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THE q-ANALOG OF THE RODRIGUES FORMULA FOR
SYMMETRIC q-DUNKL-CLASSICAL ORTHOGONAL

q-POLYNOMIALS

JIHAD SOUISSI

Abstract. The purpose of this paper is to establish a Rodrigues type formula for
q-Dunkl-classical symmetric orthogonal q-polynomials.

Нашою метою є встановити формулу типу Родрiгеса для q-класичних симетричних
ортогональних q-полiномiв Данкла.

1. Introduction

Let \scrP be the vector space of polynomials with complex coefficients. Assume \scrO is a
lowering operator on \scrP satisfying:

\scrO (\scrP ) = \scrP , \scrO (1) = 0, and \mathrm{d}\mathrm{e}\mathrm{g}\{ \scrO (xn)\} = n - 1 (n \in \BbbN ),

where \BbbN denotes the set of natural numbers and \BbbN 0 := \BbbN \cup \{ 0\} .
In the theory of orthogonal polynomials, certain lowering operators are used to clas-

sify orthogonal polynomials. Specifically, we can define a monic orthogonal polyno-
mial sequence (MOPS) \{ Pn\} n\geq 0 as an \scrO -classical polynomial sequence if the sequence
\{ \scrO Pn+1

\omega n+1
\} n\geq 0 is a MOPS, where \omega n is a constant factor such that \{ \scrO Pn+1

\omega n+1
\} n\geq 0 is monic.

We can enumerate some of the lowering operators such as: the derivative operator denoted
by D, the difference operator denoted by \Delta , where \Delta p(x) equals p(x+1) minus p(x), the
Hahn operator denoted by Hq, where Hq(x) equals f(qx) - f(x)

(q - 1)x , and the Dunkl operator
denoted by T\mu , where T\mu p(x) equals p\prime (x) plus 2\mu H - 1(x).

The \scrO -classical polynomial sequences encompass the most celebrated orthogonal
polynomial sequences. For instance, when \scrO = D, we obtain the continuous orthogonal
polynomial sequences such as Hermite, Laguerre, Bessel, and Jacobi [2, 18]. On the other
hand, when \scrO = \Delta , we get the classical discrete orthogonal polynomial sequences like
Charlier, Meixner, Krawtchouk, and Hahn (see [12]).

Let us consider Dwp(x) as a natural extension of the fundamental difference operator,
where Dwp(x) =

p(x+w) - p(x)
w for w \not = 0. The classical orthogonal polynomials belonging

to the Dw class are discussed in [1] along with their essential properties. According to [4],
the generalized Hermite and generalized Gegenbauer polynomial sequences are the only
symmetric T\mu -classical polynomial sequences for the Dunkl operator. In the domain of
interest, there have been some noteworthy contributions by various authors, including
[3, 5, 6, 13, 25, 26].

Previously, a new lowering operator has been employed to address similar problems, as
detailed in references [1, 17]. This has led to the introduction of a concept called T\theta ,q-
classical orthogonal polynomials (also known as q-Dunkl-classical orthogonal polynomials),
where T\theta ,q represents the q-Dunkl operator, which can be defined as follows:

(T\theta ,qf) (x) = (Hqf) (x) + \theta (H - 1f) (x), f \in \scrP , \theta \in \BbbC .
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The classification of the T\theta ,q-classical symmetric orthogonal polynomials is available in
[3, 7, 9]. In the symmetric case, the T\theta ,q-classical is defined as the regular form of u that
satisfies the Pearson differential equation:

T\theta ,q(\Phi u) + \Psi u = 0,

where \Phi even and monic and \Psi odd are fixed polynomials of degree at most 2 and 1,
respectively.

In a recent publication ([3, 9]), it was demonstrated that, with the exception of a
dilatation factor, the only symmetric orthogonal q-polynomials q-Dunkl-classical are
the q2-analogue of generalized Hermite and q2-analogue of generalized Gegenbauer (as
defined in [15]). Therefore, it is natural to ask for a Rodrigues-type formula for these
q-Dunkl-classical symmetric orthogonal q-polynomials.

