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SPACES OF CONTINUOUS AND MEASURABLE FUNCTIONS
INVARIANT UNDER A GROUP ACTION

SAMUEL A. HOKAMP

Abstract. In this paper we characterize spaces of continuous and Lp-functions on a
compact Hausdorff space that are invariant under a transitive and continuous group
action. This work generalizes Nagel and Rudin’s 1976 results concerning unitarily
and Möbius invariant spaces of continuous and measurable functions defined on the
unit sphere in \BbbC n.

У статтi ми характеризуємо простори неперервних i Lp-функцiй на компактi,
якi є iнварiантними вiдносно неперервної та транзитивної дiї групи. Робота
узагальнює результати Нагеля i Рудiна 1976 року про iнварiантнi простори
неперервних i вимiрних функцiй визначений на одиничнiй сферi в \BbbC n вiдносно
дiй унiтарної групи та групи Мебiуса.

1. Introduction

The idea for this paper came from the realization that much of Nagel and Rudin’s
work characterizing unitarily invariant spaces of continuous and measurable functions on
the unit sphere of \BbbC n (originally found in [4] and summarized in [9]) could be generalized
to spaces of continuous and measurable functions on a compact Hausdorff space X, which
are invariant under the continuous and transitive action of a compact group G on X.

A space of complex functions on X is G-invariant if the pre-composition of any
function in the set with the action of each element of G on X remains in the set. A
G-invariant space is G-minimal if it contains no proper G-invariant subspace. Our main
result (Theorem 4.1) yields that a collection of closed G-minimal spaces of continuous
functions satisfying certain conditions suffices to characterize all closed G-invariant spaces
of continuous functions on X: each closed G-invariant space is the closure of the direct
sum of a unique subcollection of the G-minimal spaces.

A unique regular Borel probability measure \mu on X that is G-invariant in the sense
that \int 

X

f d\mu =

\int 
X

f(\alpha x) d\mu (x),

for every continuous function f on X and every \alpha \in G is necessary to define the conditions
for the collection of closed G-minimal spaces. Existence of such a measure is due to André
Weil in [10]. Additionally, Theorem 4.1 shows each closed G-invariant space of measurable
functions with respect to \mu is characterized by the same collection of G-minimal spaces.

In Section 3, we define the conditions which a collection of G-minimal spaces must have
in order to induce the closed G-invariant spaces of continuous and measurable functions.
In Section 4, we prove our main result, Theorem 4.1. Section 5 is devoted to the proofs
of Lemma 4.3 and Lemma 4.4, which are used in establishing Theorem 4.1.

2. Preliminaries

Let X be a compact Hausdorff space and C(X) the space of continuous complex
functions with domain X. Let G be a compact group that acts continuously and
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transitively on X. When we wish to be explicit, the map \varphi \alpha : X \rightarrow X shall denote the
action of \alpha on X for each \alpha \in G; otherwise, \alpha x denotes the action of \alpha \in G on x \in X.

Let \mu denote the unique regular Borel probability measure on X that is invariant under
the action of G. Specifically, \int 

X

f d\mu =

\int 
X

f \circ \varphi \alpha d\mu , (2.1)

for all f \in C(X) and \alpha \in G. The existence of such a measure is a result of André Weil
from [10]. A construction of \mu can be found in [1] (Theorem 6.2), but existence can be
established using the Riesz Representation Theorem (for reference, Theorem 6.19 [7]).
Throughout the paper, \mu shall refer to this measure.

The notation Lp(\mu ) denotes the usual Lebesgue spaces, for 1 \leq p \leq \infty . For Y \subset C(X),
the uniform closure of Y is denoted Y , and for Y \subset Lp(\mu ), the norm-closure of Y in
Lp(\mu ) is denoted Y

p
.

