, 50, 0 = 2k 3.
It follows that
l=aa+ b8+ ch = B(b+ 2ckqe) = .
Thus, § = 23=%2) and

. P~ (o, 2y

By the some calculation, by Theorem 2.3(b), a = M Thus, T' is smooth.
1
By analogous arguments as in the case b > 0, we have

Fo (_ (1 —ws)? 1 2(1—w2)).

w% ’ ’ wy

Thus, the claim holds.
Case 4. |ak2 —b| =1 > I for every | € Q'\{|ak3 — b|}
Note that 0 < a < w?.

Claim. T € sm B _(2p2

h(wi,we))
Let f = (o, 5,60) € L (ZRfL (w1,12)
= (558, -1 0).
! Note tﬁat 0 < ¢ < wy. Indeed, if ¢ = wq, then
1> (aky + c) (k1 + k2) > c(k1 + ko) = w1 (k1 + k2) =1,
which is a contradiction. Note that —1 < b < 0. Indeed, if b > 0, then
1> |ak3 + b + (c+ d)ks > |ak3 — b = 1,

which is a contradiction. If b= —1, then a = ¢ = 0 and 1 > |ak3 + b| + 2cky = 1, which is
a contradiction.
Note that 0 < |ak3 — b] = ak? — b < 1. Choose ng € N such that

2

1 I k2 % ko
0<a— — <at+—<w? —1<b-"2cpp™2 ‘akg—kcj:— < wy,
no no no no no

)* be such that 1 = ||f|| = f(T). We will show that

) 2k3
’akQ +bE 2| 4 2ck; < 1.
0

Note that by Theorem 2.1,

Thus,

H
V
~
N
/N
S
H_
@‘
H,
P?‘

NN
\_/
N—
Il
=
5
H_
/N
/N
£|-
N—
+
/N
S| &
o (V)
N—
=
N—

O

1
s
no o
Hence, (%)a + (%)6 =0, so, a = —k3p.
Choose ng € N such that

k
‘ak2+cii‘ <wy, |ak3 +b]+2
no

Jfwnes )] -

1
cd f‘kQ <1
no

Note that by Theorem 2.1,
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Thus,

—
v

(ot 2ex )| == ((2)o+
- 1|2 ) e )

1=aa+bB+ch = B(—ak? +b) = —B(ak? — b) = —B,

It follows that

so, 3=—1and f = ((1_11%)2, -1, 0) Therefore, T' € sm B _ (°R2, ot
1 wy,w
This completes the proof. O

We are in a position to characterize the smooth points of the unit ball of £,(?R h( wiws))-

Note that T' = (a,b,c) € sm B (2g2
smBﬁ (QR

) if and only if —(a,b,c),£(a,b,—c) €

h(wy,wg)

h(wy, wz))

Theorem 2.8. Let 0 < wy,ws < 1. Then,

sm B/ (R, )= { + (a,b,¢), £(a,b,—c):

T = (a,b,c) is smooth in Theorem 2.7 with a > 0,¢ > 0}.

Proof. Tt follows from Theorem 2.7. g
Theorem 2.9. Let 0 < wi,wy < 1 and T = (a,b,c,d) € L(QRi,(wl o)) Lt T =
(b,a,d,c) € L(QR}%(U&,UU))' Then,
(@) [IT]| £ (2re, ) = Il cemz );
h' (w1 ,ws) h(wg,wy)
() smBres, )= {(a be,d) € LCRE () ¢ (ba,d,c) € sm By w”)}.
Proof. (a). Note that for (z,y) € R?,
H(x’y)Hh'(w1,w2) = H(y’m)Hh(w%wl)'
It follows that
1T £ (zre, ) = sup T ((x1,1), (x2,2))]
b (wiwa) 125917 () gy =119 =152
= sup \T((yl,xl), (y2,72))]
1G5 Y7 (g gy =19 =152
= sup |T((y17$1)7 (y2,2))|
”(yJ x]‘)“h(wz,wl):17j:112
= ITlcezz,,, .0
(b) follows from (a). O

Theorem 2.10. (a) smByep) N Ly(*E) C sm By (2g) for a real Banach space E.

(b) sm By (2x) =sm Bg@x) N Ls(2X), where X = R? or R?

h(wy,wz) b’ (w1, ws2)"



56 SUNG GUEN KIM AND CHANG YEOL LEE

Proof. (a). Let T € sm Bpzpy N Ls(PE).
Claim. T € sm B£3(2E)

Suppose not. There are f; # fo € Ls(2F)* such that f;(T) = ||f;]| =1 for j = 1,2.
Note that L4(?E) is a closed subspace of L(?E). By the Hahn-Banach theorem, there
are extensions f; € L(?E)* for j = 1,2 such that fj|55(2E) = f; and || f;]| = [|f;]l = 1 for
j=1,2. Since fj(T) = f;(T) =1for j =1,2 and T' € sm B 2f), we have fi = fo. Thus,
fi= f1|£5(zE) = f2|£5(zE) = fa, which is a contradiction.

Thus, the claim holds.

(b) follows from Theorems 2.5-2.9. O
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