This paper is organized as follows. Section 2 provides an introduction to some initial
findings and notations that will be used in the subsequent sections. In Section 3, we
present a fresh characterization of q-Dunkl-classical symmetric orthogonal q-polynomials.

2. Preliminaries

Let \scrP be the linear space of polynomials in one variable with complex coefficients and
\scrP \prime its dual space, whose elements are forms. We denote by \langle u, p\rangle the action of u \in \scrP \prime on
p \in \scrP . In particular, we denote by (u)n := \langle u, xn\rangle , n \geq 0, the moments of u. Moreover,
a form (linear functional) u is called symmetric if (u)2n+1 = 0, n \geq 0.

Let us introduce some useful operations in \scrP \prime . For any form u, any polynomial g and
any a \in \BbbC \setminus \{ 0\} and any q \not = 1, we let Du := u\prime , gu, hau and Hqu, be the forms defined
by duality [17, 20]

\langle u\prime , f\rangle :=  - \langle u, f \prime \rangle , \langle gu, f\rangle := \langle u, gf\rangle , f, g \in \scrP ,

\langle hau, f\rangle := \langle u, haf\rangle = \langle u, f(ax)\rangle , \langle Hqu, f\rangle :=  - \langle u,Hqf\rangle , f \in \scrP ,

where (Hqf)(x) =
f(qx) - f(x)

(q - 1)x , q \in \widetilde \BbbC := \BbbC \setminus 
\bigcup 
n\geq 0

Un with

Un =

\biggl\{ 
\{ 0\} , n = 0
\{ z \in \BbbC , zn = 1\} , n \geq 1.

The following formulas hold [17]

Hq(fu) = (hq - 1f)Hqu+ q - 1(Hq - 1f)u, f \in \scrP , u \in \scrP \prime , (2.1)
(Hq - 1 \circ hq)(f) = qHq(f), f \in \scrP , (2.2)

ha(gu) = (ha - 1g) \circ (hau), g \in \scrP , u \in \scrP \prime . (2.3)

A form u is called normalized, if it satisfies (u)0 = 1. We assume that the forms used in
this paper are normalized.

Let \{ Pn\} n\geq 0 be a sequence of monic polynomials (MPS) with \mathrm{d}\mathrm{e}\mathrm{g}Pn = n and let
\{ un\} n\geq 0 be its dual sequence, un \in \scrP \prime , defined by \langle un, Pm\rangle = \delta n,m, n, m \geq 0, where
\delta n,m is the Kronecker’s symbol. Notice that u0 is said to be the canonical functional
associated with the MPS \{ Pn\} n\geq 0. The sequence \{ Pn\} n\geq 0 is called symmetric when
Pn( - x) = ( - 1)nPn(x), n \geq 0.

Let us recall the following result.

Lemma 2.1. [20, 19]. For any u \in \scrP \prime and any integer m \geq 1, the following statements
are equivalent:

(i) \langle u, Pm - 1\rangle \not = 0, \langle u, Pn\rangle = 0, n \geq m;

(ii) \exists \lambda \nu \in \BbbC , 0 \leq \nu \leq m - 1, \lambda m - 1 \not = 0 such that u =

m - 1\sum 
\nu =0

\lambda \nu u\nu .
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The form u is called regular if we can associate with it a MPS \{ Pn\} n\geq 0 such that

\langle u, PnPm\rangle = rn\delta n,m, rn \not = 0, n, m \geq 0.

The sequence \{ Pn\} n\geq 0 is then called a monic orthogonal polynomial sequence (MOPS)
with respect to u. Note that u = (u)0u0, with (u)0 \not = 0. When u is regular, let F be a
polynomial such that Fu = 0, then F = 0, [22].

Proposition 2.2. [20, 19]. Let \{ Pn\} n\geq 0 be a MPS with \mathrm{d}\mathrm{e}\mathrm{g}Pn = n, n \geq 0, and let
\{ un\} n\geq 0 be its dual sequence. The following statements are equivalent.