The following is an easy consequence of (2.1):

Remark 2.1. Let 1 \leq p <\infty and let p\prime be its conjugate exponent. Then\int 
X

(f \circ \varphi \alpha ) \cdot g d\mu =

\int 
X

f \cdot (g \circ \varphi \alpha  - 1) d\mu ,

for f \in Lp(\mu ), g \in Lp\prime 
(\mu ), and \alpha \in G.

The following definitions are generalizations of definitions found in [9] related to the
unitary group. These more specific definitions are given as references.

Definition 2.2 (12.2.4 [9]). A space of complex functions Y defined on X is invariant
under G (G-invariant) if f \circ \varphi \alpha \in Y for every f \in Y and every \alpha \in G.

Remark 2.3. Since the action is continuous, C(X) is G-invariant. Conversely, if C(X)
is G-invariant, then each action \varphi \alpha must be continuous.

Remark 2.4. Explicitly, the invariance property (2.1) means \mu (\alpha E) = \mu (E) for every
Borel set E and every \alpha \in G. Consequently, (2.1) holds for every Lp function, and thus
Lp(\mu ) is G-invariant for all 1 \leq p \leq \infty .

Definition 2.5 (12.2.4 [9]). If Y is G-invariant and T is a linear transformation on Y ,
we say T commutes with G if

T (f \circ \varphi \alpha ) = (Tf) \circ \varphi \alpha 

for every f \in Y and every \alpha \in G.

Definition 2.6 (12.2.8 [9]). A space Y \subset C(X) is G-minimal if it is G-invariant and
contains no nontrivial G-invariant spaces.

Example 2.7. To illustrate these definitions, let X = G = Tn, the torus in \BbbC n, such
that the action of G on X is given by coordinatewise multiplication. This action is both
transitive and continuous.

For each k = (k1, k2, . . . , kn) \in \BbbZ n, we define Hk to be the space of all complex
functions f on Tn given by f(z) = czk, where c \in \BbbC and zk = zk1

1 zk2
2 . . . zkn

n ; that is, Hk

is the span of the trigonometric monomial of power k.
Observe that \mathrm{d}\mathrm{i}\mathrm{m}Hk = 1, so that each Hk is closed. Further, G-invariance of each Hk

is clear, and thus each Hk is G-minimal.

Finally, the classical results used in this paper can be found in many texts, with the
reference given being one such place.
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3. G-Collections

In this section, we introduce the notion of a G-collection, a collection of closed G-
invariant spaces which characterize all closed G-invariant subspaces of C(X) (Definition
3.2). However, we must first give Definition 3.1. The particular case of the unitary group
acting on the unit sphere in \BbbC n described in [9] inherently satisfies Definition 3.2(\ast ), so
has no need of the following definition, but this is not necessarily true in general for G
acting on X.

Definition 3.1. For each x \in X, the space H(x) is the set of all continuous functions
that are unchanged by the action of any element of G which stabilizes x. That is,

H(x) = \{ f \in C(X) : f = f \circ \varphi \alpha , for all \alpha \in G such that \alpha x = x\} .

Definition 3.2. Let \scrG be a collection of spaces in C(X) with the following properties:
(1) Each H \in \scrG is a closed G-minimal space.
(2) Each pair H1 and H2 in \scrG is orthogonal (in L2(\mu )): If f1 \in H1 and f2 \in H2, then\int 

X

f1 \=f2 d\mu = 0.

(3) L2(\mu ) is the direct sum of the spaces in \scrG .
We say \scrG is a G-collection if it also possesses the following property:

(\ast ) \mathrm{d}\mathrm{i}\mathrm{m}(H \cap H(x)) = 1 for each x \in X and each H \in \scrG .

Remark 3.3. A collection of spaces in C(X) lacking at most only property (\ast ) of
Definition 3.2 always exists, as a consequence of the Peter-Weyl theorem from [5].

Remark 3.4. Explicitly, Definition 3.2(3) requires each f \in L2(\mu ) to have a unique
expansion f =

\sum 
fi, with fi \in Hi, that converges unconditionally to f in the L2-norm.

