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SPECTRA OF ALGEBRAS
OF SYMMETRIC ENTIRE FUNCTIONS ON ¢,

IRYNA CHERNEGA AND ANDRIY ZAGORODNYUK

ABsSTRACT. The paper is devoted to further investigations of algebras of symmetric
analytic functions on ¢, and their spectra. Using an analog of elementary symmetric
polynomials on £, we propose a description of the spectrum of the algebra of symmetric
analytic functions of bounded type on £, in the form of a multiplicative semigroup
of analytic functions on the complex plane. Some applications to the algebra of all
symmetric analytic functions on ¢, are obtained.

CraTTsi IPUCBSY€HA TOJAJIBIINM JOCIIZKEHHSIM aJrebp CUMETPUYHIX aHAJITUIHIX
byHK1ii Ha £, Ta IXHBOTO ClIeKTPy. BuKopucToBy[OUN aHAJIOr €JIeMEHTAPHAX CUMETPHY-
HUX MHOT'OYJICHIB Ha {p, MU IIPOIIOHYEMO OIIC CIEKTPY aJredpu CUMETPUYHNX aHATITHIHIX
byHK1ii 06MerkeHOro TUIly Ha ) y BUIVISIAI MyJIBTUIUTIKATABHOI HAIIIBIPY M aHATI THYIHIX
dyukniii Ha KOMILIEKCHIH wromuui. OTpuMaHo JesKi 3aCTOCYyBaHHs 10 aarebpu BCix
CHUMETPUYHHUX aHAJITHIHUX DyHKHil Ha £p.

1. INTRODUCTION

Symmetric analytic functions with respect to various groups or semigroups of operators
on Banach spaces were studied by many authors (see e.g. [4, 5, 7, 8, 9, 10, 16] and
references therein).

A function f: ¢, — C is said to be symmetric if it is invariant with respect to
permutations of basis vectors. It is well-known that any uniform commutative topological
algebra can be represented as a subalgebra of continuous functions on its spectrum (the set
of continuous complex homomorphisms). By this reason, spectra of algebras of analytic
functions on Banach spaces are typical objects of infinite-dimensional complex analysis.
In [25] (see also [23, p. 243]) it was proved that if X is a separable Banach space with the
approximation property and h is a bounded complex homomorphism of the algebra H (X)
of all analytic functions on X endowed with the compact open topology, then h is a point
evaluation functional. That is, there exists a vector a € X such that h(f) = f(a) for every
f € H(X). Spectra of algebras of analytic functions of bounded type on Banach spaces,
in the general case, are much more larger than the set of point evaluation functional (see
e.g. [3, 6, 15, 29]).

Algebras of symmetric analytic functions on ¢, and their spectra were studied in
[1, 11, 12, 13, 20, 27]. In [12] it was observed that the spectrum of the Fréchet algebra
Hps(£1) of symmetric analytic functions of bounded type on ¢; can be represented as a
multiplicative semigroup of entire functions of exponential type of a complex variable so
that the function of the form

- t = 1

H(l—a—), tecC, Zm<oo
n=1 n n=1 n

corresponds to the the point evaluation functional 0,(f) = f(x), z € 1, x, = —1/ay,

and for every fixed complex A, the function e* corresponds to the so-called exceptional
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functionals [11, 12]. Using this approach, in [13] it was proved that any element of the
spectrum of Hps(¢1) can be represented as a convolution of a point evaluation functional
and an exceptional functional. In the paper we consider the case Hys(€)), 1 < p < 0.
We propose a representation of the spectrum of Hy,(¢,) as a multiplicative semigroup of
entire functions of a complex variable and find specific representations for point evaluation
functionals and exceptional functionals.

In Section 2 we consider basic definitions and preliminary results in the theory of
analytic functions on Banach spaces. We refer the reader for details on infinite dimensional
complex analysis to [17, 23]. In Section 3 we introduce elementary symmetric polynomials
and their generating function on ¢,, p > 1, and examine their properties. In Section 4 we
propose a representation of the spectrum of Hy(¢,) by the generating functions of the
elementary symmetric polynomials. In Section 5, using some special power mappings,
we propose some applications to the spectrum of the algebra H,({,) of all symmetric
analytic functions on .

