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WEAVING OPERATOR FRAMES FOR B(\scrH )

MOHAMED ROSSAFI, KHADIJA MABROUK, M’HAMED GHIATI,
AND MOHAMMED MOUNIANE

Abstract. This paper aims to study the concept of weaving operator frames within
Hilbert spaces \scrH . Properties of weaving operator frames are explored. An investigation
into the dual aspect of weaving operator frames within B(\scrH ) spaces is presented.
The behavior and characteristics of weaving operator responses within the context of
Hilbert spaces are discuted. Finally, perturbation results concerning weaving operator
frames are obtained.

В статтi вивчається концепцiя фреймiв сплiтаючих операторiв в гiльбертових
просторах \scrH . Дослiджуються властивостi фреймiв сплiтаючих операторiв. Вивче-
но подвiйний аспект фреймiв сплiтаючих операторiв в просторах B(\scrH ). Обговоре-
но поведiнку та характеристики реакцiй сплiтаючего оператора в контекстi
гiльбертових просторiв. Отримано результати збурення фреймiв сплiтаючих
операторiв.

1. Introduction

Frames in Hilbert spaces has been introduced by Duffin and Schaeffer [7] in 1952 to
study some deep problems in nonharmonic Fourier series. After the fundamental paper [5]
by Daubechies, Grossman and Meyer, frame theory began to be widely used, particularly
in the more specialized context of wavelet frame, and Gabor frame [8]. Frames have
been used in signal processing, image processing, data compression, and sampling theory.
However, Vashisht et al. [16] introduced weaving frames and many authors [1, 3, 4, 6, 15]
have studied their properties in light of recent technological advancements, wireless
communications, and weaving frames. For more about frames, see [9, 11, 12, 13, 14] and
the references therein. Recently, Bemrose et al. [1] introduced a new concept of weaving
frames in separable Hilbert spaces. This notion has potential applications in distributed
signal processing and wireless sensor networks, see for example [2, 4].

The paper is organized as follows. We continue this section by giving the definitions
and some basic results about frames in a Hilbert space. In Section 2 the concept of
operator frames in Hilbert spaces is introduced, and we give some of their properties.
Subsequently, we introduce the concept of a dual weaving operator frame in Section 3. In
Section 4, we introduce the notion of weaving operator responses of elements of Hilbert
spaces to show that the concept of operator frames is a generalization of the usual frames
for Hilbert spaces. Sufficient conditions for perturbations of weaving operator frames are
given in Section 5.

Throughout this paper, let \scrH and \scrK be two Hilbert spaces and \{ \scrH i\} i\in I be a sequence
of closed subspaces of \scrK , where I is a subset of \BbbN . Let B(\scrH ,\scrK ) be the set of all
bounded linear operators from the Hilbert space \scrH into the Hilbert space \scrK . We write
B(\scrH ) = B(\scrH ,\scrH ) in the case where \scrK = \scrH . We denote by I\scrH the identity operator on \scrH .
For T \in B(\scrH ), we denote T \dagger for pseudo-inverse of T . Let

[m] = \{ 1, 2, \cdot \cdot \cdot ,m\} and [m]c = \BbbN \setminus [m] = \{ m+ 1,m+ 2, . . . \} 
for a given positive integer m.
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Definition 1.1 ([7]). A family of vectors \{ fi\} i\in I in a Hilbert space \scrH is said to be a
frame if there are constants 0 < A \leq B <\infty such that, for every f \in \scrH ,

A\| f\| 2 \leq 
\sum 
i\in I

| \langle f, fi\rangle | 2 \leq B\| f\| 2, (1.1)

where A and B are lower frame bound and upper frame bound, respectively.

If A = B, the frame is termed a tight frame. If A = B = 1, it is referred to as a
normalized tight or Parseval frame. Additionally, if a sequence \{ fi\} i\in I fulfills only the
upper bound condition in (1.1), it is also denoted as a Bessel sequence.

Definition 1.2 ([10]). A set of bounded linear operators \{ Ti\} i\in I defined on a Hilbert
space \scrH is termed an operator frame for B(\scrH ) if there exist positive constants A and B
such that for all f \in \scrH , the inequality

A\| f\| 2 \leq 
\sum 
i\in I

\| Tif\| 2 \leq B\| f\| 2 (1.2)

holds, where A and B represent the lower and upper bounds for the operator frame,
respectively.

An operator frame \{ Ti\} i\in I is called tight if the constants A and B can be chosen to
be equal. It is called a Parseval operator frame when A = B = 1. Moreover, if every
operator Ti is self-adjoint, i.e., Ti = T \ast 

i , it is called a self-adjoint operator frame. For
each sequence \{ \scrH i\} i\in I , we define the space \oplus i\in I\scrH i by

\oplus i\in I\scrH i = \{ \{ fi\} i\in I | fi \in \scrH i, \| \{ fi\} i\in I\| 22 =
\sum 
i\in I

\| fi\| 2 <\infty \} ,

with the inner product defined by

\langle \{ fi\} , \{ gi\} \rangle =
\sum 
i\in I

\langle fi, gi\rangle .

The synthesis operator of \{ \Phi i\} i\in I is given by

T\Phi : \oplus \scrH i  - \rightarrow \scrH ; T\Phi \{ gi\} i\in I =
\sum 
i\in I

\Phi \ast 
i gi, \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{a}\mathrm{l}\mathrm{l} gi \in \scrH i.

We call the adjoint of T\Phi the analysis operator which is given by T \ast 
\Phi f = \{ \Phi if\} i\in I .

By composing T\Phi and T \ast 
\Phi , we obtain the frame operator

S\Phi f = T\Phi T
\ast 
\Phi f =

\sum 
i\in I

\Phi \ast 
i\Phi if

which is bounded, positive and invertible. Then, the following reconstruction formula
takes place for all f \in \scrH 

f = S - 1
\Phi S\Phi f = S\Phi S

 - 1
\Phi f =

\sum 
i\in I

\Phi \ast 
i\Phi iS

 - 1
\Phi f =

\sum 
i\in I

S - 1
\Phi \Phi \ast 

i\Phi if.

We call \{ \Phi iS
 - 1
\Phi \} i\in I the canonical dual operator frame of \{ \Phi i\} i\in I .

2. Weaving operator frames for B(\scrH )

This section introduces the concept of woven operator frames in the context of a
Hilbert space \scrH . Woven operator frames extend the notion of classical operator frames
by giving two families of operator frames. We will formally define woven operator frames
and explore some of their properties.
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Definition 2.1. Two operator frames \{ \Phi i \in B(\scrH )\} i\in I and \{ \Psi i \in B(\scrH )\} i\in I in a Hilbert
space \scrH are said to be woven operator frames if there exist universal constants 0 < A \leq 
B <\infty such that for each partition \sigma of I, the family \{ \Phi i\} i\in \sigma \cup \{ \Psi i\} i\in \sigma c is an operator
frame in \scrH with bounds A and B, respectively, that is,

A\| f\| 2\leq 
\sum 
i\in \sigma 

\| \Phi if\| 2+
\sum 
i\in \sigma c

\| \Psi if\| 2\leq B\| f\| 2. (2.3)

This definition introduces the concept of woven operator frames in the context of a
Hilbert space.