Throughout the remainder of the paper, we assume that a G-collection \scrG exists for
X, indexed by I. The rest of this section is devoted to establishing results related to \scrG 
and its elements Hi, beginning with the following theorem, which is a generalization of
Theorem 12.2.5 of [9]. Note that we use [\cdot , \cdot ] to denote the inner product on L2(\mu ):

[f, g] =

\int 
X

f\=g d\mu .

Theorem 3.5. Suppose H is a closed G-invariant subspace of C(X), and \pi is the
orthogonal projection of L2(\mu ) onto H. Then, \pi commutes with G, and to each x \in X
corresponds a unique Kx \in H such that

(\pi f)(x) = [f,Kx] (f \in L2(\mu )). (3.2)

Additionally, the functions Kx satisfy the following:
(1) Kx(y) = Ky(x) (x, y \in X),

(2) \pi f =

\int 
X

f(x)Kx d\mu (x) (f \in L2(\mu )),

(3) K\varphi \alpha (x) = Kx \circ \varphi \alpha  - 1 (\alpha \in G),
(4) Kx = Kx \circ \varphi \alpha , for all \alpha \in G such that \alpha x = x, and
(5) Kx(x) = Ky(y) > 0 (x, y \in X).

Proof. The projection \pi commutes with G due to the G-invariance of H\bot , which follows
from Corollary 2.1. The existence and uniqueness of Kx follows from the fact that
f \mapsto \rightarrow (\pi f)(x) is a bounded linear functional on L2(\mu ). Further, Kx \in H since \pi f = 0
whenever f \bot H. When f \in H, we get

f(x) = [f,Kx].
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In particular, Ky(x) = [Ky,Kx], which proves (1), and (2) follows naturally. Since \pi 
commutes with G,

[f,K\varphi \alpha (x)] = (\pi f)(\varphi \alpha (x)) = \pi (f \circ \varphi \alpha )(x) = [f \circ \varphi \alpha ,Kx] = [f,Kx \circ \varphi \alpha  - 1 ],

for every f \in L2(\mu ) (Corollary 2.1 yields the last equality). This proves (3) and the
special case (4). Finally, (3) also yields

K\varphi \alpha (x)(\varphi \alpha (x)) = (Kx \circ \varphi \alpha  - 1)(\varphi \alpha (x)) = Kx(x).

This and the transitivity of the group action yields (5), with the inequality due to

Kx(x) = [Kx,Kx] > 0. \square 

Remark 3.6. Theorem 3.5(4) yields that \mathrm{d}\mathrm{i}\mathrm{m}(H(x) \cap Hi) \geq 1 for each x \in X and i \in I,
so that Definition 3.2(\ast ) requires each Hi to contain a unique (up to a constant multiple)
function which satisfies Theorem 3.5(4) for each x \in X.

Definition 3.7. We define \pi i to be the projection of L2(\mu ) onto Hi. The domain of each
\pi i is extended to L1(\mu ) by Theorem 3.5(2).

Definition 3.8. If \Omega \subset I, we define E\Omega to be the direct sum of the spaces Hi for i \in \Omega .

Theorem 3.9. Suppose T : Hi \rightarrow Hj is linear and commutes with G. When i = j, T is
the identity on Hi scaled by a constant c. Otherwise, T = 0.

Proof. For each x \in X, let Kx denote the kernel of Theorem 3.5 in Hi and Lx the same
in Hj . Then, if \alpha \in G such that \alpha x = x, because T commutes with G, we get

TKx = T (Kx \circ \varphi \alpha ) = (TKx) \circ \varphi \alpha .

Thus, by Definition 3.2(\ast ), TKx = c(x)Lx for some constant c(x), and hence

(TKx)(x) = c(x)Lx(x).

Observe that Lx(x) is independent of x. Further, if y = \alpha x, then

(TKy)(y) = (TKx \circ \varphi \alpha  - 1)(\alpha x) = (TKx)(x).

