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SPECTRA OF ALGEBRAS
OF SYMMETRIC ENTIRE FUNCTIONS ON \ell p

IRYNA CHERNEGA AND ANDRIY ZAGORODNYUK

Abstract. The paper is devoted to further investigations of algebras of symmetric
analytic functions on \ell p and their spectra. Using an analog of elementary symmetric
polynomials on \ell p we propose a description of the spectrum of the algebra of symmetric
analytic functions of bounded type on \ell p in the form of a multiplicative semigroup
of analytic functions on the complex plane. Some applications to the algebra of all
symmetric analytic functions on \ell p are obtained.

Стаття присвячена подальшим дослiдженням алгебр симетричних аналiтичних
функцiй на \ell p та їхнього спектру. Використовуючи аналог елементарних симетрич-
них многочленiв на \ell p, ми пропонуємо опис спектру алгебри симетричних аналiтичних
функцiй обмеженого типу на \ell p у виглядi мультиплiкативної напiвгрупи аналiтичних
функцiй на комплекснiй площинi. Отримано деякi застосування до алгебри всiх
симетричних аналiтичних функцiй на \ell p.

1. Introduction

Symmetric analytic functions with respect to various groups or semigroups of operators
on Banach spaces were studied by many authors (see e.g. [4, 5, 7, 8, 9, 10, 16] and
references therein).

A function f : \ell p \rightarrow \BbbC is said to be symmetric if it is invariant with respect to
permutations of basis vectors. It is well-known that any uniform commutative topological
algebra can be represented as a subalgebra of continuous functions on its spectrum (the set
of continuous complex homomorphisms). By this reason, spectra of algebras of analytic
functions on Banach spaces are typical objects of infinite-dimensional complex analysis.
In [25] (see also [23, p. 243]) it was proved that if X is a separable Banach space with the
approximation property and h is a bounded complex homomorphism of the algebra H(X)
of all analytic functions on X endowed with the compact open topology, then h is a point
evaluation functional. That is, there exists a vector a \in X such that h(f) = f(a) for every
f \in H(X). Spectra of algebras of analytic functions of bounded type on Banach spaces,
in the general case, are much more larger than the set of point evaluation functional (see
e.g. [3, 6, 15, 29]).

Algebras of symmetric analytic functions on \ell p and their spectra were studied in
[1, 11, 12, 13, 20, 27]. In [12] it was observed that the spectrum of the Fréchet algebra
Hbs(\ell 1) of symmetric analytic functions of bounded type on \ell 1 can be represented as a
multiplicative semigroup of entire functions of exponential type of a complex variable so
that the function of the form

\infty \prod 
n=1

\Bigl( 
1 - t

an

\Bigr) 
, t \in \BbbC ,

\infty \sum 
n=1

1

| an| 
<\infty 

corresponds to the the point evaluation functional \delta x(f) = f(x), x \in \ell 1, xn =  - 1/an
and for every fixed complex \lambda , the function e\lambda t corresponds to the so-called exceptional
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functionals [11, 12]. Using this approach, in [13] it was proved that any element of the
spectrum of Hbs(\ell 1) can be represented as a convolution of a point evaluation functional
and an exceptional functional. In the paper we consider the case Hbs(\ell p), 1 \leq p < \infty .
We propose a representation of the spectrum of Hbs(\ell p) as a multiplicative semigroup of
entire functions of a complex variable and find specific representations for point evaluation
functionals and exceptional functionals.

In Section 2 we consider basic definitions and preliminary results in the theory of
analytic functions on Banach spaces. We refer the reader for details on infinite dimensional
complex analysis to [17, 23]. In Section 3 we introduce elementary symmetric polynomials
and their generating function on \ell p, p \geq 1, and examine their properties. In Section 4 we
propose a representation of the spectrum of Hbs(\ell p) by the generating functions of the
elementary symmetric polynomials. In Section 5, using some special power mappings,
we propose some applications to the spectrum of the algebra Hs(\ell p) of all symmetric
analytic functions on \ell p.

