THE q-ANALOG OF THE RODRIGUES FORMULA FOR SYMMETRIC q-DUNKL-CLASSICAL ORTHOGONAL q-POLYNOMIALS

JIHAD SOUISSI

Abstract

The purpose of this paper is to establish a Rodrigues type formula for q-Dunkl-classical symmetric orthogonal q-polynomials.

Нашою метою є встановити формулу типу Родрігеса для q-класичних симетричних ортогональних q-поліномів Данкла.

1. Introduction

Let \mathcal{P} be the vector space of polynomials with complex coefficients. Assume \mathcal{O} is a lowering operator on \mathcal{P} satisfying:

$$
\mathcal{O}(\mathcal{P})=\mathcal{P}, \quad \mathcal{O}(1)=0, \quad \text { and } \quad \operatorname{deg}\left\{\mathcal{O}\left(x^{n}\right)\right\}=n-1 \quad(n \in \mathbb{N})
$$

where \mathbb{N} denotes the set of natural numbers and $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$.
In the theory of orthogonal polynomials, certain lowering operators are used to classify orthogonal polynomials. Specifically, we can define a monic orthogonal polynomial sequence (MOPS) $\left\{P_{n}\right\}_{n \geq 0}$ as an \mathcal{O}-classical polynomial sequence if the sequence $\left\{\frac{\mathcal{O} P n+1}{\omega_{n+1}}\right\}_{n \geq 0}$ is a MOPS, where ω_{n} is a constant factor such that $\left\{\frac{\mathcal{O} P n+1}{\omega_{n+1}}\right\}_{n \geq 0}$ is monic. We can enumerate some of the lowering operators such as: the derivative operator denoted by D, the difference operator denoted by Δ, where $\Delta p(x)$ equals $p(x+1)$ minus $p(x)$, the Hahn operator denoted by H_{q}, where $H_{q}(x)$ equals $\frac{f(q x)-f(x)}{(q-1) x}$, and the Dunkl operator denoted by T_{μ}, where $T_{\mu} p(x)$ equals $p^{\prime}(x)$ plus $2 \mu H_{-1}(x)$.

The \mathcal{O}-classical polynomial sequences encompass the most celebrated orthogonal polynomial sequences. For instance, when $\mathcal{O}=D$, we obtain the continuous orthogonal polynomial sequences such as Hermite, Laguerre, Bessel, and Jacobi [2, 18]. On the other hand, when $\mathcal{O}=\Delta$, we get the classical discrete orthogonal polynomial sequences like Charlier, Meixner, Krawtchouk, and Hahn (see [12]).

Let us consider $D_{w} p(x)$ as a natural extension of the fundamental difference operator, where $D_{w} p(x)=\frac{p(x+w)-p(x)}{w}$ for $w \neq 0$. The classical orthogonal polynomials belonging to the D_{w} class are discussed in [1] along with their essential properties. According to [4], the generalized Hermite and generalized Gegenbauer polynomial sequences are the only symmetric T_{μ}-classical polynomial sequences for the Dunkl operator. In the domain of interest, there have been some noteworthy contributions by various authors, including $[3,5,6,13,25,26]$.

Previously, a new lowering operator has been employed to address similar problems, as detailed in references $[1,17]$. This has led to the introduction of a concept called $T_{\theta, q^{-}}$ classical orthogonal polynomials (also known as q-Dunkl-classical orthogonal polynomials), where $T_{\theta, q}$ represents the q-Dunkl operator, which can be defined as follows:

$$
\left(T_{\theta, q} f\right)(x)=\left(H_{q} f\right)(x)+\theta\left(H_{-1} f\right)(x), \quad f \in \mathcal{P}, \theta \in \mathbb{C}
$$

The classification of the $T_{\theta, q}$-classical symmetric orthogonal polynomials is available in $[3,7,9]$. In the symmetric case, the $T_{\theta, q}$-classical is defined as the regular form of u that satisfies the Pearson differential equation:

$$
T_{\theta, q}(\Phi u)+\Psi u=0
$$

where Φ even and monic and Ψ odd are fixed polynomials of degree at most 2 and 1 , respectively.

In a recent publication ([3, 9]), it was demonstrated that, with the exception of a dilatation factor, the only symmetric orthogonal q-polynomials q-Dunkl-classical are the q^{2}-analogue of generalized Hermite and q^{2}-analogue of generalized Gegenbauer (as defined in [15]). Therefore, it is natural to ask for a Rodrigues-type formula for these q-Dunkl-classical symmetric orthogonal q-polynomials.

This paper is organized as follows. Section 2 provides an introduction to some initial findings and notations that will be used in the subsequent sections. In Section 3, we present a fresh characterization of q-Dunkl-classical symmetric orthogonal q-polynomials.

2. Preliminaries

Let \mathcal{P} be the linear space of polynomials in one variable with complex coefficients and \mathcal{P}^{\prime} its dual space, whose elements are forms. We denote by $\langle u, p\rangle$ the action of $u \in \mathcal{P}^{\prime}$ on $p \in \mathcal{P}$. In particular, we denote by $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \geq 0$, the moments of u. Moreover, a form (linear functional) u is called symmetric if $(u)_{2 n+1}=0, n \geq 0$.