Definition 2.2. A family of operator frames \{ \Phi ij\} j\in \sigma i
for i \in I in a Hilbert space \scrH is

said to be woven operator frames if there exist universal positive constants A and B such
that for any partition (\sigma i)i\in I of \BbbN , the family \{ \cup i\in I\Phi ij\} j\in \sigma i

is an operator frame in \scrH 
with bounds A and B, respectively, that is,

A\| f\| 2\leq 
\sum 
i\in I

\sum 
j\in \sigma i

\| \Phi ijf\| 2\leq B\| f\| 2. (2.4)

Note that if I is a countably infinite set, the family \{ \Phi ij\} \infty j=1 for i \in I is referred to as
infinitely woven.

In the context of discrete Hilbert frames, the concept of infinitely woven frames was
extensively studied by Deepshikha and L. K. Vashisht in their paper [6].

Proposition 2.3. Let \{ \Phi ij\} j\in \sigma i for i \in I be a family of woven operator frames in a
Hilbert space \scrH . Then the frame operator S is self-adjoint, positive, bounded and invertible
on \scrH .

Proof. Since S\ast 
\Phi = (T \ast 

\Phi T\Phi )
\ast = T \ast 

\Phi T\Phi = S\Phi , the frame operator S\Phi is self adjoint.
Let \{ \Phi ij\} \infty j=1 be woven operator frames in \scrH with universal lower and upper frame

bounds A and B, respectively. Then

\langle S\Phi f, f\rangle = \langle 
\sum 
i\in I

\sum 
j\in \sigma i

\Phi \ast 
ij\Phi ijf, f\rangle =

\sum 
i\in I

\sum 
j\in \sigma i

\langle \Phi \ast 
ij\Phi ijf, f\rangle 

=
\sum 
i\in I

\sum 
j\in \sigma i

\langle \Phi ijf, \Phi ijf\rangle =
\sum 
i\in I

\sum 
j\in \sigma i

\| \Phi ijf\| 2

and, hence,
AI \leq S\Phi \leq BI.

Therefore, the frame operator S is positive, bounded and invertible. \square 

Proposition 2.4. If each \Phi j = \{ \Phi ij\} i\in I is a g-Bessel sequence for a Hilbert space \scrH 
with bounds Bj for all j \in [m], then every weaving is a g-Bessel sequence with

\sum m
j=1 Bj

as a Bessel bound.

Proof. Let \{ \sigma j\} j\in [m] be any partition of I. Then, for every f \in \scrH , we have
M\sum 
j=1

\sum 
i\in \sigma j

\| \Phi ijf\| 2 \leq 
M\sum 
j=1

\sum 
i\in I

\| \Phi ijf\| 2 \leq 
M\sum 
j=1

Bj\| f\| 2.

This completes the proof. \square 

Remark 2.5. Proposition 2.4 also holds for infinitely woven frames, given that the
sequence \{ Bj\} \infty j=1 belongs to \ell 1(I).

Proposition 2.6. Let \{ \Phi i\} i\in \BbbN and \{ \Psi i\} i\in \BbbN be g-Bessel sequences in a Hilbert space \scrH 
with g-Bessel bounds A1 and A2, respectively. If J \subset \BbbN and \{ \Phi j\} j\in J and \{ \Psi j\} j\in J are
woven operator frames, then \Phi and \Psi are woven operator frames for \scrH .
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Proof. We have

A\| f\| 2\leq 
\sum 

j\in \sigma \cap J

\| \Phi jf\| 2+
\sum 

j\in \sigma c\cap J

\| \Psi jf\| 2\leq 
\sum 
j\in \sigma 

\| \Phi jf\| 2+
\sum 
j\in \sigma c

\| \Psi jf\| 2\leq (A1 +A2)\| f\| 2.

Hence \Phi and \Psi are woven operator frames for \scrH . \square 

Proposition 2.7. Let J \subset I. If a family of operator frames \{ \Phi ij\} i\in J,j\in [m] is woven,
then \{ \Phi ij\} i\in I,j\in [m] is also woven.

Proof. For any \sigma j \subset I, \sigma j \cap J \subset J . Let A be a lower bound of \{ \Phi ij\} i\in \sigma j\cap J,j\in [m]. Then
for any f \in \scrH we have

A\| f\| 2 \leq 
m\sum 
j=1

\sum 
i\in \sigma j\cap J

\| \Phi ijf\| 2 \leq 
m\sum 
j=1

\sum 
i\in \sigma j

\| \Phi ijf\| 2.

Since \{ \Phi ij\} i\in I is a g-Bessel sequence for all j \in [m] for \scrH , the upper bound of
\{ \Phi ij\} i\in I,j\in [m] is always given. This implies that \{ \Phi ij\} i\in I,j\in [m] is woven for \scrH . \square 

Proposition 2.8. Let \{ \Phi ij\} i\in I,j\in [m] be a woven family of g-frames for a Hilbert space
\scrH with common frame bounds A and B. Let S

(j)
\Phi be the frame operator of \{ \Phi ij\} i\in I

for each j \in [m]. For any partition \sigma j of I, if S\Psi represents the frame operator of
\Psi = \{ \Phi ij\} i\in \sigma j ,j\in [m], then for any f \in \scrH ,\sum 

j\in [m]

\| (S(j)
\Phi )\sigma jf\| 2 \leq B\| S\Psi \| \| f\| 2,

where (S
(j)
\Psi )\sigma j

denotes the frame operator S
(j)
\Psi with sum restricted to \sigma j.

Proof. Let (T
(j)
\Phi )\sigma j

be the synthesis operator of \{ \Phi ij\} i\in I restricted to the sum over \sigma j .
Since S

(j)
\Phi \geq AI\scrH , for any f \in \scrH , we have\sum 

j\in [m]

\| \langle S(j)
\Phi ,\sigma j

f, S
(j)
\Phi ,\sigma j

f\rangle \scrA \| =
\sum 
j\in [m]

\| S(j)
\Phi ,\sigma j

f\| 2

=
\sum 
j\in [m]

( \mathrm{s}\mathrm{u}\mathrm{p}
\| g\| =1

\| \langle S(j)
\Phi ,\sigma j

f, g\rangle \scrA \| )2

=
\sum 
j\in [m]

( \mathrm{s}\mathrm{u}\mathrm{p}
\| g\| =1

\| \langle T (j)
\Phi ,\sigma j

(T
(j)
\Phi ,\sigma j

)\ast f, g\rangle \scrA \| )2

\leq 
\sum 
j\in [m]

B\| \langle (T (j)
\Phi ,\sigma j

)\ast f, (T
(j)
\Phi ,\sigma j

)\ast f\rangle \scrA \| 

= B
\sum 
j\in [m]

\| 
\sum 
\sigma j

\langle \Phi ijf, \Phi ijf\rangle \scrA \| 

\leq B\| \langle S\Phi ,\sigma j
f, f\rangle \scrA \| 

\leq B\| S\Phi ,\sigma j\| \| \langle f, f\rangle \scrA \| .

This completes the proof. \square 

3. Dual of weaving operator frames for B(\scrH )

This section explores the dual aspects of weaving operator frames in B(\scrH ),
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Definition 3.1. Let T = \{ Ti\} i\in I be an weaving operator frame for B(\scrH ). A family

of weaving operators \widetilde T =
\Bigl\{ \widetilde Ti

\Bigr\} 
i\in I

on \scrH is called a dual of weaving operator frame

T = \{ Ti\} i\in I if it satisfies

x =
\sum 
i\in I

\sum 
i\in \sigma i

T \ast 
i
\widetilde Tix, \forall x \in \scrH . (3.5)

Furthermore, we call
\bigl\{ \widetilde Ti

\bigr\} 
i\in I

a dual of weaving operator frame T = \{ Ti\} i\in I if
\bigl\{ \widetilde Ti

\bigr\} 
i\in I

is
also a weaving operator frame for B(\scrH ) and satisfies the condition (3.5).