2. Definitions and preliminary results

Let X be a complex Banach space and \scrS be a semigroup of operators on X. A function
f : X \rightarrow \BbbC is said to be symmetric (with respect to \scrS ) if f(\sigma (x)) = f(x) for every \sigma \in \scrS .
In the paper we consider the case where X = \ell p for some 1 \leq p < \infty , \scrS is the group
of all permutations of elements of the standard basis of \ell p, and f is in the algebra of
analytic functions of bounded type on X. Let us recall that a function f is analytic on X
if it is continuous and its restriction to any finite dimensional subspace of X is analytic.
An analytic function is of bounded type if it is bounded on every bounded subset of X.
It is well known (see e.g. [2]) that every infinite dimensional Banach space admits an
analytic function of unbounded type. Let us denote by H(X) the algebra of all analytic
functions on X endowed with the topology of uniform convergence on compact subsets
of X and by Hb(X) the Fréchet algebra of analytic functions of bounded type on X
endowed with the topology of uniform convergence on bounded subsets of X. Subalgebras
of symmetric analytic functions (with respect to permutations of the basis vectors) on
\ell p are denoted by Hs(\ell p) and Hbs(\ell p) respectively. Also, we use notation \scrP s(\ell p) for the
algebra of symmetric polynomials on \ell p. It is known that Hbs(\ell p) is a proper subset in
Hs(\ell p) for every 1 \leq p <\infty [14, 28].

The spectrum of a given commutative algebra is crucial for understanding its algebraic
and topological structures. Let us denote by Mbs(\ell p) the spectrum (the set of continuous
complex homomorphisms or characters) of Hbs(\ell p) and by Ms(\ell p) the set of bounded
complex homomorphisms of Hs(\ell p).

A sequence of (homogeneous) polynomials (Pn) in \scrP s(\ell p) is called a (homogeneous)
algebraic basis of \scrP s(\ell p) if for every polynomialQ \in \scrP s(\ell p) there exists a unique polynomial
q of a finite number m of variables such that

Q(x) = q(P1(x), . . . , Pm(x)), x \in \ell p.

It is known [18, 24] that the algebra of all symmetric polynomials on \ell p, \scrP s(\ell p) admits
the power series algebraic basis\Bigl\{ 

Fn(x) =

\infty \sum 
i=1

xni , n = \lceil p\rceil , \lceil p\rceil + 1 . . .
\Bigr\} 
,

where \lceil p\rceil is the minimal integer that is greater or equal than p. The existence of algebraic
bases in \scrP s(\ell p) is very important for investigations of the spectrum of Hbs(\ell p) because
any character \varphi in Mbs(\ell p) can be completely defined by its evaluations on elements of an
algebraic basis (Pn) of \scrP s(\ell p) (see [11, 13] and [26] for more general case). Thus, using
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the correspondence
\varphi \rightsquigarrow 

\bigl( 
\varphi (P1), . . . , \varphi (Pn), . . .

\bigr) 
we can describe Mbs(\ell p) as a subset of complex sequences. We have different descriptions
of the spectrum for different algebraic bases, which discover some different properties and
structures of it. For example, the representation

\varphi \rightsquigarrow 
\bigl( 
\varphi (F\lceil p\rceil ), . . . , \varphi (Fn), . . .

\bigr) 
is additive with respect to a convolution operation ” \star ” on Mbs(\ell p). The convolution can
be introduced in the following way (see [12]). For any x and y in \ell p we denote

x \bullet y = (x1, y1, x2, y2, . . . , xn, yn, . . .).

Clearly, Fk(x \bullet y) = Fk(x) + Fk(y), k \geq \lceil p\rceil . According to [12], for every f \in Hbs(\ell p) and
any fixed y \in \ell p the function x \mapsto \rightarrow f(x\bullet y) is in Hbs(\ell p). Let f \mapsto \rightarrow T s

y (f), T
s
y (f)(x) = f(x\bullet y)

be the intertwining operator [12]. Then \theta  \star f is defined by

(\theta  \star f)(y) = \theta (T s
y )(f), \theta \in Mbs(\ell p), f \in Hbs(\ell p),

and the convolution of \varphi , \theta \in Mbs(\ell p) is defined by

\varphi  \star \theta (f) = \varphi (\theta  \star f) = \varphi 
\bigl( 
y \mapsto \rightarrow \theta (T s

y (f))
\bigr) 
.