(i) \{ Pn\} n\geq 0 is orthogonal with respect to u0.
(ii) For all n \geq 0

un = \langle u0, P
2
n\rangle  - 1Pnu0. (2.4)

(iii) \{ Pn\} n\geq 0 satisfies the three-term recurrence relation

(\mathrm{T}\mathrm{T}\mathrm{R}\mathrm{R}) :

\biggl\{ 
P0(x) = 1, P1(x) = x - \beta 0,
Pn+2(x) = (x - \beta n+1)Pn+1(x) - \gamma n+1Pn(x), n \geq 0,

(2.5)

where \beta n = \langle u0, xP
2
n\rangle \langle u0, P

2
n\rangle  - 1, n \geq 0 and \gamma n+1 = \langle u0, P

2
n+1\rangle \langle u0, P

2
n\rangle  - 1 \not = 0, n \geq 0.

If \{ Pn\} n\geq 0 is a MOPS with respect to the regular form u0, then \{ \~Pn\} n\geq 0, where
\~Pn(x) = a - nPn(ax), n \geq 0, a \not = 0, is a MOPS with respect to the regular form
\~u0 = ha - 1u0, and satisfies [19]\biggl\{ 

\~P0(x) = 1, \~P1(x) = x - \~\beta 0,
\~Pn+2(x) = (x - \~\beta n+1) \~Pn+1(x) - \~\gamma n+1

\~Pn(x), n \geq 0,

where \~\beta n = a - 1\beta n and \~\gamma n+1 = a - 2\gamma n+1.
The following lemma is necessary.

Lemma 2.3. [13]. A MOPS satisfying (2.5) is symmetric, if and only if, \beta n = 0, n \geq 0.

Next, we recall the concept of Hq-semiclassical form that we will need in the sequel.
A form u is called Hq-semiclassical if it is regular, and there exist two polynomials \Phi 
and \Psi , \Phi monic, \mathrm{d}\mathrm{e}\mathrm{g}\Phi = t \geq 0, \mathrm{d}\mathrm{e}\mathrm{g}\Psi = p \geq 1 such that u fulfills the q-analogue of the
distributional equation of Pearson type

(PE) : Hq(\Phi u) + \Psi u = 0, (2.6)

where the pair (\Phi ,\Psi ) is admissible, i.e., when p = t  - 1, writing \Psi (x) = apx
p + . . . ,

then ap \not = n+ 1, n \in \BbbN . The corresponding orthogonal polynomial sequence \{ Pn\} n\geq 0

is called Hq-semiclassical [16]. Moreover, if u is semiclassical satisfying (2.6), the class of
u, denoted s is defined by

s = \mathrm{m}\mathrm{i}\mathrm{n}
\bigl( 
\mathrm{m}\mathrm{a}\mathrm{x}(\mathrm{d}\mathrm{e}\mathrm{g}\Phi  - 2,\mathrm{d}\mathrm{e}\mathrm{g}\Psi  - 1)

\bigr) 
\geq 0,

where the minimum is taken over all pairs (\Phi ,\Psi ) satisfying (2.6). In particular, if s = 0
the form u is usually called Hq-classical [17].

The Hq-semiclassical character is kept by a dilatation [16]. In fact, when u satisfies
(2.6), then ha - 1u fulfills the following PE

Hq

\bigl( 
a - t\Phi (ax)ha - 1u

\bigr) 
+ a1 - t\Psi (ax)ha - 1u = 0,

with the recurrence coefficients, \~\beta n and \~\gamma n+1 are given above.
Let us introduce the q-Dunkl operator

T\theta ,q(f)(x) = (Hqf)(x) + \theta (H - 1f)(x), f \in \scrP , \theta \in \BbbC , (2.7)
where

(Hqf) (x) =
f(qx) - f(x)

(q  - 1)x
.
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Note that, T0,q is reduced to the q-derivative operator (for more details, see [17]). We,
also, have

\mathrm{l}\mathrm{i}\mathrm{m}
q - \rightarrow 1

T\theta ,qf(x) = f \prime (x) + \theta 
f(x) - f( - x)

2x
= T\theta f(x),

where T\theta is called Dunkl operator, introduced by Dunkl [11] (see also [4, 8, 25]).
The transposed tT\theta ,q of T\theta ,q is tT\theta ,q =  - Hq  - \theta H - 1 =  - T\theta ,q, leaving out a slight abuse

of notation without consequence. Thus, we have

\langle T\theta ,qu, f\rangle =  - \langle u, T\theta ,qf\rangle , u \in \scrP \prime , f \in \scrP , \theta \in \BbbC .