2. DEFINITIONS AND PRELIMINARY RESULTS

Let X be a complex Banach space and S be a semigroup of operators on X. A function
f: X — C is said to be symmetric (with respect to S) if f(o(z)) = f(x) for every o € S.
In the paper we consider the case where X = /,, for some 1 < p < oo, S is the group
of all permutations of elements of the standard basis of £,, and f is in the algebra of
analytic functions of bounded type on X. Let us recall that a function f is analytic on X
if it is continuous and its restriction to any finite dimensional subspace of X is analytic.
An analytic function is of bounded type if it is bounded on every bounded subset of X.
It is well known (see e.g. [2]) that every infinite dimensional Banach space admits an
analytic function of unbounded type. Let us denote by H(X) the algebra of all analytic
functions on X endowed with the topology of uniform convergence on compact subsets
of X and by Hp(X) the Fréchet algebra of analytic functions of bounded type on X
endowed with the topology of uniform convergence on bounded subsets of X. Subalgebras
of symmetric analytic functions (with respect to permutations of the basis vectors) on
£, are denoted by H,(¢,) and Hys(¢p) respectively. Also, we use notation P,(¢,) for the
algebra of symmetric polynomials on ¢,. It is known that Hys(¢,) is a proper subset in
H, () for every 1 < p < oo [14, 28].

The spectrum of a given commutative algebra is crucial for understanding its algebraic
and topological structures. Let us denote by Mys(¢,,) the spectrum (the set of continuous
complex homomorphisms or characters) of Hys(¢,) and by M;(¢,) the set of bounded
complex homomorphisms of H,(¢p).

A sequence of (homogeneous) polynomials (P,) in Ps(¢,) is called a (homogeneous)
algebraic basis of Ps(£,,) if for every polynomial Q) € P4(¢,) there exists a unique polynomial
q of a finite number m of variables such that

Q) = q(P1(2), ..., Pn(2)), =€ by

It is known [18, 24] that the algebra of all symmetric polynomials on £, P,(¢,) admits
the power series algebraic basis

{F”(“”) :ix?’ n = [pl,[p] +1...},

where [p] is the minimal integer that is greater or equal than p. The existence of algebraic
bases in P,(¢p) is very important for investigations of the spectrum of Hys(¢,) because
any character ¢ in Mys(¢,) can be completely defined by its evaluations on elements of an
algebraic basis (P,) of Ps(£,) (see [11, 13] and [26] for more general case). Thus, using
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the correspondence
® ~ (@(P1)77§0(Pn)7)

we can describe Mys(¢,,) as a subset of complex sequences. We have different descriptions
of the spectrum for different algebraic bases, which discover some different properties and
structures of it. For example, the representation

© ~ (QD(F[p]),,QD(Fn),)

is additive with respect to a convolution operation "+” on Mys(£,). The convolution can
be introduced in the following way (see [12]). For any x and y in £, we denote

rTey= (xlaylvx%y% s Ty Yny - )
Clearly, Fi(z e y) = Fi(z) + Fi(y), k > [p]. According to [12], for every f € Hy(¢,) and
any fixed y € £, the function x — f(zey)isin Hys((p). Let f — T;(f), T, (f)(x) = f(xey)
be the intertwining operator [12]. Then 6 x f is defined by

(0% f)(y) =0(T))(f), 6€ Mys(lp), [ € Hps(lp),
and the convolution of ¢, § € My,(¢p) is defined by

px0(f) = @0 f) = oy = O(T,;(f)))-
In particular, we have that ¢ x 0(Fy) = o(F)) + 0(Fy), k > [p].

For every z € ¢, there exists a so-called point evaluation character d§, € M;s(¢,) such
that 0,(f) = f(x), f € Hps(¢,). Note that 6, = 4, if and only if P(x) = P(y) for each
symmetric polynomial P. If p is integer, then Hy(¢,) admits a one-parameter family of
so-called exceptional characters ¢\, A € C such that ¥\ (F,) = X and ¢¥»(F}) = 0 for
k> p[11, 12]. Also, we will use notation wf\p) = 1) to pay attention that this character
acts on Hys(£p). In [13] it was proved that every character in My, (¢1) is of the form 0, * 1)
for some z € ¢; and A € C. We do not know if it is true for other p > 1. Note that a
complex homomorphism ¢ on Ps(¢,) is continuous if and only if the radius function of ¢,
R(¢) is finite [11]. The radius function can be computed as

R(p) = limsup o'/,
n—oo

where ¢, is the restriction of ¢ to the normed space of n-homogeneous polynomials. In
[13] it is proved that R(d,) = [|z||, z € £, and R(yy) = [A].