In particular, we have that \varphi  \star \theta (Fk) = \varphi (Fk) + \theta (Fk), k \geq \lceil p\rceil .
For every x \in \ell p there exists a so-called point evaluation character \delta x \in Mbs(\ell p) such

that \delta x(f) = f(x), f \in Hbs(\ell p). Note that \delta x = \delta y if and only if P (x) = P (y) for each
symmetric polynomial P. If p is integer, then Hbs(\ell p) admits a one-parameter family of
so-called exceptional characters \psi \lambda , \lambda \in \BbbC such that \psi \lambda (Fp) = \lambda and \psi \lambda (Fk) = 0 for
k > p [11, 12]. Also, we will use notation \psi (p)

\lambda = \psi \lambda to pay attention that this character
acts on Hbs(\ell p). In [13] it was proved that every character in Mbs(\ell 1) is of the form \delta x  \star \psi \lambda 

for some x \in \ell 1 and \lambda \in \BbbC . We do not know if it is true for other p > 1. Note that a
complex homomorphism \varphi on \scrP s(\ell p) is continuous if and only if the radius function of \varphi ,
R(\varphi ) is finite [11]. The radius function can be computed as

R(\varphi ) = \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\| \varphi n\| 1/n,

where \varphi n is the restriction of \varphi to the normed space of n-homogeneous polynomials. In
[13] it is proved that R(\delta x) = \| x\| , x \in \ell p and R(\psi \lambda ) = | \lambda | .

3. Elementary symmetric polynomials and their generating function on \ell p.

A natural basis which is useful for representation of the spectrum of Hbs(\ell p) in the
case p = 1 is the basis of elementary symmetric polynomials, given by

Gn(x) =

\infty \sum 
k1<\cdot \cdot \cdot <kn

xk1
\cdot \cdot \cdot xkn

(see e.g. [1], [12]). The difficulty is that the basis of elementary symmetric polynomials
can not be directly extended to the space \ell p for p > 1 because in this case the right-hand
series diverges for every n. However, according to well known Newton’s formula, for every
x \in \ell 1, we can write

nGn(x) = F1(x)Gn - 1(x) - F2(x)Gn - 2(x) + \cdot \cdot \cdot + ( - 1)n+1Fn(x), n \in \BbbN . (3.1)

Setting in (3.1) Fk = 0 for k < p we can define (cf. [19])

nG(p)
n (x) = ( - 1)\lceil p\rceil +1F\lceil p\rceil (x)G

(p)
n - \lceil p\rceil (x) - F\lceil p\rceil +1(x)G

(p)
n - \lceil p\rceil  - 1(x) + \cdot \cdot \cdot + ( - 1)n+1Fn(x)

(3.2)
for every n \geq \lceil p\rceil .
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Proposition 3.1. The set of polynomials \{ G(p)
n : n \geq \lceil p\rceil \} is an algebraic basis in \scrP s(\ell p).

Proof. The proof immediately follows from the fact that polynomials Fn, n \geq \lceil p\rceil , form
an algebraic basis in \scrP s(\ell p) and from the invertibility of (3.2). \square 

Let \scrG (p)(x)(t) be the so-called generating function of the sequence
\bigl( 
G

(p)
n (x)

\bigr) 
,

\scrG (p)(x)(t) = 1 +

\infty \sum 
n=\lceil p\rceil 

tnG(p)
n (x), t \in \BbbC .

It is well-known (see e.g. [22], p. 3) that if x has only a finite number of nonzero
coordinates, then

\scrG (x)(t) = \scrG (1)(x)(t) = \mathrm{e}\mathrm{x}\mathrm{p}

\Biggl( 
 - 

\infty \sum 
n=1

tn
Fn( - x)

n

\Biggr) 
.