Let us introduce some useful operations in \mathcal{P}^{\prime}. For any form u, any polynomial g and any $a \in \mathbb{C} \backslash\{0\}$ and any $q \neq 1$, we let $D u:=u^{\prime}, g u, h_{a} u$ and $H_{q} u$, be the forms defined by duality [17, 20]

$$
\begin{array}{cl}
\left\langle u^{\prime}, f\right\rangle:=-\left\langle u, f^{\prime}\right\rangle, & \langle g u, f\rangle:=\langle u, g f\rangle, f, g \in \mathcal{P}, \\
\left\langle h_{a} u, f\right\rangle:=\left\langle u, h_{a} f\right\rangle=\langle u, f(a x)\rangle, & \left\langle H_{q} u, f\right\rangle:=-\left\langle u, H_{q} f\right\rangle, f \in \mathcal{P},
\end{array}
$$

where $\left(H_{q} f\right)(x)=\frac{f(q x)-f(x)}{(q-1) x}, q \in \widetilde{\mathbb{C}}:=\mathbb{C} \backslash \bigcup_{n \geq 0} U_{n}$ with

$$
U_{n}=\left\{\begin{array}{l}
\{0\}, n=0 \\
\left\{z \in \mathbb{C}, z^{n}=1\right\}, n \geq 1
\end{array}\right.
$$

The following formulas hold [17]

$$
\begin{gather*}
H_{q}(f u)=\left(h_{q^{-1}} f\right) H_{q} u+q^{-1}\left(H_{q^{-1}} f\right) u, f \in \mathcal{P}, u \in \mathcal{P}^{\prime}, \tag{2.1}\\
\left(H_{q^{-1}} \circ h_{q}\right)(f)=q H_{q}(f), f \in \mathcal{P}, \tag{2.2}\\
h_{a}(g u)=\left(h_{a^{-1}} g\right) \circ\left(h_{a} u\right), \quad g \in \mathcal{P}, u \in \mathcal{P}^{\prime} . \tag{2.3}
\end{gather*}
$$

A form u is called normalized, if it satisfies $(u)_{0}=1$. We assume that the forms used in this paper are normalized.

Let $\left\{P_{n}\right\}_{n \geq 0}$ be a sequence of monic polynomials (MPS) with $\operatorname{deg} P_{n}=n$ and let $\left\{u_{n}\right\}_{n \geq 0}$ be its dual sequence, $u_{n} \in \mathcal{P}^{\prime}$, defined by $\left\langle u_{n}, P_{m}\right\rangle=\delta_{n, m}, n, m \geq 0$, where $\delta_{n, m}$ is the Kronecker's symbol. Notice that u_{0} is said to be the canonical functional associated with the MPS $\left\{P_{n}\right\}_{n \geq 0}$. The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is called symmetric when $P_{n}(-x)=(-1)^{n} P_{n}(x), n \geq 0$.

Let us recall the following result.
Lemma 2.1. [20, 19]. For any $u \in \mathcal{P}^{\prime}$ and any integer $m \geq 1$, the following statements are equivalent:
(i) $\left\langle u, P_{m-1}\right\rangle \neq 0,\left\langle u, P_{n}\right\rangle=0, n \geq m$;
(ii) $\exists \lambda_{\nu} \in \mathbb{C}, 0 \leq \nu \leq m-1, \lambda_{m-1} \neq 0$ such that $u=\sum_{\nu=0}^{m-1} \lambda_{\nu} u_{\nu}$.

The form u is called regular if we can associate with it a MPS $\left\{P_{n}\right\}_{n \geq 0}$ such that

$$
\left\langle u, P_{n} P_{m}\right\rangle=r_{n} \delta_{n, m}, \quad r_{n} \neq 0, \quad n, m \geq 0
$$

The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is then called a monic orthogonal polynomial sequence (MOPS) with respect to u. Note that $u=(u)_{0} u_{0}$, with $(u)_{0} \neq 0$. When u is regular, let F be a polynomial such that $F u=0$, then $F=0,[22]$.

Proposition 2.2. [20, 19]. Let $\left\{P_{n}\right\}_{n \geq 0}$ be a MPS with $\operatorname{deg} P_{n}=n, n \geq 0$, and let $\left\{u_{n}\right\}_{n \geq 0}$ be its dual sequence. The following statements are equivalent.
(i) $\left\{P_{n}\right\}_{n \geq 0}$ is orthogonal with respect to u_{0}.
(ii) For all $n \geq 0$

$$
\begin{equation*}
u_{n}=\left\langle u_{0}, P_{n}^{2}\right\rangle^{-1} P_{n} u_{0} . \tag{2.4}
\end{equation*}
$$