In particular, this yields

(T\theta ,qu)n =  - \theta n,q(u)n - 1, n \geq 0,

with the convention (u) - 1 = 0, where

\theta n,q = [n]q + \theta 
1 - ( - 1)n

2
, n \geq 0.

Here, [n]q, n \geq 0, denotes the basic q-number defined by

[n]q =
1 - qn

1 - q
= 1 + q + \cdot \cdot \cdot + qn - 1, n > 0, [0]q = 0.

It is easy to see that

ha \circ T\theta ,q = aT\theta ,q \circ ha in \scrP \prime , a \in \BbbC \setminus \{ 0\} . (2.8)

ha(fu) = (ha - 1f)(hau), f \in \scrP , u \in \scrP \prime , a \in \BbbC \setminus \{ 0\} . (2.9)

Remark 2.4. [9] When u is a symmetric form, we obtain

T\theta ,q(fu) =(hq - 1f)(T\theta ,qu) +
\bigl( 
T\theta ,q(hq - 1f)

\bigr) 
u

+ \theta 
q + 1

2

\Bigl( 
(H - q(hq - 1f)) + (H - q(h - q - 1f))

\Bigr) 
u, f \in \scrP , u \in \scrP \prime . (2.10)

Now, consider a \mathrm{M}\mathrm{P}\mathrm{S} \{ Pn\} n\geq 0 and let

P [1]
n (x, \theta , q) =

1

\theta n+1,q
(T\theta ,qPn+1) (x), \theta \not =  - [2n+ 1]q, n \geq 0.

Definition 2.5. [3, 7, 9] A MOPS \{ Pn\} n\geq 0 is called q-Dunkl-classical or T\theta ,q-classical if\Bigl\{ 
P

[1]
n (., \theta , q)

\Bigr\} 
n\geq 0

is also a MOPS. In this case, the form u0 is called q-Dunkl-classical or

T\theta ,q-classical form.

3. Rodrigues type formula

The following was proved in [9].

Theorem 3.1. For any symmetric MOPS \{ Pn\} n\geq 0, the following statements are equiva-
lent:

(a) The sequence \{ Pn\} n\geq 0 is q-Dunkl-classical.
(b) There exist two polynomials \Phi (monic and even) and \Psi with \mathrm{d}\mathrm{e}\mathrm{g}\Phi \leq 2 and

\mathrm{d}\mathrm{e}\mathrm{g}\Psi = 1 such that the associated regular form u0 satisfies

T\theta ,q(\Phi u0) + \Psi u0 = 0, (3.11)

q - n\Psi \prime (0) - 1

2

\bigl( 
\theta n,q + q - 1[n]q - 1  - \theta + \theta q - n  - [n]q

\bigr) 
\Phi \prime \prime (0) \not = 0, n \geq 0. (3.12)



THE q-ANALOG OF THE RODRIGUES FORMULA FOR SYMMETRIC q-DUNKL-CLASSICAL ... 77

Proposition 3.2. If \{ Pn\} n\geq 0 is q-Dunkl-classical symmetric MOPS, then\biggl\{ 
P [m]
n (., \theta , q) =

Tm
\theta ,qPn+m\prod m
k=1 \theta n+k,q

\biggr\} 
n\geq 0

, m \geq 1,

is also a q-Dunkl-classical symmetric MOPS and we have

T\theta ,q

\Bigl( 
\Phi mu

[m]
0 (\theta , q)