Thus, c(x) = c is the same constant for all x \in X.
If f \in Hi, we then get

f =

\int 
X

f(x)Kx d\mu (x).

Application of T yields

Tf =

\int 
X

f(x)TKx d\mu (x) = c

\int 
X

f(x)Lx d\mu (x) = c\pi jf.

When i = j, then \pi jf = f for all f \in Hi. When i \not = j, then \pi jf = 0 for all f \in Hi. \square 

4. Characterization of Closed G-Invariant Spaces

We now prove our main result, Theorem 4.1. Throughout the section, we let \scrX denote
any of the spaces C(X) or Lp(\mu ) for 1 \leq p <\infty .

Theorem 4.1. If Y is a closed G-invariant subspace of \scrX , then Y is the closure of the
direct sum of some subcollection of \scrG .

The proof of Theorem 4.1 relies on the particular case when \scrX is the space L2(\mu )
(Theorem 4.2), as well as Lemma 4.3 and Lemma 4.4, which allow the passage from L2(\mu )
to the other spaces. These lemmas are proved in Section 5.

Theorem 4.2. If Y is a closed G-invariant subspace of L2(\mu ), then Y is the L2-closure
of the direct sum of some subcollection of \scrG .



98 SAMUEL A. HOKAMP

Proof. Define the set \Omega = \{ i \in I : \pi iY \not = \{ 0\} \} and let i \in \Omega . Since Y is G-invariant and
\pi i commutes with G, \pi iY is a nontrivial G-invariant space in Hi. The G-minimality of
Hi then yields that \pi iY = Hi.

Let Y0 be the null space of \pi i in Y , with relative orthogonal complement Y1. Then Y0
is G-invariant, and so is Y1. Further, \pi i : Y1 \rightarrow Hi is an isomorphism, whose inverse we
denote \Lambda . If we fix j \in I such that j \not = i and define T = \pi j \circ \Lambda , then T maps Hi into Hj

and commutes with G. Thus, T = 0.
We conclude that \pi jY1 = \{ 0\} for all j \not = i, and thus Y1 = Hi. Thus, Hi \subset Y for all

i \in \Omega , and further, E
2

\Omega \subset Y . Since \pi jY = \{ 0\} for all j /\in \Omega , Definition 3.2(3) yields the
opposite inclusion. \square 

Lemma 4.3. If Y is a closed G-invariant space in \scrX , then Y \cap C(X) is dense in Y .

Lemma 4.4. If Y \subset C(X), Y is a G-invariant space, and some g \in C(X) is not in the
uniform closure of Y , then g is not in the L2-closure of Y .

Proof of Theorem 4.1. If Y is a closed G-invariant subspace of \scrX , define \~Y to be the
L2-closure of Y \cap C(X). Lemma 4.4 then yields

\~Y \cap C(X) = Y \cap C(X).

We next observe that Y \cap C(X) is L2-dense in \~Y and is \scrX -dense in Y , by Lemma 4.3.
Each \pi i is \scrX -continuous as well as L2-continuous, so that \pi iY = \{ 0\} if and only if
\pi i \~Y = \{ 0\} . By Theorem 4.2, \~Y is the L2-closure of E\Omega , where \Omega is the set of all i \in I
such that \pi iY \not = \{ 0\} . Another application of Lemma 4.4 yields

\~Y \cap C(X) = E\Omega .

The \scrX -density of Y \cap C(X) in Y then implies Y is the \scrX -closure of E\Omega . \square 

Example 4.5. We now further explore the situation that was set up in Example 2.7.
Recall that X = G = Tn, the torus in \BbbC n, such that the action of G on X is given by
coordinatewise multiplication. This action is both transitive and continuous, and the
measure induced by the action is the usual Lebesgue measure m, normalized so that
m(Tn) = 1.

Further, Hk is the space of all complex functions f on Tn given by f(z) = czk, where
c \in \BbbC and zk = zk1

1 zk2
2 . . . zkn

n for k = (k1, k2, . . . , kn) \in \BbbZ n; that is, Hk is the span of the
trigonometric monomial of power k.