(iii) $\left\{P_{n}\right\}_{n \geq 0}$ satisfies the three-term recurrence relation

$$
(\operatorname{TTRR}):\left\{\begin{array}{l}
P_{0}(x)=1, \quad P_{1}(x)=x-\beta_{0}, \tag{2.5}\\
P_{n+2}(x)=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x), n \geq 0,
\end{array}\right.
$$

where $\beta_{n}=\left\langle u_{0}, x P_{n}^{2}\right\rangle\left\langle u_{0}, P_{n}^{2}\right\rangle^{-1}, n \geq 0$ and $\gamma_{n+1}=\left\langle u_{0}, P_{n+1}^{2}\right\rangle\left\langle u_{0}, P_{n}^{2}\right\rangle^{-1} \neq 0, n \geq 0$.
If $\left\{P_{n}\right\}_{n \geq 0}$ is a MOPS with respect to the regular form u_{0}, then $\left\{\tilde{P}_{n}\right\}_{n \geq 0}$, where $\tilde{P}_{n}(x)=a^{-n} P_{n}(a x), n \geq 0, a \neq 0$, is a MOPS with respect to the regular form $\tilde{u}_{0}=h_{a^{-1}} u_{0}$, and satisfies [19]

$$
\left\{\begin{array}{l}
\tilde{P}_{0}(x)=1, \quad \tilde{P}_{1}(x)=x-\tilde{\beta}_{0} \\
\tilde{P}_{n+2}(x)=\left(x-\tilde{\beta}_{n+1}\right) \tilde{P}_{n+1}(x)-\tilde{\gamma}_{n+1} \tilde{P}_{n}(x), n \geq 0,
\end{array}\right.
$$

where $\tilde{\beta}_{n}=a^{-1} \beta_{n}$ and $\tilde{\gamma}_{n+1}=a^{-2} \gamma_{n+1}$.
The following lemma is necessary.
Lemma 2.3. [13]. A MOPS satisfying (2.5) is symmetric, if and only if, $\beta_{n}=0, n \geq 0$.
Next, we recall the concept of H_{q}-semiclassical form that we will need in the sequel. A form u is called H_{q}-semiclassical if it is regular, and there exist two polynomials Φ and Ψ, Φ monic, $\operatorname{deg} \Phi=t \geq 0, \operatorname{deg} \Psi=p \geq 1$ such that u fulfills the q-analogue of the distributional equation of Pearson type

$$
\begin{equation*}
(\mathrm{PE}): H_{q}(\Phi u)+\Psi u=0, \tag{2.6}
\end{equation*}
$$

where the pair (Φ, Ψ) is admissible, i.e., when $p=t-1$, writing $\Psi(x)=a_{p} x^{p}+\ldots$, then $a_{p} \neq n+1, \quad n \in \mathbb{N}$. The corresponding orthogonal polynomial sequence $\left\{P_{n}\right\}_{n \geq 0}$ is called H_{q}-semiclassical [16]. Moreover, if u is semiclassical satisfying (2.6), the class of u, denoted s is defined by

$$
s=\min (\max (\operatorname{deg} \Phi-2, \operatorname{deg} \Psi-1)) \geq 0,
$$

where the minimum is taken over all pairs (Φ, Ψ) satisfying (2.6). In particular, if $s=0$ the form u is usually called H_{q}-classical [17].

The H_{q}-semiclassical character is kept by a dilatation [16]. In fact, when u satisfies (2.6), then $h_{a^{-1}} u$ fulfills the following PE

$$
H_{q}\left(a^{-t} \Phi(a x) h_{a^{-1}} u\right)+a^{1-t} \Psi(a x) h_{a^{-1}} u=0,
$$

with the recurrence coefficients, $\tilde{\beta}_{n}$ and $\tilde{\gamma}_{n+1}$ are given above.
Let us introduce the q-Dunkl operator

$$
\begin{equation*}
T_{\theta, q}(f)(x)=\left(H_{q} f\right)(x)+\theta\left(H_{-1} f\right)(x), \quad f \in \mathcal{P}, \theta \in \mathbb{C}, \tag{2.7}
\end{equation*}
$$

where

$$
\left(H_{q} f\right)(x)=\frac{f(q x)-f(x)}{(q-1) x} .
$$

Note that, $T_{0, q}$ is reduced to the q-derivative operator (for more details, see [17]). We, also, have

$$
\lim _{q \longrightarrow 1} T_{\theta, q} f(x)=f^{\prime}(x)+\theta \frac{f(x)-f(-x)}{2 x}=T_{\theta} f(x)
$$

where T_{θ} is called Dunkl operator, introduced by Dunkl [11] (see also [4, 8, 25]).
The transposed ${ }^{t} T_{\theta, q}$ of $T_{\theta, q}$ is ${ }^{t} T_{\theta, q}=-H_{q}-\theta H_{-1}=-T_{\theta, q}$, leaving out a slight abuse of notation without consequence. Thus, we have

$$
\left\langle T_{\theta, q} u, f\right\rangle=-\left\langle u, T_{\theta, q} f\right\rangle, \quad u \in \mathcal{P}^{\prime}, \quad f \in \mathcal{P}, \quad \theta \in \mathbb{C}
$$