This relation is still true for x \in \ell 1 [12]. Thus, for every x \in \ell 1,

\scrG (p)(x)(t) = \mathrm{e}\mathrm{x}\mathrm{p}

\left(  \lceil p\rceil  - 1\sum 
k=1

tk
Fk( - x)

k

\right)  \mathrm{e}\mathrm{x}\mathrm{p}

\Biggl( 
 - 

\infty \sum 
n=1

tn
Fn( - x)

n

\Biggr) 
. (3.3)

On the other hand, we know that

\mathrm{e}\mathrm{x}\mathrm{p}

\Biggl( 
 - 

\infty \sum 
n=1

tn
Fn( - x)

n

\Biggr) 
=

\infty \prod 
n=1

(1 + txn).

Combining with (3.3), we have

\scrG (p)(x)(t) = \mathrm{e}\mathrm{x}\mathrm{p}

\left(  \lceil p\rceil  - 1\sum 
k=1

tk
Fk( - x)

k

\right)  \infty \prod 
n=1

(1 + txn)

=

\infty \prod 
n=1

\mathrm{e}\mathrm{x}\mathrm{p}
\Bigl( 
 - txn +

t2x2n
2

+ \cdot \cdot \cdot + t\lceil p\rceil ( - xn)\lceil p\rceil 

\lceil p\rceil 

\Bigr) 
(1 + txn).

(3.4)

From the theory of entire function of a single complex variable [21, pp. 29-30] we have
that

\infty \prod 
n=1

\mathrm{e}\mathrm{x}\mathrm{p}
\Bigl( 
 - txn +

t2x2n
2

+ \cdot \cdot \cdot + t\lceil p\rceil ( - xn)\lceil p\rceil 

\lceil p\rceil 

\Bigr) 
(1 + txn)

is the canonical Weierstrass product, converging for every x \in \ell p to an entire function of
t of order \rho = \mathrm{i}\mathrm{n}\mathrm{f}\{ q > 0: x \in \ell q\} with zeros an =  - 1

xn
, xn \not = 0. Thus, we have proved

the following theorem.

Theorem 3.2. For every fixed x \in \ell p the generating function (3.4) is an entire function
of t of order \rho = \mathrm{i}\mathrm{n}\mathrm{f}\{ q > 0: x \in \ell q\} with zeros an =  - 1

xn
for xn \not = 0.

Corollary 3.3. The function

x \mapsto \rightarrow \scrG (p)(x)(1) = 1 +

\infty \sum 
n=\lceil p\rceil 

(G(p)
n )(x)

is an analytic function on \ell p.

Proof. \scrG (p)(x)(1) is a well-defined convergent series of continuous homogeneous polyno-
mials. So it is analytic. \square 

Note that \scrG (1)(x)(1) is of bounded type [12]. But we do not know if it is true for p > 1.
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4. Representation of the spectrum of Hbs(\ell p)

It is easy to check that

Gn(x \bullet y) =
n\sum 

k=0

Gk(x)Gn - k(y), x, y \in \ell 1.

In [12] it was shown that

\varphi  \star \theta (Gn) =

n\sum 
k=0

\varphi (Gk)\theta (Gn - k)

for any characters \varphi , \theta in Mbs(\ell 1). From this relation it was deduced that

\scrG (\varphi  \star \theta ) = \scrG (\varphi )\scrG (\theta ).
The following theorem extends this formula for \ell p.

Theorem 4.1. For any characters \varphi and \theta in Mbs(\ell p), 1 \leq p <\infty ,

(i)

\varphi  \star \theta 
\bigl( 
G(p)

n

\bigr) 
=

n\sum 
k=0

\varphi 
\bigl( 
G

(p)
k

\bigr) 
\theta 
\bigl( 
G

(p)
n - k

\bigr) 
;

(ii)
\scrG (p)(\varphi  \star \theta ) = \scrG (p)(\varphi )\scrG (p)(\theta ).

Here we suppose that G(p)
0 = 1 and G(p)

k = 0 for k < p.

Proof. Let us assume first that p \in \BbbN . For a given x \in \ell p we define the following character
\eta 
(p)
x \in Mbs(\ell p) by

\eta (p)x = \delta x  \star \psi 
(p)
 - Fp(x)

.