Definition 3.2. A weaving operator sequence T = \{ Ti\} i\in I on \scrH is a weaving operator
Riesz basis for B(\scrH ) if it satisfies

(i) span \{ T \ast 
i \} i\in I = \scrH ;

(ii) there exist constants C,D > 0 such that

C
\bigm\| \bigm\| \{ xi\} i\in I

\bigm\| \bigm\| 2 \leq \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
i\in I

\sum 
i\in \sigma i

T \ast 
i xi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq D
\bigm\| \bigm\| \{ xi\} i\in I

\bigm\| \bigm\| 2 , \forall \{ xi\} i\in I \in \oplus i\in I\scrH i. (3.6)

Theorem 3.3. Every weaving frame for B(\scrH ) has a weaving dual frame.

Proof. If T = \{ Ti\} i\in I is a weaving operator frame for B(\scrH ) with bounds A,B, then the
operator sequence \widetilde T =

\bigl\{ 
TiS

 - 1
T

\bigr\} 
i\in I

is a weaving dual frame of T = \{ Ti\} i\in I . So we have

x = STS
 - 1
T x =

\sum 
i\in I

\sum 
i\in \sigma i

T \ast 
i TiS

 - 1
T x =

\sum 
i\in I

\sum 
i\in \sigma i

T \ast 
i
\~Tix, \forall x \in \scrH 

and \widetilde T =
\bigl\{ 
TiS

 - 1
T

\bigr\} 
i\in I

satisfies

A \| ST \|  - 2 \cdot \| x\| 2 \leq 
\sum 
i\in I

\sum 
i\in \sigma i

\bigm\| \bigm\| \bigm\| \widetilde Tix
\bigm\| \bigm\| \bigm\| 2 =

\sum 
i\in I

\sum 
i\in \sigma i

\bigm\| \bigm\| TiS
 - 1
T x

\bigm\| \bigm\| 2 \leq B
\bigm\| \bigm\| S - 1

T

\bigm\| \bigm\| 2 \cdot \| x\| 2, \forall x \in \scrH .

Hence
\bigl\{ 
TiS

 - 1
T

\bigr\} 
i\in I

is a canonical weaving dual frame of \{ Ti\} i\in I . \square 

Assume that T =
\bigl\{ 
Ti

\bigr\} 
i\in I

is a weaving operator frame for B(\scrH ) with analytic operator
RT and \widetilde T =

\bigl\{ \widetilde Ti

\bigr\} 
i\in I

is a weaving dual frame of T with analytic operator R\widetilde T . Then for
any x in \scrH , we have

x =
\sum 
i\in I

\sum 
i\in \sigma i

T \ast 
i
\widetilde Tix = R\ast 

TR\widetilde Tx. (3.7)

This shows that every element of \scrH can be reconstructed with a weaving operator frame
for B(\scrH ) and its weaving dual frame. Moreover, we also have another fact that for any
operator A on \scrH , we get

Ax =
\sum 
i\in I

\sum 
i\in \sigma i

T \ast 
i
\widetilde TiAx, \forall x \in \scrH . (3.8)

That is, an association of the weaving operator frame and its dual frame can reconstruct
pointwisely every weaving operator on \scrH and so we can write

A
.
=

\sum 
i\in I

\sum 
i\in \sigma i

T \ast 
i
\~TiA,

where
\sum 

i\in I T
\ast 
i
\widetilde TiA converges strongly to A.
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Definition 3.4. A family of weaving operators \{ Ti\} i\in I on \scrH is called a weaving operator
Bessel sequence in B(\scrH ) if

span \{ T \ast 
i \} i\in I = \scrH ,

where

span
\bigl\{ 
T \ast 
i

\bigr\} 
i\in I

= the cloure of
\Bigl\{ \sum 

i\in L

T \ast 
i xi :

\bigl\{ 
xi

\bigr\} 
i\in I
\in S(\scrH ),\forall L \in \scrF (\Phi )

\Bigr\} 
.

Theorem 3.5. Let T = \{ Ti\} i\in I be a weaving operator Bessel sequence in B(\scrH ), then

(1) T = \{ Ti\} i\in I is a weaving operator frame for B(\scrH ) if and only if RT is bounded
below;

(2) T = \{ Ti\} i\in I is an independent weaving operator frame for B(\scrH ) if and only if
RT is invertible

Proof. The proof of (1) is easy and so we omit it. Assume that T = \{ Ti\} i\in I is an
independent weaving operator frame. Then we now prove that RT is invertible. From the
condition and the definition of independent weaving operator frame, we know that R\ast 

T is
injective, and so R (RT ) = \mathrm{K}\mathrm{e}\mathrm{r} (R\ast 

T ) = \{ 0\} .
This shows that the range of RT is dense in \scrH . On the other hand, from (1), we know

that RT is bounded below, and so R (RT ) is closed. Hence RT is invertible. Conversely,
if RT is invertible, then RT is bounded below. Thus T = \{ Ti\} i\in I is a weaving operator
frame.

Now, suppose that T = \{ Ti\} i\in I is not an independent weaving operator frame. Then
there exist a non-zero sequence \{ xi\} i\in I \subset \scrH and some i0 \in I such that xi0 \not = 0. Thus

T \ast 
i0xi0 =

\sum 
i\not =i0

T \ast 
i xi. (3.9)

Since RT is also surjective, there exists x \in \scrH such that RTx = \{ Tix\} i\in I = \eta i0 \in 
\oplus i\in I\scrH i, where \eta i0 = \{ yi\} i\in I , yi0 = xi0 and yi = 0, i \not = i0. Hence Ti0x = xi0 and so\bigl\langle 
x, T \ast 

i0
xi0

\bigr\rangle 
= \langle Ti0x, xi0\rangle = \| xi0\| 

2 \not = 0. But (3.9) implies that\bigl\langle 
x, T \ast 

i0xi0

\bigr\rangle 
=

\Bigl\langle 
x,

\sum 
i \not =i0

T \ast 
i xi

\Bigr\rangle 
=

\sum 
i\not =i0

\langle x, T \ast 
i xi\rangle =

\sum 
i \not =i0

\langle Tix, xi\rangle = 0.

This is a contradiction. So T = \{ Ti\} \forall i\in I is independent. \square 

Theorem 3.6. Let T = \{ Ti\} i\in I be a sequence of weaving operators on \scrH . Then the
following statements are equivalent.

(1) T = \{ Ti\} i\in I is a weaving operator Riesz basis.
(2) T = \{ Ti\} i\in I is an independent weaving operator frame.

Proof. If T = \{ Ti\} i\in I is a weaving operator Riesz basis, then R\ast 
T is bounded below

by Theorem 3.5 and so the range, denoted by R (R\ast 
T ), of R\ast 

T is closed. In addition,
span \{ T \ast 

i \} i\in = R (R\ast 
T ) = \scrH . Thus R\ast 

T is bijective. By the Banach Inverse Theorem,
R\ast 

T is invertible, and so RT is also invertible. Hence (2) in Theorem 3.5 implies that
T = \{ Ti\} i\in I is an independent weaving operator frame.