In particular, this yields

$$
\left(T_{\theta, q} u\right)_{n}=-\theta_{n, q}(u)_{n-1}, \quad n \geq 0
$$

with the convention $(u)_{-1}=0$, where

$$
\theta_{n, q}=[n]_{q}+\theta \frac{1-(-1)^{n}}{2}, \quad n \geq 0
$$

Here, $[n]_{q}, n \geq 0$, denotes the basic q-number defined by

$$
[n]_{q}=\frac{1-q^{n}}{1-q}=1+q+\cdots+q^{n-1}, n>0,[0]_{q}=0
$$

It is easy to see that

$$
\begin{gather*}
h_{a} \circ T_{\theta, q}=a T_{\theta, q} \circ h_{a} \quad \text { in } \mathcal{P}^{\prime}, \quad a \in \mathbb{C} \backslash\{0\} . \tag{2.8}\\
h_{a}(f u)=\left(h_{a^{-1}} f\right)\left(h_{a} u\right), \quad f \in \mathcal{P}, u \in \mathcal{P}^{\prime}, a \in \mathbb{C} \backslash\{0\} . \tag{2.9}
\end{gather*}
$$

Remark 2.4. [9] When u is a symmetric form, we obtain

$$
\begin{align*}
T_{\theta, q}(f u)= & \left(h_{q^{-1}} f\right)\left(T_{\theta, q} u\right)+\left(T_{\theta, q}\left(h_{q^{-1}} f\right)\right) u \\
& +\theta \frac{q+1}{2}\left(\left(H_{-q}\left(h_{q^{-1}} f\right)\right)+\left(H_{-q}\left(h_{-q^{-1}} f\right)\right)\right) u, f \in \mathcal{P}, u \in \mathcal{P}^{\prime} \tag{2.10}
\end{align*}
$$

Now, consider a $\operatorname{MPS}\left\{P_{n}\right\}_{n \geq 0}$ and let

$$
P_{n}^{[1]}(x, \theta, q)=\frac{1}{\theta_{n+1, q}}\left(T_{\theta, q} P_{n+1}\right)(x), \quad \theta \neq-[2 n+1]_{q}, \quad n \geq 0
$$

Definition 2.5. [3, 7, 9] A MOPS $\left\{P_{n}\right\}_{n \geq 0}$ is called q-Dunkl-classical or $T_{\theta, q}$-classical if $\left\{P_{n}^{[1]}(., \theta, q)\right\}_{n \geq 0}$ is also a MOPS. In this case, the form u_{0} is called q-Dunkl-classical or $T_{\theta, q}$-classical form.

3. Rodrigues type formula

The following was proved in [9].
Theorem 3.1. For any symmetric $\operatorname{MOPS}\left\{P_{n}\right\}_{n \geq 0}$, the following statements are equivalent:
(a) The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is q-Dunkl-classical.
(b) There exist two polynomials Φ (monic and even) and Ψ with $\operatorname{deg} \Phi \leq 2$ and $\operatorname{deg} \Psi=1$ such that the associated regular form u_{0} satisfies

$$
\begin{gather*}
T_{\theta, q}\left(\Phi u_{0}\right)+\Psi u_{0}=0 \tag{3.11}\\
q^{-n} \Psi^{\prime}(0)-\frac{1}{2}\left(\theta_{n, q}+q^{-1}[n]_{q^{-1}}-\theta+\theta q^{-n}-[n]_{q}\right) \Phi^{\prime \prime}(0) \neq 0, \quad n \geq 0 \tag{3.12}
\end{gather*}
$$

Proposition 3.2. If $\left\{P_{n}\right\}_{n \geq 0}$ is q-Dunkl-classical symmetric MOPS, then

$$
\left\{P_{n}^{[m]}(., \theta, q)=\frac{T_{\theta, q}^{m} P_{n+m}}{\prod_{k=1}^{m} \theta_{n+k, q}}\right\}_{n \geq 0}, m \geq 1
$$

is also a q-Dunkl-classical symmetric MOPS and we have

$$
\begin{gather*}
T_{\theta, q}\left(\Phi_{m} u_{0}^{[m]}(\theta, q)\right)+\Psi_{m} u_{0}^{[m]}(\theta, q)=0 \tag{3.13}\\
u_{0}^{[m]}(\theta, q)=q^{\frac{-m(m-1)}{2} \operatorname{deg} \Phi} \xi_{m}\left(\prod_{i=0}^{m-1} h_{q^{i}} \Phi\right) u_{0}, \quad m \geq 1 \tag{3.14}\\
q^{m \operatorname{deg} \Phi} \Phi_{m}(x)=\left(h_{q^{m}} \Phi\right)(x) \tag{3.15}\\
q^{m \operatorname{deg} \Phi} \Psi_{m}(x)=\Psi(x)-\sum_{i=0}^{m-1}\left(T_{\theta, q} \circ h_{q^{i}} \Phi-\theta(q+1) H_{-q} \circ h_{q^{i}} \Phi\right)(x) \tag{3.16}
\end{gather*}
$$

where Φ and Ψ are the same polynomials as in $(3.11),\left\{u_{n}^{[m]}(\theta, q)\right\}_{n \geq 0}$ is the dual sequence of $\left\{P_{n}^{[m]}(., \theta, q)\right\}_{n \geq 0}$ and ξ_{m} is defined by the condition $\left(u_{0}^{[m]}(\theta, q)\right)_{0}=1$.