3. ELEMENTARY SYMMETRIC POLYNOMIALS AND THEIR GENERATING FUNCTION ON Ep.

A natural basis which is useful for representation of the spectrum of Hps(¢,) in the
case p = 1 is the basis of elementary symmetric polynomials, given by

Gulw)= Y @ --a,

k1< <kn
(see e.g. [1], [12]). The difficulty is that the basis of elementary symmetric polynomials
can not be directly extended to the space ¢, for p > 1 because in this case the right-hand
series diverges for every n. However, according to well known Newton’s formula, for every
x € {1, we can write
nGp(r) = Fi(2)Gp_1(z) — Fa(2)Gpo(x) + -+ (=) E,(z), neN. (3.1)
Setting in (3.1) Fy =0 for k < p we can define (cf. [19])

nGP) (z) = ()P FL (0GP (@) = Frpa (@)GP (@) 4+ (-1)" T ()
(3.2)
for every n > [p].
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Proposition 3.1. The set of polynomials {G%p) :n > [pl} is an algebraic basis in Ps(L,).

Proof. The proof immediately follows from the fact that polynomials F,, n > [p], form
an algebraic basis in P,(¢,) and from the invertibility of (3.2). O

Let GP)(z)(t) be the so-called generating function of the sequence (G%p) (2)),

¢P (@)t =1+ Y t"GP(x), teC.
n=[p]

It is well-known (see e.g. [22], p. 3) that if 2 has only a finite number of nonzero
coordinates, then

G(a)(t) = 6V () (1) exp< Zt" )

This relation is still true for « € ¢; [12]. Thus, for every x € {1,

[p]-1

GW (x)(t) = exp Z th = Fk exp <— if”ﬂl(m—x» (3.3)

On the other hand, we know that

exp ( i t" il
n=1

Combining with (3.3), we have

) ﬁ1+t1’n

n=1

[p1—1 F oo
GP(x)(t) =exp | Y th— 2 k( [T+ tan)
k=1 n=1 (34)

thi Pl (=) P

From the theory of entire function of a single complex variable [21, pp. 29-30] we have
that

H::]S

22 tIPl (=g, P]
Hexp( - x7z+_..+ﬂ)(1+mn)

2 [Pl
is the canonical Weierstrass product, converging for every x € £, to an entire function of
t of order p = inf{q > 0: x € {;} with zeros a,, = —g%", zn, # 0. Thus, we have proved

the following theorem.

Theorem 3.2. For every fized x € ¢, the generating function (3.4) is an entire function
of t of order p =inf{q > 0: x € {;} with zeros a,, = —%n for x,, # 0.

Corollary 3.3. The function
z e GO (2)(1) =1+ Z

n=[p]

is an analytic function on £,,.

Proof. G®)(z)(1) is a well-defined convergent series of continuous homogeneous polyno-
mials. So it is analytic. O

Note that G(Y)(x)(1) is of bounded type [12]. But we do not know if it is true for p > 1.
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4. REPRESENTATION OF THE SPECTRUM OF Hy,({})

It is easy to check that
n(Toy) ZGk (y), =,y €.
In [12] it was shown that
pe*x0(G Zgo (Gr)0(Gr—i)

for any characters ¢, 6 in Mps(¢1). From this relation it was deduced that
Glex0) =G(p)g(0).

The following theorem extends this formula for £,,.
Theorem 4.1. For any characters ¢ and 6 in Mps(¢,), 1 < p < o0,

(i)

(p*g G(p) Z(p G(p) )k>;
k=0
(i)
g(p)(s,J *0) = g(p)(so)g(p)(g)'
Here we suppose that Gép) =1 and Gg}) =0 for k <p.

Proof. Let us assume first that p € N. For a given « € £, we define the following character

1) € Mys(£,) by
(IJ) — 5 *w( [ (w
Then
P (F,) = Fy(z) — Fy(z) =0 and nP(F) = F(z), k> p.
Note that the radius function

R(P)) < R(3:) + R ) < 2l||b.