\Bigr) 
+\Psi mu

[m]
0 (\theta , q) = 0, (3.13)

u
[m]
0 (\theta , q) = q

 - m(m - 1)
2 \mathrm{d}\mathrm{e}\mathrm{g} \Phi \xi m

\bigl( m - 1\prod 
i=0

hqi\Phi 
\bigr) 
u0, m \geq 1, (3.14)

qm \mathrm{d}\mathrm{e}\mathrm{g} \Phi \Phi m(x) = (hqm\Phi )(x), (3.15)

qm \mathrm{d}\mathrm{e}\mathrm{g} \Phi \Psi m(x) = \Psi (x) - 
m - 1\sum 
i=0

\bigl( 
T\theta ,q \circ hqi\Phi  - \theta (q + 1)H - q \circ hqi\Phi 

\bigr) 
(x). (3.16)

where \Phi and \Psi are the same polynomials as in (3.11),
\Bigl\{ 
u
[m]
n (\theta , q)

\Bigr\} 
n\geq 0

is the dual

sequence of
\Bigl\{ 
P

[m]
n (., \theta , q)

\Bigr\} 
n\geq 0

and \xi m is defined by the condition
\Bigl( 
u
[m]
0 (\theta , q)

\Bigr) 
0
= 1.

For the proof, the following lemma is needed.

Lemma 3.3. [3, 9] If \{ Pn\} n\geq 0 is q-Dunkl-classical symmetric MOPS, then

u
[1]
0 (\theta , q) = k\Phi u0 (3.17)

where k is a normalization factor and \Phi is the same polynomials as in (3.11).

Proof of Proposition 3.2. Suppose m = 1. The form u0 satisfies (3.11). Multiplying both
sides by \Phi and on account of (2.10) and (3.17), we get

T\theta ,q

\Bigl( 
\Phi 1u

[1]
0 (\mu )

\Bigr) 
+\Psi 1u

[1]
0 (\theta , q) = 0.

Therefore, (3.13)-(3.16) are valid for m = 1. By induction, we easily obtain the general
case. \square 

The main result of this paper is the following.

Theorem 3.4. The symmetric MOPS \{ Pn\} n\geq 0 is q-Dunkl-classical if and only if there
exist a monic polynomial \Phi , \mathrm{d}\mathrm{e}\mathrm{g}\Phi \leq 2 and a sequence \{ \Lambda n\} n\geq 0 ,\Lambda n \not = 0, n \geq 0, such that

Pnu0 = \Lambda nT
n
\theta ,q

\Biggl( \bigl( m - 1\prod 
i=0

hqi\Phi 
\bigr) 
u0

\Biggr) 
, n \geq 0. (3.18)

We may call (3.18) a (functional) Rodrigues type formula for the q-Dunkl-classical
symmetric orthogonal polynomials.

Proof. Necessity. Consider
\Bigl\langle 
Tn
\theta ,qu

[n]
0 , Pm

\Bigr\rangle 
= ( - 1)n

\Bigl\langle 
u
[n]
0 , Tn

\theta ,qPm

\Bigr\rangle 
, n,m \geq 0. For

0 \leq m \leq n - 1, n \geq 1, we have Tn
\theta ,qPm = 0. For m \geq n, put m = n+ k, k \geq 0. Then\Bigl\langle 

u
[n]
0 , Tn

\theta ,qPn+k

\Bigr\rangle 
=

\Biggl( 
n\prod 

v=1

\theta k+v,q

\Biggr) \Bigl\langle 
u
[n]
0 , P

[n]
k

\Bigr\rangle 
=

\Biggl( 
n\prod 

v=1

\theta v,q

\Biggr) 
\delta 0,k

following the definitions. Consequently

Tn
\theta ,qu

[n]
0 = ( - 1)n

\Biggl( 
n\prod 

v=1

\theta v,q

\Biggr) 
un, n \geq 0.
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But from (2.4) so that, in accordance with (3.14), we obtain (3.18) where

\Lambda n = ( - 1)nq
 - n(n - 1)

2 \mathrm{d}\mathrm{e}\mathrm{g} \Phi \xi n

\bigl\langle 
u0, P

2
n

\bigr\rangle \prod n
v=1 \theta v,q

, n \geq 0. (3.19)

Sufficiency. Making n = 1 in (3.18), we have P1u0 = \Lambda 1T\theta ,q (\Phi u0) and (3.12) is satisfied
since u0 is regular. Therefore, the sequence \{ Pn\} n\geq 0 is q-Dunkl-classical according to
Theorem 3.1. \square 

Next, we recall some properties of: q2-analogue of the symmetrical generalized Hermite
form \scrH (\mu , q2), and q2-analogue of the symmetrical generalized Gegenbauer form \scrG (\alpha , \beta , q2),
(see [15]).