Conversely, assume that T = \{ Ti\} i\in I is an independent weaving operator frame.
Then (2) in Theorem 3.5 shows that RT is invertible. Thus R\ast 

T is invertible. For any
\{ xi\} i\in i \in \oplus i\in I\scrH i, we have\bigm\| \bigm\| \{ xi\} i\in I

\bigm\| \bigm\| 2 =
\bigm\| \bigm\| R\ast  - 1

T R\ast 
T

\bigl( 
\{ xi\} i\in I

\bigr) \bigm\| \bigm\| 2 \leq \bigm\| \bigm\| R\ast  - 1
T

\bigm\| \bigm\| 2 \bigm\| \bigm\| R\ast 
T

\bigl( 
\{ xi\} i\in I

\bigr) \bigm\| \bigm\| 2 .
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Put C =
\bigm\| \bigm\| R\ast  - 1

T

\bigm\| \bigm\|  - 2
and D = \| R\ast 

T \| 
2. Then

C
\bigm\| \bigm\| \{ xi\} i\in I

\bigm\| \bigm\| 2 \leq \bigm\| \bigm\| R\ast 
T

\bigl( 
\{ xi\} i\in I

\bigr) \bigm\| \bigm\| 2 =
\bigm\| \bigm\| \bigm\| \sum 
i\in I

\sum 
i\in \sigma i

T \ast 
i xi

\bigm\| \bigm\| \bigm\| 2
\leq D

\bigm\| \bigm\| \{ xi\} i\in I

\bigm\| \bigm\| 2 , \forall \{ xi\} i\in I \in \oplus i\in I\scrH i.

Thus, the condition (3.6) holds. Since R\ast 
T is invertible, the condition (i) of Definition 3.2

holds. Hence T = \{ Ti\} i\in I is an operator Riesz basis. \square 

Lemma 3.7. Let T = \{ Ti\} i\in I be a weaving operator frame for B(\scrH ) with bounds A,B.

If Q = \{ Qi\} i\in I is a weaving operator Bessel sequence in B(\scrH ) with a bound M <
A2

4B
,

then T \pm Q := \{ Ti \pm Qi\} i\in I is a weaving operator frame for B(\scrH ).

Proof. We only prove the case where T +Q = \{ Ti +Qi\} i\in I . The other case is similar.
For any x \in \scrH , we have\sum 

i\in I

\sum 
i\in \sigma i

\| (Ti +Qi)x\| 2 \leq 
\sum 
i\in I

\sum 
i\in \sigma i

(\| Tix\| + \| Qix\| )2

=
\sum 
i\in I

\sum 
i\in \sigma i

\| Tix\| 2 +
\sum 
i\in I

\sum 
i\in \sigma i

\| Qix\| 2 + 2
\sum 
i\in I

\sum 
i\in \sigma i

\| Tix\| \| Qix\| 

\leq B\| x\| 2 +M\| x\| 2 + 2
\Bigl( \sum 

i\in I

\sum 
i\in \sigma i

\| Tix\| 2
\Bigr) 1

2 \cdot 
\Bigl( \sum 

i\in I

\sum 
i\in \sigma i

\| Qix\| 2
\Bigr) 1

2

\leq (B +M)\| x\| 2 + 2
\surd 
B
\surd 
M\| x\| 2

\leq (B +M + 2
\surd 
B
\surd 
M)\| x\| 2

and\sum 
i\in I

\sum 
i\in \sigma i

\bigm\| \bigm\| (Ti +Qi)x
\bigm\| \bigm\| 2 \geq \sum 

i\in I

\sum 
i\in \sigma i

(\| Tix\|  - \| Qix\| )2

=
\sum 
i\in I

\sum 
i\in \sigma i

\| Tix\| 2 +
\sum 
i\in I

\sum 
i\in \sigma i

\| Qix\| 2  - 2
\sum 
i\in I

\sum 
i\in \sigma i

\| Tix\| \| Qix\| 

\geq A\| x\| 2 +
\sum 
i\in I

\sum 
i\in \sigma i

\| Qix\| 2  - 2
\Bigl( \sum 

i\in I

\sum 
i\in \sigma i

\| Tix\| 2
\Bigr) 1

2 \cdot 
\Bigl( \sum 

i\in I

\sum 
i\in \sigma i

\| Qix\| 2
\Bigr) 1

2

\geq A\| x\| 2  - 2
\Bigl( \sum 

i\in I

\sum 
i\in \sigma i

\| Tix\| 2
\Bigr) 1

2 \cdot 
\Bigl( \sum 

i\in I

\sum 
i\in \sigma i

\| Qix\| 2
\Bigr) 1

2

\geq (A - 2
\surd 
B
\surd 
M)\| x\| 2.

Hence T +Q = \{ Ti +Qi\} i\in I is a weaving operator frame for B(\scrH ). \square 

Theorem 3.8. Let T = \{ Ti\} i\in I be a weaving operator frame for B(\scrH ) with bounds A,B.
Then the following statements are equivalent.

(1) T = \{ Ti\} i\in I is independent.
(2) T = \{ Ti\} i\in I is a weaving operator Riesz basis.
(3) R (RT ) = \oplus i\in I\scrH i.
(4) T = \{ Ti\} i\in I has a weaving unique dual frame.

Proof. Theorems 3.8 and 3.6 yield that (1)\leftrightarrow (2)\leftrightarrow (3). We only need to prove (1)\leftrightarrow (4).
(1)\Rightarrow (4) Suppose that an independent operator frame \{ Ti\} i\in I has two weaving dual

frames \widetilde T =
\Bigl\{ \widetilde Ti

\Bigr\} 
i\in I

and \widetilde Q =
\Bigl\{ \widetilde Qi

\Bigr\} 
i\in I

. Then R\widetilde T and R \widetilde Q are left inverses of R\ast 
T from

(3.7). Thus \widetilde T = \widetilde Q.
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(4) \Rightarrow (1) Assume that T = \{ Ti\} i\in I has a unique dual frame \~T =
\bigl\{ \widetilde Ti

\bigr\} 
i\in I

. Suppose
that T = \{ Ti\} i\in I is not independent. Then R (RT ) \not = \oplus i\in I\scrH i, i.e., R (RT )

\bot \not = \{ 0\} .

Thus there exists a nonzero element \{ xi\} i\in I \in R (RT )
\bot such that

\bigm\| \bigm\| \{ xi\} i\in I

\bigm\| \bigm\| <
A

2
\surd 
B

.

Take a unit vector e \in \scrH , define a sequence of bounded linear operators \~U =
\bigl\{ \widetilde Ui

\bigr\} 
i\in I

in such a way that \widetilde Uix = \langle x, e\rangle xi,\forall x \in \scrH . Put \widetilde Q = \widetilde U + \widetilde T . Then for all x in \scrH ,\sum 
i\in \mathrm{E}

\sum 
i\in \sigma i

\bigm\| \bigm\| \bigm\| \~Uix
\bigm\| \bigm\| \bigm\| 2 =

\sum 
i\in I

\sum 
i\in \sigma i

\| \langle x, e\rangle xi\| 2 \leq 
\sum 
i\in I

\sum 
i\in \sigma i

\| \langle x, e\rangle \| 2 \| xi\| 2 \leq \| x\| 2
\sum 
i\in I

\sum 
i\in \sigma i

\| xi\| 2 .

Thus the sequence
\bigl\{ \widetilde Ui

\bigr\} 
i\in I

is a weaving operator Bessel sequence with a Bessel bound

less than
A2

4B
. By Lemma 3.7, we know that \widetilde Q is a weaving operator frame for B(\scrH ).