Then
\eta (p)x (Fp) = Fp(x) - Fp(x) = 0 and \eta (p)x (Fk) = Fk(x), k > p.

Note that the radius function

R(\eta (p)x )) \leq R(\delta x) +R(\psi 
(p)
 - Fp(x)

) \leq 2\| x\| pp.

From the definition of \eta (p)x and formula (3.2) it follows that

G(p+1)
n (x) = \eta (p)x (G(p)

n ) = \delta x  \star \psi 
(p)
 - Fp(x)

(G(p)
n ), x \in \ell p, n \geq p+ 1, (4.5)

and
\eta (p)x (G(p)

p ) = \eta (p)x

\Bigl( 
( - 1)p+1Fp

p

\Bigr) 
= 0.

Moreover,

\eta 
(p)
x\bullet y = \delta x\bullet y  \star \psi 

(p)
 - Fp(x) - Fp(y)

= \delta x  \star \delta y  \star \psi 
(p)
 - Fp(x)

 \star \psi 
(p)
 - Fp(y)

= \eta (p)x  \star \eta (p)y ,

x, y \in \ell p. We claim that for all x, y \in \ell p,

G(p+1)
n (x \bullet y) =

n\sum 
k=0

\eta (p)x (G
(p)
k )\eta (p)y (G

(p)
n - k) =

n\sum 
k=0

(G
(p+1)
k (x))(G

(p+1)
n - k (y)), (4.6)

where G(p+1)
0 = 1 and G(p+1)

1 = G
(p+1)
2 = \cdot \cdot \cdot = G

(p+1)
p = 0. Indeed, for p = 1 we have

G(2)
n (x \bullet y) = \eta 

(1)
x\bullet y(G

(1)
n ) = \eta (1)x  \star \eta (1)y (G(1)

n )

=

n\sum 
k=0

\eta x(G
(1)
k )\eta y(G

(1)
n - k) =

n\sum 
k=0

(G
(2)
k (x))(G

(2)
n - k(y)).
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Suppose that equation (4.6) holds for every G(m+1)
n such that m < p. Then

G(p+1)
n (x \bullet y) = \eta 

(p)
x\bullet y(G

(p)
n ) = \eta (p)x  \star \eta (p)y (G(p)

n )

=

n\sum 
k=1

\eta (p)x (G
(p)
k )\eta (p)y (G

(p)
n - k) =

n\sum 
k=1

(G
(p+1)
k (x))(G

(p+1)
n - k (y)).

Thus, (4.6) is proved. Note that both the left and the right parts of equality

G(p+1)
n (x \bullet y) =

n\sum 
k=0

(G
(p+1)
k (x))(G

(p+1)
n - k (y))

are formally defined if x and y are in \ell p+1. Since it is true for x, y \in \ell p, it must be true
if x and y are in \ell p+1 because \ell p is dense in \ell p+1 and the functions G(p+1)

k , k \in \BbbN , are
continuous on \ell p+1. Also, we know that the equality holds if p+ 1 = 1. Hence, for every
integer 1 \leq p <\infty and n \geq p we have

G(p)
n (x \bullet y) =

n\sum 
k=0

\bigl( 
G

(p)
k (x)

\bigr) \bigl( 
G

(p)
n - k(y)

\bigr) 
. (4.7)

If p > 1 is noninteger, then \ell p \subset \ell \lceil p\rceil and so (4.7) is true for n \geq \lceil p\rceil .
Let now \varphi and \theta be in Mbs(\ell p). Using the definition of \varphi  \star \theta and (4.7) we have

\varphi  \star \theta 
\bigl( 
G(p)

n

\bigr) 
= \varphi 

\bigl( 
\theta  \star G(p)

n

\bigr) 
= \varphi 

\Bigl( n\sum 
k=0

G
(p)
k \theta 

\bigl( 
G

(p)
n - k

\bigr) \Bigr) 
=

n\sum 
k=0

\varphi 
\bigl( 
G

(p)
k

\bigr) 
\theta 
\bigl( 
G

(p)
n - k

\bigr) 
(4.8)

for n \geq \lceil p\rceil . Thus, item (i) is proved. To prove item (ii) we observe that
\infty \sum 