For the proof, the following lemma is needed.
Lemma 3.3. [3, 9] If $\left\{P_{n}\right\}_{n \geq 0}$ is q-Dunkl-classical symmetric MOPS, then

$$
\begin{equation*}
u_{0}^{[1]}(\theta, q)=k \Phi u_{0} \tag{3.17}
\end{equation*}
$$

where k is a normalization factor and Φ is the same polynomials as in (3.11).
Proof of Proposition 3.2. Suppose $m=1$. The form u_{0} satisfies (3.11). Multiplying both sides by Φ and on account of (2.10) and (3.17), we get

$$
T_{\theta, q}\left(\Phi_{1} u_{0}^{[1]}(\mu)\right)+\Psi_{1} u_{0}^{[1]}(\theta, q)=0
$$

Therefore, (3.13)-(3.16) are valid for $m=1$. By induction, we easily obtain the general case.

The main result of this paper is the following.
Theorem 3.4. The symmetric $\operatorname{MOPS}\left\{P_{n}\right\}_{n \geq 0}$ is q-Dunkl-classical if and only if there exist a monic polynomial Φ, $\operatorname{deg} \Phi \leq 2$ and a sequence $\left\{\Lambda_{n}\right\}_{n \geq 0}, \Lambda_{n} \neq 0, n \geq 0$, such that

$$
\begin{equation*}
P_{n} u_{0}=\Lambda_{n} T_{\theta, q}^{n}\left(\left(\prod_{i=0}^{m-1} h_{q^{i}} \Phi\right) u_{0}\right), \quad n \geq 0 \tag{3.18}
\end{equation*}
$$

We may call (3.18) a (functional) Rodrigues type formula for the q-Dunkl-classical symmetric orthogonal polynomials.

Proof. Necessity. Consider $\left\langle T_{\theta, q}^{n} u_{0}^{[n]}, P_{m}\right\rangle=(-1)^{n}\left\langle u_{0}^{[n]}, T_{\theta, q}^{n} P_{m}\right\rangle, \quad n, m \geq 0$. For $0 \leq m \leq n-1, n \geq 1$, we have $T_{\theta, q}^{n} P_{m}=0$. For $m \geq n$, put $m=n+k, k \geq 0$. Then

$$
\left\langle u_{0}^{[n]}, T_{\theta, q}^{n} P_{n+k}\right\rangle=\left(\prod_{v=1}^{n} \theta_{k+v, q}\right)\left\langle u_{0}^{[n]}, P_{k}^{[n]}\right\rangle=\left(\prod_{v=1}^{n} \theta_{v, q}\right) \delta_{0, k}
$$

following the definitions. Consequently

$$
T_{\theta, q}^{n} u_{0}^{[n]}=(-1)^{n}\left(\prod_{v=1}^{n} \theta_{v, q}\right) u_{n}, \quad n \geq 0
$$

But from (2.4) so that, in accordance with (3.14), we obtain (3.18) where

$$
\begin{equation*}
\Lambda_{n}=(-1)^{n} q^{\frac{-n(n-1)}{2} \operatorname{deg} \Phi} \xi_{n} \frac{\left\langle u_{0}, P_{n}^{2}\right\rangle}{\prod_{v=1}^{n} \theta_{v, q}}, n \geq 0 . \tag{3.19}
\end{equation*}
$$

Sufficiency. Making $n=1$ in (3.18), we have $P_{1} u_{0}=\Lambda_{1} T_{\theta, q}\left(\Phi u_{0}\right)$ and (3.12) is satisfied since u_{0} is regular. Therefore, the sequence $\left\{P_{n}\right\}_{n \geq 0}$ is q-Dunkl-classical according to Theorem 3.1.

Next, we recall some properties of: q^{2}-analogue of the symmetrical generalized Hermite form $\mathcal{H}\left(\mu, q^{2}\right)$, and q^{2}-analogue of the symmetrical generalized Gegenbauer form $\mathcal{G}\left(\alpha, \beta, q^{2}\right)$, (see [15]).
Proposition 3.5. The q^{2}-analogue of the symmetrical generalized Hermite form $\mathcal{H}\left(\mu, q^{2}\right)$ is regular if and only if $\mu \neq-[n]_{q^{2}}-\frac{1}{2}, \quad n \geq 0$. It is a H_{q}-semiclassical form of class one for $\mu \neq \frac{1}{q(q+1)}-\frac{1}{2}, \quad \mu \neq-[n]_{q^{2}}-\frac{1}{2}, n \geq 0$, satisfying the H_{q}-Pearson equation

$$
\begin{equation*}
H_{q}\left(x \mathcal{H}\left(\mu, q^{2}\right)\right)+(q+1)\left(x^{2}-\mu-\frac{1}{2}\right) \mathcal{H}\left(\mu, q^{2}\right)=0 . \tag{3.20}
\end{equation*}
$$

The recurrence coefficients of the MOPS $\left\{H_{n}^{\mu, q^{2}}\right\}_{n \geq 0}$ are given by

$$
\left\{\begin{array}{l}
\beta_{n}=0, \tag{3.21}\\
\gamma_{2 n+1}=q^{2 n}\left([n]_{q^{2}}+\mu+\frac{1}{2}\right) \\
\gamma_{2 n+2}=q^{2 n}[n+1]_{q^{2}}, \quad n \geq 0
\end{array}\right.
$$

One can see that for $\mu=0$, these polynomials are reduced to q-Hermite polynomials (see [17]).