For any x \in \scrH , since
\bigl\{ \widetilde Uix

\bigr\} 
i\in I

= \{ \langle x, e\rangle xi\} i\in I \in R (RT )
\bot 

= \mathrm{K}\mathrm{e}\mathrm{r} (R\ast 
T ), we see that

R\ast 
T

\bigl( 
\{ \widetilde Uix\} i\in I

\bigr) 
=

\sum 
i\in I T

\ast 
i
\widetilde Uix = 0, and so

x =
\sum 
i\in I

\sum 
i\in \sigma i

T \ast 
i
\widetilde Tix =

\sum 
i\in I

\sum 
i\in \sigma i

T \ast 
i

\Bigl( \widetilde Ti + \widetilde Ui

\Bigr) 
x =

\sum 
i\in I

\sum 
i\in \sigma i

T \ast 
i
\widetilde Qix.

Thus \widetilde Q is also a weaving dual frame of T = \{ Ti\} i\in I . Clearly, \widetilde Q \not = \~T . This contradicts
the uniqueness of the weaving dual frame of T . Hence T = \{ Ti\} i\in I is independent. \square 

For a frame of subspaces \{ Wi\} i\in I with respect to the family of weights \{ vi\} i\in I for \scrH 
with synthesis operator TW,v, the sequence \{ ui\} i\in I =

\bigl\{ 
S - 1
W,vWi

\bigr\} 
i\in I

is called a weaving
dual frame of \{ Wi\} i\in I , where the operator SW,v = TW,vT

\ast 
W,v.

Theorem 3.9. For a frame of subspaces \{ Wi\} i\in I with respect to the family of weights
\{ vi\} i\in I for \scrH , define Ti = viSW,v\pi Wi

S - 1
W,v and Qi = vi\pi ui

S - 1
W,v. Then Q = \{ Qi\} i\in I and

T = \{ Ti\} i\in I are all weaving operator frames for B(\scrH ), and Q is a weaving dual frame
of T .

Proof. Assume that \{ Wi\} i\in I has frame bounds A,B.
Claim 1 . T = \{ Ti\} i\in I is a weaving operator frame for B(\scrH ). For any x \in \scrH , we have\sum 

i\in I

\sum 
i\in \sigma i

\| Tix\| 2 =
\sum 
i\in I

\sum 
i\in \sigma i

\bigm\| \bigm\| viSW,v\pi WiS
 - 1
W,vx

\bigm\| \bigm\| 2
\leq \| SW,v\| 2 B

\bigm\| \bigm\| S - 1
W,vx

\bigm\| \bigm\| 2
\leq B \| SW,v\| 2

\bigm\| \bigm\| S - 1
W,v

\bigm\| \bigm\| 2\| x\| 2.
On the other hand,\sum 

i\in I

\sum 
i\in \sigma i

\| Tix\| 2 =
\sum 
i\in I

\sum 
i\in \sigma i

\bigm\| \bigm\| viSW,v\pi Wi
S - 1
W,vx

\bigm\| \bigm\| 2
\geq 

\sum 
i\in I

\sum 
i\in \sigma i

\bigm\| \bigm\| S - 1
W,v

\bigm\| \bigm\|  - 2\bigm\| \bigm\| vi\pi WiS
 - 1
W,vx

\bigm\| \bigm\| 2
\geq 

\bigm\| \bigm\| S - 1
W,v

\bigm\| \bigm\|  - 2
A
\bigm\| \bigm\| S - 1

W,vx
\bigm\| \bigm\| 2

\geq A
\bigm\| \bigm\| S - 1

W,v

\bigm\| \bigm\|  - 2 \| SW,v\|  - 2 \| x\| 2.

Thus T = \{ Ti\} i\in I is a weaving operator frame.
Claim 2 . Q = \{ Qi\} i\in I is also a weaving operator frame for B(\scrH ). The proof is similar

to Claim 1.
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Claim 3 . TU,v = S - 1
W,vTW,vSW,v, T

\ast 
U,v = S - 1

W,vT
\ast 
W,vSW,v, SU,v = SW,v. It is easy to check

that \pi ui
= S - 1

W,v\pi Wi
SW,v. Thus TU,v = S - 1

W,vTW,vSW,v, T \ast 
U,v = S - 1

W,vT
\ast 
W,vSW,v and so

SU,v = TU,vT
\ast 
U,v

= S - 1
W,vTW,vSW,vS

 - 1
W,vT

\ast 
W,vSW,v

= S - 1
W,vTW,vT

\ast 
W,vSW,v

= S - 1
W,vSW,vSW,v

= SW,v.

Hence, for any x \in \scrH , we compute\sum 
i\in \mathrm{E}

\sum 
i\in \sigma i

T \ast 
i Qix =

\sum 
i\in I

viS
 - 1
W,v\pi WiSW,v \cdot viS - 1

W,v\pi WiSW,vS
 - 1
W,vx

= S - 1
W,v

\Bigl( \sum 
i\in I

\sum 
i\in \sigma i

v2i \pi Wi
x
\Bigr) 

= S - 1
W,v (SW,vx)

= x.

This shows that Q = \{ Qi\} i\in I is a weaving dual operator frame of the weaving operator
frame T = \{ Ti\} i\in I . \square 

Remark. In (1.1), if A = B, we call \{ Wi\} i\in I a weaving Parseval frame of subspaces
for \scrH .

Theorem 3.10. Assume that \{ Wi\} i\in I is a weaving Parseval frame of subspaces for a
Hilbert space \scrH . Then \{ vi\pi Wi

\} i\in I is a weaving operator frame for B(\scrH ) and a weaving
dual frame of itself.

Proof. If \{ Wi\} i\in I is a weaving Parseval frame of subspaces, then SW,v = I. So the
theorem is a consequence of Theorem 3.9. \square 

4. Weaving operator responses

The following terminology is given by Li and Cao [10]. Let e be a unit vector in \scrH . For
every f \in \scrH , define T e

f x = \langle x, f\rangle e, for all x \in \scrH . Then T e
x is a bounded linear operator on

\scrH and T e
x is called operator response of f with respect to e. The set \scrR \scrH 

e =
\bigl\{ 
T e
f : f \in \scrH 

\bigr\} 
is called an operator response space of \scrH with respect to e.

Theorem 4.1. Assume that \{ fi\} i\in I is a sequence in a Hilbert space \scrH and \{ ei\} i\in I is a
sequence of unit vectors in \scrH . Then the following statements are valid.

(1) \{ fi\} i\in I is complete, i.e., \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n} \{ fi : i \in I\} = \scrH if and only if
\bigl\{ 
T e
fi

\bigr\} 
i\in I

is complete.
(2) \{ fi\} i\in I is a frame for \scrH if and only if

\bigl\{ 
T ei
fi

\bigr\} 
i\in I

is a weaving operator frame
for B(\scrH ).

(3) \{ fi\} i\in I is a tight frame for \scrH if and only if
\bigl\{ 
T ei
fi

\bigr\} 
i\in I

is a tight weaving operator
frame for B(\scrH ).

(4) \{ fi\} i\in I is a normalized tight frame for \scrH if and only if
\bigl\{ 
T ei
fi

\bigr\} 
i\in I

is a weaving
Parseval operator frame for B(\scrH ).

(5) If \{ ei\} is either not complete, or orthogonal, then
\bigl\{ 
T ei
fi

\bigr\} 
i\in I

is not independent.