From the definition of 7" and formula (3. 2) it follows that

GPH) (z) = n)(GP)) = 5, 5 hP) o (GD), wel, nzp+l, (4.5)
and .
®) (P = @) ((_7\p+1ZP) _
WGP = (-1 E) =0,
Moreover,
1B = 5pay x 0P =8, x 0y xp®) @ ) (
By = Gay < 07, o (@)= Fp (y) Fy(@) *V=Fy(y) = 'l
z, y € £,. We claim that for all z, y € £,
GID(z 0 y) Zn@ GmP G ) =3 (G @G W), (46)
k=0
where G =1 and GY P“) =GP = ... =GP = 0. Indeed, for p = 1 we have

G2 (o y) = noey(GL) = ) = <1><G£3>>

n

= 0GPy ( =3 (@2 @) (G2, ()
k=0

k=0
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Suppose that equation (4.6) holds for every GS{"*” such that m < p. Then
GPH (2 0 y) = n&)(GP) = nP) « nP(GP)

n

. Zn(p) (p)(G(P) ) = Z(G%ﬂrl)(w))<G£lp:rk1)(y)).

k=1
Thus, (4.6) is proved. Note that both the left and the right parts of equality

n

G (zey) =S (G (@)(GT ()
k=0

are formally defined if x and y are in ¢, . Since it is true for z, y € £,, it must be true

if z and y are in £, because ¢, is dense in £, and the functions G, P+ | e N, are
continuous on £, ;. Also, we know that the equality holds if p+1 = 1. Hence7 for every
integer 1 < p < oo and n > p we have

n

GP(zey) =Y (G () (CP (). (4.7)

k=0

If p > 1 is noninteger, then ¢, C £, and so (4.7) is true for n > [p].
Let now ¢ and 6 be in My,(¢,). Using the definition of ¢ x § and (4.7) we have

px0(GI) = o(0xGP) = o( 3 GPOGET,)) =D e(GI(ER,)  (48)
k=0 k=0
for n > [p]. Thus, item (i) is proved. To prove item (ii) we observe that

i o Q(G(p Z n Z o(G G(p ) — g(p)(w)g(p)(g). O

n=0

From Theorem 4.1 it follows that ¢ +— w(G,&p)) is a representation of Mys(¢,) in the
form of a multiplicative semigroup of entire functions of a complex variable.
Let us return to the formula (3.1). In the case of integer p, it takes the form

nGiP () = (CUTR@G, @) £ (D@, @)
o (F)TPHUE, L (2)GP) (@) + (—1)"H F () '
for n > p, where Gép) =1, Fp=1and

Ggp) EGép) =...=G

FleQE.

e

Fp—l =

In other words, in (4.9) the terms Fr(x)G(p) (x) =0if r < p or ¢ —r < p. Hence, if
¢ is a complex homomorphism (not necessarily continuous) on the space of symmetric
polynomials P,(¢,), then

n€(GP) = (—~1PHE(F)EGY,) + (~1)PF2E(Fy)E(GY 1)
Fo o (ST (R )E(GW) 4 (—1)HE(F).

Proposition 4.2. Let p be a natural number and £ be a complex homomorphism on
Ps(€y) such that £(Fy,) = ¢ # 0 for some p < m < 2p and §(F,,) =0 for n # m. Then

(4.10)

G = <—1>’“<m*”*(c/£f -
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and S(G%p)) =0 if n # km for some k € N. Moreover,
< tTYl

ey et if m is odd,
gr) { 2—e mt", ifm is even.

Proof. Setting in formula (4.10) {(F;) = 0 if j # m we can see that
EFEGE )

km

&G = (~1ym

and f(G%p)) = 0 if n # km for some k € N. It is easy to check that for p < m < 2p,
G® = (—=1)m*+LF,, /m. Thus, for k = 1 we have