The set $\left\{\mathcal{H}_{n}^{\mu, q^{2}}(x)\right\}_{n \geq 0}$ is an MOPS with respect to the regular form $\mathcal{H}\left(\mu, q^{2}\right)$.
This last form is $T_{\theta, q}-$ classical and satisfies

$$
T_{\theta, q}\left(\mathcal{H}\left(\mu, q^{2}\right)\right)=-q(q+1) x \mathcal{H}\left(\mu, q^{2}\right) .
$$

Proposition 3.6. The q^{2}-analogue of the symmetrical generalized Gegenbauer form $\mathcal{G}\left(\alpha, \beta, q^{2}\right)$ is regular if and only if $\alpha+\beta \neq \frac{3-2 q^{2}}{q^{2}-1}, \alpha+\beta \neq-[n]_{q^{2}}-2, \quad \beta \neq-[n]_{q^{2}}-$ $1, \alpha+\beta+2-(\beta+1) q^{2 n}+[n]_{q^{2}} \neq 0, n \geq 0$. It is H_{q}-semiclassical of class one for $\alpha+\beta \neq \frac{3-2 q^{2}}{q^{2}-1}, \alpha+\beta \neq-[n]_{q^{2}}-2, \quad \beta \neq-[n]_{q^{2}}-1, \alpha+\beta+2-(\beta+1) q^{2 n}+[n]_{q^{2}} \neq 0, n \geq 0$, $\beta \neq \frac{1}{q(q+1)}-1$ satisfying H_{q}-Pearson equation

$$
\begin{equation*}
H_{q}\left(x\left(x^{2}-1\right) \mathcal{G}\left(\alpha, \beta, q^{2}\right)\right)-(q+1)\left((\alpha+\beta+2) x^{2}-(\beta+1)\right) \mathcal{G}\left(\alpha, \beta, q^{2}\right)=0 . \tag{3.22}
\end{equation*}
$$

The recurrence coefficients of the $\operatorname{MOPS}\left\{S_{n}^{\left(\alpha, \beta, q^{2}\right)}\right\}_{n \geq 0}$ are given by

$$
\begin{cases}\beta_{n} & =0, \quad n \geq 0, \tag{3.23}\\ \gamma_{2 n+1} & =q^{2 n} \frac{\left(\alpha+\beta+2+[n-1]_{q^{2}}\right)\left(\beta+1+[n]_{q^{2}}\right)}{\left.\left(\alpha+\beta+2+[2 n-1]_{q^{2}}\right)(\alpha+\beta+2+2+2]_{q^{2}}\right)}, \quad n \geq 0, \\ \gamma_{2 n+2} & =q^{n}[n+1]_{q^{2}} \frac{\alpha+\beta+2-(\beta+1) q^{n}+[n] q^{2}}{\left(\alpha+\beta+2+[2 n]_{q^{2}}\right)\left(\alpha+\beta+2+[2 n+1]_{q^{2}}\right)}, \quad n \geq 0 .\end{cases}
$$

The set $\left\{\mathrm{S}_{n}^{\left(\alpha, \mu-\frac{1}{2}, q^{2}\right)}\right\}_{n \geq 0}$ is an MOPS with respect to the regular form $\mathcal{G}\left(\alpha, \mu-\frac{1}{2}, q^{2}\right)$. This form is $T_{\theta, q}$-classical and satisfies

$$
T_{\theta, q}\left(\left(x^{2}-1\right) \mathcal{G}^{\left(\alpha, \mu-\frac{1}{2}, q^{2}\right)}\right)=q(q+1)(\alpha+1) x \mathcal{G}^{\left(\alpha, \mu-\frac{1}{2}, q^{2}\right)} .
$$