n=0

tn\varphi  \star \theta 
\bigl( 
G(p)

n

\bigr) 
=

\infty \sum 
n=0

tn
n\sum 

k=0

\varphi 
\bigl( 
G

(p)
k

\bigr) 
\theta 
\bigl( 
G

(p)
n - k

\bigr) 
= \scrG (p)(\varphi )\scrG (p)(\theta ). \square 

From Theorem 4.1 it follows that \varphi \mapsto \rightarrow \varphi 
\bigl( 
G

(p)
k

\bigr) 
is a representation of Mbs(\ell p) in the

form of a multiplicative semigroup of entire functions of a complex variable.
Let us return to the formula (3.1). In the case of integer p, it takes the form

nG(p)
n (x) = ( - 1)p+1Fp(x)G

(p)
n - p(x) + ( - 1)p+2Fp+1(x)G

(p)
n - p - 1(x)

+ \cdot \cdot \cdot + ( - 1)n - p+1Fn - p(x)G
(p)
p (x) + ( - 1)n+1Fn(x)

(4.9)

for n \geq p, where G(p)
0 \equiv 1, F0 \equiv 1 and

G
(p)
1 \equiv G

(p)
2 \equiv . . . \equiv G

(p)
p - 1 \equiv 0,

F1 \equiv F2 \equiv . . . \equiv Fp - 1 \equiv 0.

In other words, in (4.9) the terms Fr(x)G
(p)
q - r(x) = 0 if r < p or q  - r < p. Hence, if

\xi is a complex homomorphism (not necessarily continuous) on the space of symmetric
polynomials \scrP s(\ell p), then

n\xi (G(p)
n ) = ( - 1)p+1\xi (Fp)\xi (G

(p)
n - p) + ( - 1)p+2\xi (Fp+1)\xi (G

(p)
n - p - 1)

+ \cdot \cdot \cdot + ( - 1)n - p+1\xi (Fn - p)\xi (G
(p)
p ) + ( - 1)n+1\xi (Fn).

(4.10)

Proposition 4.2. Let p be a natural number and \xi be a complex homomorphism on
\scrP s(\ell p) such that \xi (Fm) = c \not = 0 for some p \leq m \leq 2p and \xi (Fn) = 0 for n \not = m. Then

\xi (G
(p)
km) = ( - 1)k(m+1) (c/m)k

k!
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and \xi (G(p)
n ) = 0 if n \not = km for some k \in \BbbN . Moreover,

\scrG (p)(\xi ) =

\biggl\{ 
e

c
m tm , if m is odd,

2 - e - 
c
m tm , if m is even.

Proof. Setting in formula (4.10) \xi (Fj) = 0 if j \not = m we can see that

\xi (G
(p)
km) = ( - 1)m+1

\xi (Fm)\xi (G
(p)
(k - 1)m)

km

and \xi (G
(p)
n ) = 0 if n \not = km for some k \in \BbbN . It is easy to check that for p \leq m \leq 2p,

G
(p)
m = ( - 1)m+1Fm/m. Thus, for k = 1 we have

\xi (G(p)
m ) =

( - 1)m+1\xi (Fm)

m
=

( - 1)m+1c

m
.

Suppose

\xi (G
(p)
(k - 1)m) =

\Bigl( 
( - 1)m+1

\Bigr) k - 1 (c/m)k - 1

(k  - 1)!
.

Then,

\xi (G
(p)
km) =

\xi (Fm)
\Bigl( 
( - 1)m+1

\Bigr) k - 1

(c/m)k - 1

km(k  - 1)!
=
\Bigl( 
( - 1)m+1

\Bigr) k (c/m)k

k!
= ( - 1)k(m+1) (c/m)k

k!
.

Therefore,

\scrG (p)(\xi ) = 1 +
\Bigl( 
( - 1)m+1

\Bigr) k \infty \sum 
k=1

(c/m)ktkm

k!
= 1 + ( - 1)m+1

\infty \sum 
k=1

( - ctm

m )k

k!
.

Hence,

\scrG (p)(\xi ) =

\biggl\{ 
e

c
m tm , if m is odd

2 - e - 
c
m tm , if m is even.