Proposition 3.5. The q2-analogue of the symmetrical generalized Hermite form \scrH (\mu , q2)
is regular if and only if \mu \not =  - [n]q2  - 1

2 , n \geq 0. It is a Hq-semiclassical form of class
one for \mu \not = 1

q(q+1)  - 
1
2 , \mu \not =  - [n]q2  - 1

2 , n \geq 0, satisfying the Hq-Pearson equation

Hq(x\scrH (\mu , q2)) + (q + 1)

\biggl( 
x2  - \mu  - 1

2

\biggr) 
\scrH (\mu , q2) = 0. (3.20)

The recurrence coefficients of the MOPS \{ H\mu ,q2

n \} n\geq 0 are given by\left\{   \beta n = 0,
\gamma 2n+1 = q2n

\bigl( 
[n]q2 + \mu + 1

2

\bigr) 
,

\gamma 2n+2 = q2n[n+ 1]q2 , n \geq 0.
(3.21)

One can see that for \mu = 0, these polynomials are reduced to q-Hermite polynomials
(see [17]).

The set
\Bigl\{ 
\scrH \mu ,q2

n (x)
\Bigr\} 
n\geq 0

is an MOPS with respect to the regular form \scrH (\mu , q2).

This last form is T\theta ,q-classical and satisfies

T\theta ,q(\scrH (\mu , q2)) =  - q(q + 1)x\scrH (\mu , q2).

Proposition 3.6. The q2-analogue of the symmetrical generalized Gegenbauer form
\scrG (\alpha , \beta , q2) is regular if and only if \alpha + \beta \not = 3 - 2q2

q2 - 1 , \alpha + \beta \not =  - [n]q2  - 2, \beta \not =  - [n]q2  - 
1, \alpha + \beta + 2  - (\beta + 1)q2n + [n]q2 \not = 0, n \geq 0. It is Hq-semiclassical of class one for
\alpha +\beta \not = 3 - 2q2

q2 - 1 , \alpha +\beta \not =  - [n]q2 - 2, \beta \not =  - [n]q2 - 1, \alpha +\beta +2 - (\beta +1)q2n+[n]q2 \not = 0, n \geq 0,
\beta \not = 1

q(q+1)  - 1 satisfying Hq-Pearson equation

Hq

\bigl( 
x(x2  - 1)\scrG (\alpha , \beta , q2)

\bigr) 
 - (q + 1)

\bigl( 
(\alpha + \beta + 2)x2  - (\beta + 1)

\bigr) 
\scrG (\alpha , \beta , q2) = 0. (3.22)

The recurrence coefficients of the MOPS \{ S(\alpha ,\beta ,q2)
n \} n\geq 0 are given by\left\{       

\beta n = 0, n \geq 0,

\gamma 2n+1 = q2n
(\alpha +\beta +2+[n - 1]q2 )(\beta +1+[n]q2 )

(\alpha +\beta +2+[2n - 1]q2 )(\alpha +\beta +2+[2n]q2 )
, n \geq 0,

\gamma 2n+2 = qn[n+ 1]q2
\alpha +\beta +2 - (\beta +1)q2n+[n]q2

(\alpha +\beta +2+[2n]q2 )(\alpha +\beta +2+[2n+1]q2 )
, n \geq 0.

(3.23)

The set
\Bigl\{ 
\mathrm{S}
(\alpha ,\mu  - 1

2 ,q
2)

n

\Bigr\} 
n\geq 0

is an MOPS with respect to the regular form \scrG (\alpha , \mu  - 1
2 , q

2).