Lemma 3.7. [9] If u_{0} is a symmetric q-Dunkl-classical form, then $\tilde{u}_{0}=h_{a^{-1}} u_{0}$ is also for every $a \neq 0$.
Theorem 3.8. [3, 9] Up to a dilatation, the only q-Dunkl-classical symmetric MOPS are:
(a) The generalized q^{2}-Hermite polynomials $\left\{H_{n}^{\mu, q^{2}}(x)\right\}_{n \geq 0}$ for $\mu=\frac{\theta+1}{q(q+1)}-\frac{1}{2}$ and $\mu \neq-[n]_{q^{2}}-\frac{1}{2}, \quad n \geq 0$.
Moreover,

$$
T_{\theta, q}(\mathcal{H}(\mu))+2 x \mathcal{H}(\mu)=0
$$

(b) The q^{2}-analogue of the generalized Gegenbauer polynomials $\left\{S_{n}^{\left(\alpha, \beta, q^{2}\right)}(x)\right\}_{n \geq 0}$ for

$$
\begin{gathered}
\beta=\mu-\frac{1}{2}=\frac{\theta+1}{q(q+1)}-1 ; \quad \alpha+\beta \neq \frac{3-2 q^{2}}{q^{2}-1} ; \quad \alpha+\beta \neq-[n]_{q^{2}}-2 ; \quad \beta \neq-[n]_{q^{2}}-1 \\
\alpha+\beta+2-(\beta+1) q^{2 n}+[n]_{q^{2}} \neq 0, \quad n \geq 0 ; \quad \beta \neq \frac{1}{q(q+1)}-1
\end{gathered}
$$

Moreover,

$$
T_{\theta, q}\left(\left(x^{2}-1\right) \mathcal{G}\left(\alpha, \mu-\frac{1}{2}, q^{2}\right)\right)-2(\alpha+1) x \mathcal{G}\left(\alpha, \mu-\frac{1}{2}, q^{2}\right)=0
$$

Finally, we characterize the q^{2}-analogue of generalized Hermite polynomials and the q^{2}-analogue of generalized Gegenbauer ones in terms of the Rodrigues type formula as follows.

Theorem 3.9. We may write
(1) $H_{n}^{\mu, q^{2}}(x) \mathcal{H}\left(\mu, q^{2}\right)=(-1)^{n} \prod_{v=1}^{n} \frac{\gamma_{v}^{\mathcal{H}}}{\theta_{v, q}} T_{\theta, q}^{n}\left(\mathcal{H}\left(\mu, q^{2}\right)\right), \quad n \geq 0$. with

$$
\begin{aligned}
\gamma_{2 n+1}^{\mathcal{H}} & =q^{2 n}\left([n]_{q^{2}}+\mu+\frac{1}{2}\right) \\
\gamma_{2 n+2}^{\mathcal{H}} & =q^{2 n}[n+1]_{q^{2}}, n \geq 0
\end{aligned}
$$

(2) $S_{n}^{\left(\alpha, \mu-\frac{1}{2}, q^{2}\right)}(x) \mathcal{G}\left(\alpha, \mu-\frac{1}{2}, q^{2}\right)=\Lambda_{n} T_{\theta, q}^{n}\left(\left(\prod_{i=0}^{n-1} h_{q^{i}}\left(x^{2}-1\right)\right) \mathcal{G}\left(\alpha, \mu-\frac{1}{2}, q^{2}\right)\right), \quad n \geq$ 0
with

$$
\begin{aligned}
\Lambda_{n} & =(-1)^{n} q^{-n(n-1)} \xi_{n} \prod_{v=1}^{n} \frac{\gamma_{v}^{\mathcal{G}}}{\theta_{v, q}}, \quad n \geq 0 \\
\gamma_{2 n+1}^{\mathcal{G}} & =q^{2 n} \frac{\left(\alpha+\mu+\frac{3}{2}+[n-1]_{q^{2}}\right)\left(\mu+\frac{1}{2}+[n]_{q^{2}}\right)}{\left(\alpha+\mu+\frac{3}{2}+[2 n-1]_{q^{2}}\right)\left(\alpha+\mu+\frac{3}{2}+[2 n]_{q^{2}}\right)}, \\
\gamma_{2 n+2}^{\mathcal{G}} & =q^{2 n}[n+1]_{q^{2}} \frac{\alpha+\mu+\frac{3}{2}-\left(\mu+\frac{1}{2}\right) q^{2 n}+[n]_{q^{2}}}{\left(\alpha+\mu+\frac{3}{2}+[2 n]_{q^{2}}\right)\left(\alpha+\mu+\frac{3}{2}+[2 n+1]_{q^{2}}\right)}, n \geq 0 .
\end{aligned}
$$

Proof. Use Theorems 3.4 and 3.8, Propositions 3.5 and 3.6 and equation (3.19).

Acknowledgements

The author thanks the valuable comments and suggestions of the referee. They have contributed to improve the presentation of this manuscript.