\square 

Corollary 4.3. Let p be a positive integer. Then

\scrG (p)
\bigl( 
\psi 
(p)
\lambda 

\bigr) 
=

\Biggl\{ 
e

\lambda 
p tp , if p is odd,

2 - e - 
\lambda 
p tp , if p is even.

and

\psi 
(p)
\lambda 

\bigl( 
G(p)

n

\bigr) 
=

\Biggl\{ 
( - 1)k(p+1) (\lambda /p)

k

k! , if n = kp for some k
0, otherwise.

Let x \in \ell p - 1. Then from equation (4.5) and Theorem 4.1 we have

G(p)
n (x) = \delta x  \star \psi 

(p - 1)
 - Fp - 1(x)

\bigl( 
G(p - 1)

n

\bigr) 
=

n\sum 
k=0

G
(p - 1)
k (x)\psi 

(p - 1)
 - Fp - 1(x)

\bigl( 
G

(p - 1)
n - k

\bigr) 
.

Taking into account Corollary 4.3, we can write

G(p)
n (x) =

\sum 
j(p - 1)\leq n

G
(p - 1)
n - j(p - 1)(x)\psi 

(p - 1)
 - Fp - 1(x)

\bigl( 
G

(p - 1)
j(p - 1)

\bigr) 
=

\sum 
j(p - 1)\leq n

G
(p - 1)
n - j(p - 1)(x)( - 1)j(p+1) (Fp(x))

j

j!(p - 1)j
.

(4.11)
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Example 4.4. (c.f. [19]). Let us denote \bfone = (1, 0, 0, . . .) \in \ell p. From (4.11), for n \geq p > 1,
we have

G(p)
n (\bfone ) =

\sum 
j(p - 1)\leq n

G
(p - 1)
n - j(p - 1)(\bfone )\psi 

(p - 1)
 - 1

\bigl( 
G

(p - 1)
j(p - 1)

\bigr) 
.

In particular, for p = 2 and n \geq 2,

G(2)
n (\bfone ) =

n\sum 
j=0

G
(1)
n - j(\bfone )\psi 

(1)
 - 1

\bigl( 
G

(1)
j

\bigr) 
= \psi 

(1)
 - 1

\bigl( 
G(1)

n

\bigr) 
+ \psi 

(1)
 - 1

\bigl( 
G

(1)
n - 1

\bigr) 
= ( - 1)n+1n - 1

n!
.

5. Power and root mappings

Let 1 \leq p <\infty and m \in \BbbN . We define xm = (xm1 , . . . , x
m
i , . . .). The mapping x \mapsto \rightarrow xm

is a continuous m-homogeneous polynomial from \ell p to \ell q for every q \geq p/m. Moreover,

\| xm\| q =
\Bigl( \infty \sum 

i=1

| xi| mq
\Bigr) 1/q

\leq 
\Bigl( \infty \sum 

i=1

| xi| mp/m
\Bigr) m/p

= \| x\| mp .

If q = p/m, then xm is surjective and \| xm\| q = \| x\| mp . Clearly, it is not injective if m > 1.
A right inverse map to xm (which is not unique) can be defined in the following way:

m
\surd 
x =

\bigl( 
m
\surd 
x1, . . . , m

\surd 
xi, . . .

\bigr) 
,

where m
\surd 
xi is the principal value of the mth complex root of xi. Clearly, x \mapsto \rightarrow m

\surd 
x is an

injection from \ell q to \ell mq, \bigl( 
m
\surd 
x
\bigr) m

= x,

and \bigm\| \bigm\| m
\surd 
x
\bigm\| \bigm\| 
mq

=
\Bigl( \infty \sum 

i=1

| xi| q
\Bigr) 1/mq

= \| x\| 1/mq .

Let us denote by Cm the composition operator from H(\ell q) to H(\ell mq) defined by

Cm : f(x) \mapsto \rightarrow f(xm), f \in H(\ell q).

Also, we denote by Cm
b the restriction of Cm to Hb(\ell p) by Cm

s the restriction of Cm to
Hs(\ell p), and by Cm

bs the restriction of Cm to Hbs(\ell p).