This form is T\theta ,q-classical and satisfies

T\theta ,q

\Bigl( \bigl( 
x2  - 1

\bigr) 
\scrG (\alpha ,\mu  - 1

2 ,q
2)
\Bigr) 
= q(q + 1)(\alpha + 1)x\scrG (\alpha ,\mu  - 1

2 ,q
2).

Lemma 3.7. [9] If u0 is a symmetric q-Dunkl-classical form, then \~u0 = ha - 1u0 is also
for every a \not = 0.

Theorem 3.8. [3, 9] Up to a dilatation, the only q-Dunkl-classical symmetric MOPS are:
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(a) The generalized q2-Hermite polynomials
\Bigl\{ 
H\mu ,q2

n (x)
\Bigr\} 
n\geq 0

for \mu = \theta +1
q(q+1)  - 

1
2 and

\mu \not =  - [n]q2  - 1
2 , n \geq 0.

Moreover,
T\theta ,q(\scrH (\mu )) + 2x\scrH (\mu ) = 0.

(b) The q2-analogue of the generalized Gegenbauer polynomials
\Bigl\{ 
S
(\alpha ,\beta ,q2)
n (x)

\Bigr\} 
n\geq 0

for

\beta = \mu  - 1

2
=

\theta + 1

q(q + 1)
 - 1; \alpha + \beta \not = 3 - 2q2

q2  - 1
; \alpha + \beta \not =  - [n]q2  - 2; \beta \not =  - [n]q2  - 1,

\alpha + \beta + 2 - (\beta + 1)q2n + [n]q2 \not = 0, n \geq 0; \beta \not = 1

q(q + 1)
 - 1.

Moreover,

T\theta ,q

\biggl( \bigl( 
x2  - 1

\bigr) 
\scrG 
\biggl( 
\alpha , \mu  - 1

2
, q2
\biggr) \biggr) 

 - 2(\alpha + 1)x\scrG 
\biggl( 
\alpha , \mu  - 1

2
, q2
\biggr) 

= 0.

Finally, we characterize the q2-analogue of generalized Hermite polynomials and the
q2-analogue of generalized Gegenbauer ones in terms of the Rodrigues type formula as
follows.

Theorem 3.9. We may write

(1) H\mu ,q2

n (x)\scrH (\mu , q2) = ( - 1)n
\prod n

v=1
\gamma \scrH 
v

\theta v,q
Tn
\theta ,q(\scrH (\mu , q2)), n \geq 0. with

\gamma \scrH 
2n+1 = q2n([n]q2 + \mu +

1

2
),

\gamma \scrH 
2n+2 = q2n[n+ 1]q2 , n \geq 0.

(2) S
(\alpha ,\mu  - 1

2 ,q
2)

n (x)\scrG 
\bigl( 
\alpha , \mu  - 1

2 , q
2
\bigr) 
= \Lambda nT

n
\theta ,q

\Biggl( \Biggl( 
n - 1\prod 
i=0

hqi
\bigl( 
x2  - 1

\bigr) \Biggr) 
\scrG 
\bigl( 
\alpha , \mu  - 1

2 , q
2
\bigr) \Biggr) 

, n \geq 

0

with

\Lambda n = ( - 1)nq - n(n - 1)\xi n

n\prod 
v=1

\gamma \scrG 
v

\theta v,q
, n \geq 0,

\gamma \scrG 
2n+1 = q2n

(\alpha + \mu + 3
2 + [n - 1]q2)(\mu + 1

2 + [n]q2)

(\alpha + \mu + 3
2 + [2n - 1]q2)(\alpha + \mu + 3

2 + [2n]q2)
,

\gamma \scrG 
2n+2 = q2n[n+ 1]q2

\alpha + \mu + 3
2  - (\mu + 1

2 )q
2n + [n]q2

(\alpha + \mu + 3
2 + [2n]q2)(\alpha + \mu + 3

2 + [2n+ 1]q2)
, n \geq 0.

Proof. Use Theorems 3.4 and 3.8, Propositions 3.5 and 3.6 and equation (3.19). \square 
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