Proof. If \{ fi\} i\in I is complete, then for all x \in \scrH and all \varepsilon > 0, there exist a sequence
\{ ci\} i\in I \in \BbbC and a finite set L \in \scrF (\Phi ) such that\bigm\| \bigm\| \bigm\| \sum 

i\in L

\sum 
i\in \sigma i

cifi  - x
\bigm\| \bigm\| \bigm\| < \varepsilon .
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Take xi = ciei, forall i in I, then
\bigl\langle 
xi, ei

\bigr\rangle 
= ci, forall i in I and so\bigm\| \bigm\| \bigm\| \sum 

i\in L

\sum 
i\in \sigma i

T ei\ast 
fi

xi  - x
\bigm\| \bigm\| \bigm\| =

\bigm\| \bigm\| \bigm\| \sum 
i\in L

\sum 
i\in \sigma i

\bigl\langle 
xi, ei

\bigr\rangle 
fi  - x

\bigm\| \bigm\| \bigm\| =
\bigm\| \bigm\| \bigm\| \sum 
i\in L

\sum 
i\in \sigma i

cifi  - x
\bigm\| \bigm\| \bigm\| < \varepsilon .

Thus span
\bigl\{ 
T ei
fi

\bigr\} 
= \scrH , that is,

\bigl\{ 
T ei
fi

\bigr\} 
i\in I

is complete.
On the other hand, if

\bigl\{ 
T ei
fi

\bigr\} 
i\in I

is complete, then for all x \in \scrH and all \varepsilon > 0, there
exist a sequence

\bigl\{ 
xi

\bigr\} 
i\in I
\in S(\scrH ) and a finite set L \in \scrF (\Phi ) such that\bigm\| \bigm\| \bigm\| \sum 

i\in L

\sum 
i\in \sigma i

T ei\ast 
fi

xi  - x
\bigm\| \bigm\| \bigm\| < \varepsilon .

That is, \bigm\| \bigm\| \bigm\| \sum 
i\in L

\sum 
i\in \sigma i

\bigl\langle 
xi, ei

\bigr\rangle 
fi  - x

\bigm\| \bigm\| \bigm\| < \varepsilon .

Thus
\bigl\{ 
fi
\bigr\} 
i\in I

is complete. Moreover, for every x \in \scrH , we have\sum 
i\in I

\sum 
i\in \sigma i

\bigm\| \bigm\| T ei
fi
x
\bigm\| \bigm\| 2 =

\sum 
i\in I

\sum 
i\in \sigma i

\bigm\| \bigm\| \bigl\langle x, fi\bigr\rangle ei\bigm\| \bigm\| 2 =
\sum 
i\in I

\sum 
i\in \sigma i

\bigm| \bigm| \bigl\langle x, fi\bigr\rangle \bigm| \bigm| 2.
Thus (2) through (4) are valid.

Assume that
\bigl\{ 
ei
\bigr\} 

is not complete. Then
\bigl\{ 
ei : forall i in I

\bigr\} \bot \not = \{ 0\} . Take a nonzero
sequence

\bigl\{ 
xi

\bigr\} 
i\in I
\subset 

\bigl\{ 
ei : i \in I

\bigr\} \bot \setminus \{ 0\} . Then\sum 
i\in I

\sum 
i\in \sigma i

T ei\ast 
fi

xi =
\sum 
i\in I

\sum 
i\in \sigma i

\bigl\langle 
xi, ei

\bigr\rangle 
fi = 0. (4.10)

This shows that the sequence
\bigl\{ 
T ei
fi

\bigr\} 
i\in I

is not independent.
Next, we suppose that

\bigl\{ 
ei
\bigr\} 

is orthogonal. Take a mapping \phi : I \leftarrow I such that \phi (i) \not = i
for all i \in I and define xi = e\phi (i). Then\sum 

i\in I

T ei\ast 
fi

xi =
\sum 
i\in i

\sum 
i\in \sigma i

\bigl\langle 
e\phi (i), ei

\bigr\rangle 
fi = 0. (4.11)

Hence the sequence
\bigl\{ 
T ei
fi

\bigr\} 
i\in I

is not independent. \square 

Theorem 4.2. Let
\bigl\{ 
fi
\bigr\} 
i\in I
\subset \scrH ,

\bigl\{ \widetilde fi\bigr\} i\in I
\subset \scrH and

\bigl\{ 
ei
\bigr\} 
i\in I

be a sequence of unit vectors
in \scrH . Then the following statements are equivalent.

(1)
\bigl\{ 
fi
\bigr\} 
i\in I

and
\bigl\{ \widetilde fi\bigr\} i\in I

are a pair of weaving dual frames for \scrH .
(2)

\bigl\{ 
T ei

\~fi

\bigr\} 
i\in I

and
\bigl\{ 
T ei
fi

\bigr\} 
i\in I

are weaving dual frames of each other.

Proof. (1) \Rightarrow (2) Let (1) hold. Then Theorem 4.1 implies that
\bigl\{ 
T ei
fi

\bigr\} 
i\in I

and
\bigl\{ 
T ei

\~fi

\bigr\} 
i\in I

are weaving operator frames for B(\scrH ). For any x \in \scrH , we may compute\sum 
i\in I

\sum 
i\in \sigma i

T ei\ast 
fi

T ei
\~fi
x =

\sum 
i\in I

\sum 
i\in \sigma i

T ei\ast 
fi

\bigl\langle 
x, \widetilde fi\bigr\rangle ei

=
\sum 
i\in I

\sum 
i\in \sigma i

\bigl\langle \bigl\langle 
x, \widetilde fi\bigr\rangle ei, ei\bigr\rangle fi

=
\sum 
i\in I

\sum 
i\in \sigma i

\bigl\langle 
x, \widetilde fi\bigr\rangle \bigl\langle ei, ei\bigr\rangle fi

=
\sum 
i\in I

\sum 
i\in \sigma i

\bigl\langle 
x, \widetilde fi\bigr\rangle fi = x.

Hence
\bigl\{ 
T ei\widetilde fi

\bigr\} 
i\in I

is a weaving dual frame of the operator frame
\bigl\{ 
T ei
fi

\bigr\} 
i\in I

.
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Similarly, we can prove that
\bigl\{ 
T ei
fi

\bigr\} 
i\in I

is a weaving dual frame of the operator frame\bigl\{ 
T ei\widetilde fi

\bigr\} 
i\in I

.

(2)\Rightarrow (1) Suppose that
\bigl\{ 
T ei
fi

\bigr\} 
i\in I

and
\bigl\{ 
T ei
fi

\bigr\} 
i\in I

are weaving dual frames of each other.
Then we know from Theorem 4.1 that

\bigl\{ 
fi
\bigr\} 
i\in I

and
\bigl\{ 
\~fi
\bigr\} 
i\in I

are frames for \scrH and\sum 
i\in I

\sum 
i\in \sigma i

T ei\ast 
fi

T ei\widetilde fi x = x,
\sum 
i\in I

\sum 
i\in \sigma i

T ei\ast \widetilde fi T ei
fi
x = x, \forall x \in \scrH .