The collection \scrG of spaces Hk forms a G-collection: Each Hk is a closed G-invariant
space of dimension 1, thus is G-minimal. Further,\int 

Tn

zk\=zk
\prime 
dm(z) =

\Biggl\{ 
1 if k = k\prime 

0 if k \not = k\prime ,

so that the spaces Hk are pairwise orthogonal. Finally, L2(Tn) is the direct sum of the
spaces Hk as a consequence of the Stone-Weierstrass theorem (presented in [8] as a special
case of Bishop’s Theorem, Theorem 5.7). Thus, \scrG satisfies the first three properties of
Definition 3.2. Lastly, for z \in Tn, we have \mathrm{d}\mathrm{i}\mathrm{m}(H(z) \cap Hk) = 1 from Theorem 3.5 and
the fact that \mathrm{d}\mathrm{i}\mathrm{m}Hk = 1. Thus, \scrG is a G-collection.

Theorem 4.1 then yields that every closed G-invariant space of continuous or Lp

functions on Tn is the closure of the direct sum of some collection of spaces Hk. Notably,
the collection which induces the space of all functions which are restrictions to Tn of
functions holomorphic on the polydisc and continuous on the closed polydisc is the
collection of all Hk such that k has nonnegative coordinates.
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5. Proofs of Lemma 4.3 and Lemma 4.4

As in Section 4, we let \scrX denote any of the spaces C(X) or Lp(\mu ), for 1 \leq p < \infty .
The proofs of Lemma 4.3 and Lemma 4.4 (given at the end of the section) require Lemma
5.1 and Lemma 5.2, which we now prove.

Lemma 5.1. If f \in C(X), then the map \alpha \mapsto \rightarrow f \circ \varphi \alpha is a continuous map of G into
C(X).

Proof. For \alpha \in G, we define the map \phi : G \rightarrow C(X,X) by \phi (\alpha ) = \varphi \alpha . Then \phi is
continuous when C(X,X) is given the compact-open topology (Theorem 46.11 of [3]).
We note that the continuity of the group action is used here.

We define the map Tf : C(X,X) \rightarrow C(X) for f \in C(X) by Tf (\varphi ) = f \circ \varphi , and we
endow both spaces with the compact-open topology. Let f \circ \varphi \in C(X) for \varphi \in C(X,X)
and suppose f \circ \varphi \in V , where V = V (K,U) is a subbasis element in C(X). Explicitly,

K \subset (f \circ \varphi ) - 1(U). That is to say, K \subset \varphi  - 1(f - 1(U)).

Then V \prime = V \prime (K, f - 1(U)) is a subbasis element in C(X,X) and \varphi \in V \prime . Further,
V \prime \subset T - 1

f (V ), so that Tf is continuous when C(X,X) and C(X) are endowed with the
respective compact-open topologies. We finally observe that since X is compact, the
norm topology and the compact-open topology on C(X) coincide. \square 

Lemma 5.2. If f \in \scrX , then the map \alpha \mapsto \rightarrow f \circ \varphi \alpha is a continuous map of G into \scrX .

Proof. For brevity, we let | | \cdot | | denote the norm of the space \scrX and | | \cdot | | \infty the uniform
norm in C(X). If \epsilon > 0, then | | f  - g| | < \epsilon /3 for some g \in C(X). There is a neighborhood
N of the identity in G such that | | g  - g \circ \varphi \alpha | | \infty < \epsilon /3 for all \alpha \in N (Lemma 5.1). Since

| f  - f \circ \varphi \alpha | \leq | f  - g| + | g  - g \circ \varphi \alpha | + | (g  - f) \circ \varphi \alpha | ,
we have | | f  - f \circ \varphi \alpha | | < \epsilon for all \alpha \in N . \square 

Proof of Lemma 4.3. Let f \in Y and choose N as in the proof of Lemma 5.2. Let
\psi : G\rightarrow [0,\infty ) be continuous, with support in N , such that

\int 
\psi dm = 1, where m denotes

the Haar measure on G. Define

g(x) =

\int 
G

\psi (\alpha )f(\alpha x) dm(\alpha ).