g(G(p)) _ (1) H1E(F,) _ <_1)m+lc.
m m m
Suppose
k—1 k—1
() _ ((_qpym+1\ 1t (e/m)
EGH ) = ((170) k—1)
Then,
_1ym+1) k—1
§(G(p)) E(Fm)<( b ) (e/m) _ ((_1)m+1)k (¢/m)* _ (_1)k(m+1) (c/m)*
km km(k —1)! k! kO
Therefore,
P ke phm ctm )
G0(€) =1+ () Y T — e z
k=1
Hence,
< qm . .
Wy bem s if m is odd
gr() { 2 —e"mt", if mis even.
O
Corollary 4.3. Let p be a positive integer. Then
Py L
g(p)( (p)) _ eptp7 " if p 1s odd,
A 2—e »", ifpis even.
and
1#(p) (G(p)) _ (—1)’6(?*1)%, if n = kp for some k
AT 0, otherwise.
Let « € £,_1. Then from equation (4.5) and Theorem 4.1 we have
_ 1) 1) (r—1) (r—1)
Gglp)( ) =08, *wp 1(w) G(p 1) ZGP ¢pp y a,)(an—k )
Taking into account Corollary 4.3, we can write
(p) — p—1) (p—1) (p—1)
GP@) = Y Gy @l o (GH0)
J(p—1)<n (4.11)
1 (Fp(x))’ '
= Z an @)1 )J(p+1)

jip =17
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Example 4.4. (c.f. [19]). Let us denote 1 = (1,0,0,...) € £,. From (4.11), for n > p > 1,

we have :
_ (=1
G%p)(l) - Z Gn J(P 1) )w = (GJI()p 1) )
Jp—1)<n
In particular, for p = 2 and n > 2,

1) (1) 1 1) [ (1 1 —1
ZG Wul(E) = v (6 + e (GL) = (1
5. POWER AND ROOT MAPPINGS
Let 1 <p < oo and m € N. We define 2™ = (27*,...,2!",...). The mapping = — 2™

is a continuous m-homogeneous polynomial from ¢, to ¢, for every g > p/m. Moreover,

a 1/q © m/p
o™y = (3 foat™) < (Dl ) =
i=1 =1

If ¢ = p/m, then 2™ is surjective and [[z™|, = ||z[;'. Clearly, it is not injective if m > 1.
A right inverse map to ™ (which is not unique) can be defined in the following way:

where 7/z; is the principal value of the mth complex root of x;. Clearly, x — 3/z is an
injection from £4 to £y,
(V)" ==

i 1/mgq
Il = (X tasl?) ™ =l
i=1
Let us denote by C™ the composition operator from H(¢;) to H({;,q) defined by

C™: f(x)— f(z™), feH({,).
Also, we denote by C}" the restriction of C™ to Hy(¢,) by C7* the restriction of C™ to
H,(l,), and by CJ? the restriction of C™ to Hys(¢),).

Theorem 5.1.

The mapping C™ is a continuous homomorphism from H({y) to H({p).
The mapping C{" is a continuous homomorphism from Hy(¢y) to Hy(lpmg)-
The mapping C* is a continuous homomorphism from Hs(£y) to He({pg).
The mapping Ci¥ is a continuous homomorphism from Hys({g) to Hps(Crg).

and

(i
(ii
(i
(iv

— — — —

Proof. The mapping x +— =™ is a continuous m-homogeneous polynomial from £,,, to ¢,.
So, it is an analytic map of bounded type. Hence, the composition operators C" and
C}J" are continuous. Moreover, if f is a symmetric function on ¢,, then z — f(z™) is a
symmetric function on ¢,,4. Thus, the operators C}* and C]? are continuous operators
with ranges in H,({pg) and Hys(¢pgq), respectively. O

Corollary 5.2. Let ®,, be a continuous homomorphism from H({y,,) to a topological
algebra A. Then C™ o ®,,, is a continuous homomorphism from H({,) to A. Similarly, if
., is a continuous homomorphism from Hy(Cq) (resp. from Hs(lyng), from Hys(lmg))
to A, then C}" o @, (resp. C" o @y, CYt 0 @) is a continuous homomorphism from
Hy(¢,) (resp. from Hg({y), from Hys(£y)) to A.

Proposition 5.3. Let z,, be a sequence of complex numbers such that z = (21, 22,...) & b
for some m € N. If Fy(z) is well-defined for every k > m, then ¢, is a discontinuous
complex homomorphism on the algebra of symmetric polynomials Ps(¢,).
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Proof. Let us suppose that §, is continuous. Then it can be extended by continuity to a
character on Hps(¢,,). Thus, by Theorem 5.1, 6ng(z) is a character Hps(¢1). On the other
hand, since z ¢ £y, it follows that Cj:(z) ¢ £1 and by [13], dcym () cannot be a continuous
homomorphism. A contradiction. O

Let Py(X) be a subalgebra of continuous polynomials P(X). We denote by Hpo(X)
(resp. Hp(X)) the algebra of analytic functions f € Hy(X) (resp. H(X)) such that all
homogeneous polynomials in the Taylor series representation

f(x) =" fulx)
n=0

are in Pp(X). We assume that the space Hpo(X) is endowed with the metrizable topology
of uniform convergence on bounded sets (induced from H,(X)) and Hy(X) is endowed
with the topology of uniform convergence on compact sets (induced from H(X)).