Furthermore, for any x \in \scrH , we get

x =
\sum 
i\in I

\sum 
i\in \sigma i

T ei\ast 
fi

T ei
\~fi
x =

\sum 
i\in I

\sum 
i\in \sigma i

T ei\ast 
fi

\bigl\langle 
x, \widetilde fi\bigr\rangle ei

=
\sum 
i\in I

\sum 
i\in \sigma i

\bigl\langle 
\langle x, \widetilde fi\rangle ei, ei\bigr\rangle fi = \sum 

i\in I

\sum 
i\in \sigma i

\bigl\langle 
x, \widetilde fi\bigr\rangle \bigl\langle ei, ei\bigr\rangle fi

=
\sum 
i\in I

\sum 
i\in \sigma i

\bigl\langle 
x, \widetilde fi\bigr\rangle fi

and
x =

\sum 
i\in I

\sum 
i\in \sigma i

T ei\ast 
\~fi

T ei
fi
x =

\sum 
i\in I

\sum 
i\in \sigma i

T ei\ast \widetilde fi
\bigl\langle 
x, fi

\bigr\rangle 
e

=
\sum 
i\in I

\sum 
i\in \sigma i

\bigl\langle 
\langle x, fi\rangle ei, ei

\bigr\rangle \widetilde fi = \sum 
i\in I

\sum 
i\in \sigma i

\bigl\langle 
x, fi

\bigr\rangle \bigl\langle 
ei, ei

\bigr\rangle \widetilde fi
=

\sum 
i\in I

\sum 
i\in \sigma i

\bigl\langle 
x, fi

\bigr\rangle \widetilde fi.
Thus

\bigl\{ 
fi
\bigr\} 
i\in I

and
\bigl\{ 
\~fi
\bigr\} 
i\in I

are a pair of weaving dual frames for \scrH . \square 

5. Perturbation theorem for weaving operator frames

In this section, we explore the perturbation theorem for weaving operator frames.
The following theorem is an adaptation of Theorem 4.1 in the continuous weaving

frames setting, providing a variant of Paley-Wiener-type perturbation, as presented by
L.K. Vashisht and Deepshikha in [15].

Theorem 5.1. For each j \in [m], let \Phi j = \{ \Phi ij\} i\in I be a weaving operator frame for \scrH with
frame bounds Aj and Bj . Assume that there exist nonnegative scalars cj , \eta j , \mu j , (j \in [m])
such that for some fixed n \in [m],

A = An  - 
\sum 

j\in [m]\setminus \{ n\} 

(cj + \eta j
\sqrt{} 
Bn + \mu j

\sqrt{} 
Bj)(

\sqrt{} 
Bn +

\sqrt{} 
Bj) > 0

and \bigm\| \bigm\| \bigm\| \sum 
i\in J

(\Phi \ast 
in  - \Phi \ast 

ij)gi

\bigm\| \bigm\| \bigm\| \leq \eta j

\bigm\| \bigm\| \bigm\| \sum 
i\in J

\Phi \ast 
ingi

\bigm\| \bigm\| \bigm\| + \mu j

\bigm\| \bigm\| \bigm\| \sum 
i\in J

\Phi \ast 
ijgi

\bigm\| \bigm\| \bigm\| + \Phi j

\Bigl( \sum 
i\in J

\| gi\| 2
\Bigr) 1/2

for any finite subset J \subset I, gi \in \scrH i and j \in [m] \setminus \{ n\} . Then for any partition \{ \sigma j\} j\in [m]

of I, the family \{ \Phi ij\} i\in \sigma j ,j\in [m] is a weaving operator frame for \scrH with the universal frame
bounds A and

\sum 
j\in [m] Bj. Furthermore, the family of weaving operator frames \{ \Phi j\} j\in [m]

for \scrH is woven.

Proof. By Proposition 2.4, for any partition \{ \sigma j\} j\in [m] of I, the family \{ \Phi ij\} i\in \sigma j ,j\in [m] is
a g-Bessel sequence with Bessel bound

\sum 
j\in [m] Bj .
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For the lower frame inequality, let T
(i)
\Phi be a synthesis operator associated with the

operator frame \{ \Phi ij\} i\in I for j \in [m]. Since

\| T (j)
\Phi gi\| =

\bigm\| \bigm\| \bigm\| \sum 
i\in J

\Phi \ast 
ijgi

\bigm\| \bigm\| \bigm\| = \mathrm{s}\mathrm{u}\mathrm{p}
\| g\| =1

\bigm| \bigm| \bigm| \bigl\langle g,\sum 
i\in J

\Phi \ast 
ijgi

\bigr\rangle \bigm| \bigm| \bigm| 
\leq \mathrm{s}\mathrm{u}\mathrm{p}

\| g\| =1

\Bigl( \sum 
i\in J

\| \Phi ijg\| 2
\Bigr) 1/2\Bigl( \sum 

i\in J

\| gi\| 2
\Bigr) 1/2

= \| T (j)
\Phi \| 

\Bigl( \sum 
i\in J

\| gi\| 2
\Bigr) 1/2

\leq 
\sqrt{} 
Bj

\Bigl( \sum 
i\in J

\| gi\| 2
\Bigr) 1/2

for any finite subset J \subset I, gi \in \scrH i, for j \in [m] \setminus \{ n\} , we have

\| (T (n)
\Phi  - T

(j)
\Phi )gi\| = \mathrm{s}\mathrm{u}\mathrm{p}

\| g\| =1

\bigm| \bigm| \bigl\langle g, (T (n)
\Phi  - T

(j)
\Phi )gi

\bigr\rangle \bigm| \bigm| 
= \mathrm{s}\mathrm{u}\mathrm{p}

\| g\| =1

\bigm| \bigm| \bigm| \bigl\langle g,\sum 
i\in J

(\Phi \ast 
in  - \Phi \ast 

ij)gi
\bigr\rangle \bigm| \bigm| \bigm| 

=
\bigm\| \bigm\| \bigm\| \sum 
i\in J

(\Phi \ast 
in  - \Phi \ast 

ij)gi

\bigm\| \bigm\| \bigm\| 
\leq \eta j

\bigm\| \bigm\| \bigm\| \sum 
i\in J

\Phi \ast 
ingi

\bigm\| \bigm\| \bigm\| + \mu j

\bigm\| \bigm\| \bigm\| \sum 
i\in J

\Phi \ast 
ijgi

\bigm\| \bigm\| \bigm\| + cj

\Bigl( \sum 
i\in J

\| gi\| 2
\Bigr) 1/2

\leq \eta j\| T (n)
\Phi \| 

\Bigl( \sum 
i\in J

\| gi\| 2
\Bigr) 1/2

+ \mu j\| T (j)
\Phi \| 

\Bigl( \sum 
i\in J

\| gi\| 2
\Bigr) 1/2

+ cj

\Bigl( \sum 
i\in J

\| gi\| 2
\Bigr) 1/2

\leq (cj + \eta j
\sqrt{} 
Bn + \mu j

\sqrt{} 
Bj)

\Bigl( \sum 
i\in J

\| gi\| 2
\Bigr) 1/2

.

This gives
\| T (n)

\Phi  - T
(j)
\Phi \| \leq cj + \eta j

\sqrt{} 
Bn + \mu j

\sqrt{} 
Bj . (5.12)

For j \in [m] and \sigma \subset I, we define

T
(j\sigma )
\Phi : \oplus i\in \sigma \scrH i  - \rightarrow \scrH , T

(j\sigma )
\Phi \{ gi\} =

\sum 
i\in \sigma 

\Phi \ast 
ijgi, gi \in \scrH i.

It is easy to show that

\| T (j\sigma )
\Phi gi\| \leq \| T (j)

\Phi gi\| \leq 
\sqrt{} 
Bj(

\sum 
i\in J

\| gi\| 2)1/2.