Since \alpha \mapsto \rightarrow \psi (\alpha )f \circ \varphi \alpha is a continuous map into Y , we have g \in Y . If \beta \in G such that
\beta x1 = x, the invariance of the Haar measure yields

g(x) =

\int 
G

\psi (\alpha \beta  - 1)f(\alpha x1) dm(\alpha ).

Thus, g \in Y \cap C(X).
Finally, the relation

f  - g =

\int 
N

\psi (\alpha )(f  - f \circ \varphi \alpha ) dm(\alpha )

gives | | f  - g| | < \epsilon , since | | f  - f \circ \varphi \alpha | | < \epsilon whenever \alpha \in N . \square 

Proof of Lemma 4.4. There is a \mu \prime \in M(X) such that
\int 
f d\mu \prime = 0 for all f \in Y , but\int 

g d\mu \prime = 1. There is a neighborhood N of the identity in G such that Re
\int 
g \circ \varphi \alpha d\mu 

\prime > 1
2

for every \alpha \in N . Associate \psi to N as in the proof of Lemma 4.3, and define \Lambda \in C(X)\ast 

by

\Lambda h =

\int 
X

\int 
G

\psi (\alpha )h(\alpha x) dm(\alpha ) d\mu \prime (x).

By the Schwarz inequality,\bigm| \bigm| \bigm| \int 
G

\psi (\alpha )h(\alpha x) dm(\alpha )
\bigm| \bigm| \bigm| 2 \leq 

\int 
G

| \psi (\alpha )| 2 dm(\alpha )

\int 
G

| h(\alpha x)| 2 dm(\alpha ) = | | \psi | | 22
\int 
X

| h| 2 d\mu ,
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so that
| \Lambda h| \leq | | \mu \prime | | | | \psi | | 2| | h| | 2.

Thus, \Lambda extends to a bounded linear functional \Lambda 1 on L2(\mu ). By interchanging integrals in
the definition of \Lambda , we get \Lambda 1f = 0 for every f \in Y , but Re \Lambda 1g \geq 1

2 . Thus, g /\in Y
2
. \square 

6. Future Questions

(1) Does a G-collection exist for all groups G acting continuously and transitively on
X? What about a collection that only lacks (\ast )? What conditions might exist on
G or X that yield a collection that only lacks (\ast )?

(2) Under what conditions can the restrictions on X, G, and the action of G on
X be loosened? Can the compactness of X and G be substituted with local
compactness? Can the continuity of the action be substituted with separate
continuity?

(3) Suppose H is a subgroup of G and \scrH is a collection of closed H-minimal spaces
satisfying the same conditions as \scrG . What is the relationship between \scrH and \scrG ?
The uniqueness of \mu shows that the H-measure is the same as the G-measure,
and further, G-invariance implies H-invariance (of a space).

We note that (3) is prompted from the study of \scrM -invariant and \scrU -invariant
spaces of continuous functions on the unit sphere of \BbbC n from [4], in which it is
shown that there are infinitely many \scrU -invariant spaces and only six \scrM -invariant
spaces. These six \scrM -invariant spaces are found by combining the \scrU -minimal
spaces in a specific way (see Lemma 13.1.2 of [9]), and we are curious if this
method can be generalized.

(4) Can the results of [2] similarly be generalized? That is, can a G-collection similarly
characterize all weak*-closed G-invariant subspaces of L\infty (\mu )?

(5) Under what conditions can a G-collection characterize the closed G-invariant
algebras of continuous functions? We note that the case for the unitary group
acting on the unit sphere of \BbbC n is discussed in [6] and is also summarized in [9].

7. Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.
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