Proposition 5.4. Let ¢ and ¢ be continuous linear functionals on Ho(X). If (P) =
Y(P) for every P € Py(X), then ¢ = 1.

Proof. Since the Taylor series of f converges to f in the topology of uniform convergence
on compact sets for every f € Hp(X) and by the continuity of functionals ¢ and v, we
have

() =D 0(fa) =D w(fa) = (f)
n=0 n=0
for every f € Ho(X). O

Corollary 5.5. The operator of restriction of characters of the algebra Ho(X) to the
subalgebra Hyo(X) is an injection from the spectrum M (Ho(X)) of Ho(X) to the spectrum
M(Hbo(X)) of Hyo(X). In other words, M(HO(X)) - M(HbO(X)).

Proof. If the restriction of ¢ is equal to the restriction of ¢ to Hyo(X), then p(P) = ¢ (P)
for every P € Py(X). By Proposition 5.4, ¢ = 1. O

The following theorem gives a complete description of the spectrum of H,(¢;) because
by [13], the case p = 1 satisfies conditions of this theorem. We do not know if it is true
for any other p > 1.

Theorem 5.6. Let p be such that every character in Mys(l,) can be represented as a
convolution of a point evaluation functional 6., x € £, and an exceptional functional 1y,
A € C. Then the spectrum M(¢,) of Hs(£p) consists of point evaluation functionals.

Proof. It is enough to show that ¥y, A # 0, can not be extended to a continuous
homomorphism of H,(¢,) for any positive integer p. In [14] it is proved that H(¢;)
contains analytic functions of unbounded type. This result was generalized for any
Hy(¢y), 1 <p<ooin [28].
For a given p € N we denote by Gilp } the np-homogeneous polynomial on ¢, defined by
o0
G a) = Gula?) = 3 el
k1< <kn
From Newton’s formula we have
nGiP (x) =nGn(2P) = Fi(aP)Gro1(aP) — Fo(aP)Grpo(aP) + - + (=1)" T F,(aP)

=F,(2)GP (2) — Fop(2) Gy (@) + -+ (—1)" 1 By (2).
(5.12)



10 IRYNA CHERNEGA AND ANDRIY ZAGORODNYUK

Taking into account |G, || = 1/n! [12] and the following relations

(lally <1) & (S lafl <1) & (Joolh < 1),

we can obtain

1
IGIPHI = sup |Gu(@P)| = sup |Gu(z?)|= sup |Gu(2)| = —.

|
lzll,<1 llz21<1 llzlli <1 n

Let us denote by g,, > 0, the following analytic function on ¢,:

> G }(33)
o) = 32 MO
n=1
Then the radius of boundedness of g, at the origin is equal to

(9r) = limsu S N——
Qo\gr n—>oop ||n'G;{Lp}||1/np
According to Theorem 2 and Theorem 1 in [28], the function g, is well-defined on ¢, and
belongs to Hy(¢p) \ Hps(Lp).
Let A > r. Then from the equalities ¥ (F),) = AP, ¢x(F) = 0 for k > p, and formula

(5.12), we have
o) =3 (2)" =

n=1

Thus, 9, is not defined on g, € H(¢,) for A > r. O

6. CONCLUSIONS

The paper’s main result is the representation of the spectrum of Hy(¢,) as a multi-
plicative semigroup of entire functions on C. However, we have a complete description
of the spectrum only for the case p = 1. The general case will be the subject of further

investigations. For this purpose, it would be useful to have a value of HGSL” ) H We know

only that HGS)H = 1/n!. Thus, we have the following question: What is value of HGng)H
in £, for every p > 1 and integer n > p?

In addition, it would be interesting to find a structure of an analytic manifold on
the spectrum of Hy(¢p) such that the Gelfand extension of any function in Hy(¢)) is an
analytic function on this manifold.
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