References

[1] F. Abdelkarim and P. Maroni, The D_{w}-classical orthogonal polynomials, Results Math. 32 (1997), no (1-2), 1-28, doi:10.1007/BF03322520
[2] W.A. Al-Salam, Characterization theorems for orthogonal polynomials. In: Nevai, P. (ed.) Orthogonal Polynomials: Theory and Practice, 1--24. NATO Advanced Science Institutes Series C: Mathematical Physics Science, vol. 294. Kluwer Academic Publishers, Dordrecht (1990).
[3] B. Aloui and J. Souissi, Characterization of q-Dunkl-classical symmetric orthogonal q-polynomials, Ramanujan J. 57 (2022), 1355--1365, doi:10.1007/s11139-021-00425-8.
[4] Y. Ben Cheikh and M. Gaied, Characterization of the Dunkl-classical orthogonal polynomials, Appl. Math. Comput. 187 (2007), 105--114, doi:10.1016/j.amc.2006.08.108.
[5] Y. Ben Cheikh, M. Gaied and A. Zaghouani, q-Dunkl-classical q-Hermite type polynomials, Georgian Math. J. 21 (2014), no. 2, 125-137, doi:10.1515/gmj-2014-0022.
[6] I. Ben Salah, A. Ghressi and L. Khériji, A characterization of symmetric T_{μ}-classical monic orthogonal polynomials by a structure relation, Integral Transforms Spec. Funct. 25 (2014) no. 6, 423-432, doi:10.1080/10652469.2013.870339.
[7] A. Bouanani, L. Khériji and M. Ihsen Tounsi, Characterization of q-Dunkl Appell symmetric orthogonal q-polynomials, Expo. Math. 28 (2010), 325-336, doi:10.1016/j.exmath.2010.03.003.
[8] B. Bouras, J. Alaya and Y. Habbachi, A D-Pearson equation for Dunkl-classical orthogonal polynomials, Facta Univ. Ser. Math. Inform. 31 (2016), 55-71.
[9] B. Bouras, Y. Habbachi and F. Marcellán, Characterizations of the Symmetric $T_{(\theta, q)^{-}}$-Classical Orthogonal q-Polynomials, Mediterr. J. Math. 19 (2022), 66, doi:10.1007/s00009-022-01986-8.
[10] T.S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, (1978).
[11] C.F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), 12131227, doi:10.4153/CJM-1991-069-8.
[12] A.G. García, F. Marcellán and L. Salto, A distributional study of discrete classical orthogonal polynomials, J. Comput. Appl. Math. 57 (1995), 147-162.
[13] A. Ghressi and L. Khériji, A new characterization of the generalized Hermite form, Bull Belg Math Soc Simon Stevin. 15 (2008), no. 3, 561-567, doi:10.36045/bbms/1222783100.
[14] A. Ghressi and L. Khériji, On the q-analogue of Dunkl operator ant its Appell classical orthogonal polynomials, Int. J. Pure Appl. Math. 39 (2007), no. 1, 1-16.
[15] A. Ghressi and L. Khériji, The symmetrical H_{q}-semiclassical orthogonal polynomials of class one, SIGMA 5 J. 11 (2009), 076, 22pp, doi:10.3842/SIGMA.2009.076.
[16] L. Khériji, An introduction to the H_{q}-semiclassical orthogonal polynomials, Methods Appl. Anal. 10 (2003), 387-411.
[17] L. Khériji and P. Maroni, The H_{q}-classical orthogonal polynomials, Acta Appl. Math. 71 (2002), 49-115, doi:10.1023/A:1014597619994.
[18] F. Marcellán, A. Branquinho and J. Petronilho, Classical orthogonal polynomials: a functional approach, Acta Appl. Math. 34 (1994), 283-303, doi:10.1007/BF00998681.
[19] P. Maroni, Fonctions Eulériennes, Polynômes Orthogonaux Classiques. Techniques de l'Ingénieur, Traité Généralités (Sciences Fondamentales), A 154 (1994), Paris, 1-30.
[20] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques (in French) [An algebraic theory of orthogonal polynomials. Applications to semi-classical orthogonal polynomials], in Orthogonal Polynomials and their Applications (Erice, 1990), IMACS Ann. Comput. Appl. Math. Vol. 9, C. Brezinski et al., eds., Baltzer, Basel, 1991, pp. 95-130.
[21] P. Maroni, Sur la suite de polynômes orthogonaux associées à la forme $u=\delta_{c}+\lambda(x-c)^{-1} L$. Period. Math. Hungar. 21 (1990), 223-248.
[22] P. Maroni, Variations around classical orthogonal polynomials. Connected problems, J. Comput. Appl. Math. 48 (1993), 133-155.
[23] P. Maroni and M. Mejri, The symmetric D_{w}-semi-classical orthogonal polynomials of class one, Numer. Algorithms 49 (2008), 251-282, doi:10.1007/s11075-008-9170-2.
[24] J.C. Medem, R. Álvarez-Nodarse and F. Marcellán, On the q-polynomials: a distributional study, J. Comput. Appl. Math. 135 (2001), 157-196, doi:10.1016/S0377-0427 (00) 00584-7.
[25] M. Sghaier, A note on the Dunkl-classical orthogonal polynomials, Integral Transforms Spec. Funct. 23 (2012), no. 10, 753-760, doi:10.1080/10652469.2011.631186.
[26] M. Sghaier, Rodrigues formula for the Dunkl-classical symmetric orthogonal polynomials, Filomat, 27 (2013), no. 7, 1285-1290, doi:10.2298/FIL1307285S.

Jihad Souissi: jihad.souissi@fsg.rnu.tn, jihadsuissi@gmail.com
University of Gabes, Faculty of Sciences of Gabes, Department of Mathematics, Street Erriadh 6072 Gabes, Tunisia