Thus \| T (j\sigma )
\Phi \| \leq 

\sqrt{} 
Bj for all j \in [m].

Similarly, by using (5.12) one can show that for any j \in [m] \setminus \{ n\} ,

\| T (n\sigma )
\Phi  - T

(j\sigma )
\Phi \| \leq cj + \eta j

\sqrt{} 
Bn + \mu j

\sqrt{} 
Bj .

For any f \in \scrH and j \in [m] \setminus \{ n\} , we have

\| (T (n\sigma )
\Phi (T

(n\sigma )
\Phi )\ast  - T

(j\sigma )
\Phi (T

(j\sigma )
\Phi )\ast )f\| 

\leq \| (T (n\sigma )
\Phi (T

(n\sigma )
\Phi )\ast  - T

(n\sigma )
\Phi (T

(j\sigma )
\Phi )\ast )f\| + \| (T (n\sigma )

\Phi (T
(j\sigma )
\Phi )\ast  - T

(j\sigma )
\Phi (T

(j\sigma )
\Phi )\ast )f\| 

\leq \| T (n\sigma )
\Phi \| \| ((T (n\sigma )

\Phi )\ast  - (T
(j\sigma )
\Phi )\ast )f\| + \| (T (j\sigma )

\Phi )\ast \| \| (T (n\sigma )
\Phi  - T

(j\sigma )
\Phi )f\| 

\leq (cj + \eta j
\sqrt{} 

Bn + \mu j

\sqrt{} 
Bj)(

\sqrt{} 
Bn +

\sqrt{} 
Bj)\| f\| . (5.2)
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Let \{ \sigma j\} j\in [m] be any partition of I and T\Phi be the synthesis operator associated with
the Bessel operator sequence \{ \Phi ij\} i\in \sigma j ,j\in [m]. By (5.2), we have

\| T \ast 
\Phi f\| 2 = | 

\bigl\langle 
f, T\Phi T

\ast 
\Phi f

\bigr\rangle 
| 

=
\bigm| \bigm| \bigm| \Bigl\langle f,\sum 

i\in I

\Phi \ast 
ij\Phi ijf

\Bigr\rangle \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \Bigl\langle f,\sum 
i\in I

\Phi \ast 
in\Phi inf  - 

\sum 
j\in [m]\setminus \{ n\} 

\sum 
i\in \sigma j

(\Phi \ast 
in\Phi in  - \Phi \ast 

ij\Phi ij)f
\Bigr\rangle \bigm| \bigm| \bigm| 

\geq 
\bigm| \bigm| \bigm| \Bigl\langle f,\sum 

i\in I

\Phi \ast 
in\Phi inf

\Bigr\rangle \bigm| \bigm| \bigm|  - \sum 
j\in [m]\setminus \{ n\} 

\bigm| \bigm| \bigm| \Bigl\langle f, \sum 
i\in \sigma j

(\Phi \ast 
in\Phi in  - \Phi \ast 

ij\Phi ij)f
\Bigr\rangle \bigm| \bigm| \bigm| 

\geq 
\bigm| \bigm| \bigl\langle f, T (n)

\Phi (T
(n)
\Phi )\ast f

\bigr\rangle \bigm| \bigm|  - \sum 
j\in [m]\setminus \{ n\} 

\| f\| \mathrm{s}\mathrm{u}\mathrm{p}
\| f0\| =1

\bigm| \bigm| \bigm| \Bigl\langle f0, \sum 
i\in \sigma j

(\Phi \ast 
in\Phi in  - \Phi \ast 

ij\Phi ij)f
\Bigr\rangle \bigm| \bigm| \bigm| 

\geq An\| f\| 2  - 
\sum 

j\in [m]\setminus \{ n\} 

\| f\| \| (T (n\sigma j)
\Phi (T

(n\sigma j)
\Phi )\ast  - T

(j\sigma j)
\Phi (T

(j\sigma j)
\Phi )\ast )f\| 

= (An  - 
\sum 

j\in [m]\setminus \{ n\} 

(cj + \eta j
\sqrt{} 

Bn + \mu j

\sqrt{} 
Bj)(

\sqrt{} 
Bn +

\sqrt{} 
Bj))\| f\| 2 > 0.

Hence the \{ \Phi ij\} i\in \sigma j ,j\in [m] is an operator frame for \scrH with required universal frame
bounds. \square 

Proposition 5.2. Let \{ \Phi i\} i\in I be a frame for \scrH with frame bounds A and B and Ti be a
bounded, invertible operator for all i \in I. If \| I\scrH  - Ti\| 2 < A

B , then \{ \Phi i\} i\in I and \{ \Phi iTi\} i\in I

are woven.

Proof. Note that Tj is invertible. Thus \{ \Phi iTi\} i\in I is automatically a g-frame. It is easy to
compute that (1 + \| Ti\| 2)B is an upper frame bound of \{ \Phi i\} i\in \sigma \cup \{ \Phi iTi\} i\in \sigma c . For every
\sigma \in I and for every \in \scrH , we have, by Minkowski’s inequality and subadditivity of the
square root function,\Bigl( \sum 

i\in \sigma 

\| \Phi if\| 2 +
\sum 
i\in \sigma c

\| \Phi iTif\| 2
\Bigr) 1/2

=
\Bigl( \sum 

i\in \sigma 

\| \Phi if\| 2 +
\sum 
i\in \sigma c

\| \Phi i(f  - (f  - Tif))\| 2
\Bigr) 1/2

=
\Bigl( \sum 

i\in \sigma 

\| \Phi if\| 2 +
\sum 
i\in \sigma c

\| \Phi if  - \Phi i(I\scrH  - Ti)f\| 2
\Bigr) 1/2

\geq 
\Bigl( \sum 

i\in \sigma 

\| \Phi if\| 2 +
\sum 
i\in \sigma c

\| \Phi if\| 2  - 
\sum 
i\in \sigma c

\| \Phi i(I\scrH  - Ti)f\| 2
\Bigr) 1/2

\geq 
\Bigl( \sum 

i\in I

\| \Phi if\| 2
\Bigr) 1/2

 - 
\Bigl( \sum 

i\in \sigma c

\| \Phi i(I\scrH  - Ti)f\| 2
\Bigr) 1/2

\geq 
\surd 
A\| f\|  - 

\surd 
B\| (I\scrH  - Ti)f\| 

\geq (
\surd 
A - 
\surd 
B\| I\scrH  - Ti\| )\| f\| .

Thus \{ \Phi i\} i\in \sigma \cup \{ \Phi iTi\} i\in \sigma c forms an operator frame having

A - B\| I\scrH  - Ti\| 2 > 0

as its lower frame bound. \square 
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Corollary 5.3. Let \{ \Phi i\} i\in I be an operator frame for \scrH with frame bounds A and B and
frame operator S\Phi . If B/A < 2, then \Phi and the scaled canonical dual operator frame\widetilde \Phi = \{ 2AB

A+B\Phi iS
 - 1
\Phi \} i\in I are woven.

Proof. We apply Proposition 5.2 to the operator T = Ti = Tj =
2AB
A+BS - 1

\Phi for all i, j \in I.
Since the spectrum of S\Phi is contained in the interval [A,B], the spectrum of I\scrH  - T is
contained in the interval [A - B

A+B , B - A
A+B ] and thus

\| I\scrH  - T\| \leq B  - A

B +A
.

This norm is majorized by
\sqrt{} 
(A/B), whenever B/A \leq 2. \square 
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