Theorem 5.1.
(i) The mapping Cm is a continuous homomorphism from H(\ell q) to H(\ell mq).
(ii) The mapping Cm

b is a continuous homomorphism from Hb(\ell q) to Hb(\ell mq).
(iii) The mapping Cm

s is a continuous homomorphism from Hs(\ell q) to Hs(\ell mq).
(iv) The mapping Cm

bs is a continuous homomorphism from Hbs(\ell q) to Hbs(\ell mq).

Proof. The mapping x \mapsto \rightarrow xm is a continuous m-homogeneous polynomial from \ell mq to \ell q.
So, it is an analytic map of bounded type. Hence, the composition operators Cm and
Cm

b are continuous. Moreover, if f is a symmetric function on \ell q, then x \mapsto \rightarrow f(xm) is a
symmetric function on \ell mq. Thus, the operators Cm

s and Cm
bs are continuous operators

with ranges in Hs(\ell mq) and Hbs(\ell mq), respectively. \square 

Corollary 5.2. Let \Phi m be a continuous homomorphism from H(\ell mq) to a topological
algebra A. Then Cm \circ \Phi m is a continuous homomorphism from H(\ell q) to A. Similarly, if
\Phi m is a continuous homomorphism from Hb(\ell mq) (resp. from Hs(\ell mq), from Hbs(\ell mq))
to A, then Cm

b \circ \Phi m (resp. Cm
s \circ \Phi m, C

m
bs \circ \Phi m) is a continuous homomorphism from

Hb(\ell q) (resp. from Hs(\ell q), from Hbs(\ell q)) to A.

Proposition 5.3. Let zn be a sequence of complex numbers such that z = (z1, z2, . . .) /\in \ell m
for some m \in \BbbN . If Fk(z) is well-defined for every k \geq m, then \delta z is a discontinuous
complex homomorphism on the algebra of symmetric polynomials \scrP s(\ell m).
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Proof. Let us suppose that \delta z is continuous. Then it can be extended by continuity to a
character on Hbs(\ell m). Thus, by Theorem 5.1, \delta Cm

bs(z)
is a character Hbs(\ell 1). On the other

hand, since z /\in \ell m, it follows that Cm
bs(z) /\in \ell 1 and by [13], \delta Cm

bs(z)
cannot be a continuous

homomorphism. A contradiction. \square 

Let \scrP 0(X) be a subalgebra of continuous polynomials \scrP (X). We denote by Hb0(X)
(resp. H0(X)) the algebra of analytic functions f \in Hb(X) (resp. H(X)) such that all
homogeneous polynomials in the Taylor series representation

f(x) =

\infty \sum 
n=0

fn(x)

are in \scrP 0(X). We assume that the space Hb0(X) is endowed with the metrizable topology
of uniform convergence on bounded sets (induced from Hb(X)) and H0(X) is endowed
with the topology of uniform convergence on compact sets (induced from H(X)).

Proposition 5.4. Let \varphi and \psi be continuous linear functionals on H0(X). If \varphi (P ) =
\psi (P ) for every P \in \scrP 0(X), then \varphi = \psi .

Proof. Since the Taylor series of f converges to f in the topology of uniform convergence
on compact sets for every f \in H0(X) and by the continuity of functionals \varphi and \psi , we
have

\varphi (f) =

\infty \sum 
n=0

\varphi (fn) =

\infty \sum 
n=0

\psi (fn) = \psi (f)

for every f \in H0(X). \square 

Corollary 5.5. The operator of restriction of characters of the algebra H0(X) to the
subalgebra Hb0(X) is an injection from the spectrum M

\bigl( 
H0(X)

\bigr) 
of H0(X) to the spectrum

M
\bigl( 
Hb0(X)

\bigr) 
of Hb0(X). In other words, M

\bigl( 
H0(X)

\bigr) 
\subseteq M

\bigl( 
Hb0(X)

\bigr) 
.

Proof. If the restriction of \varphi is equal to the restriction of \psi to Hb0(X), then \varphi (P ) = \psi (P )
for every P \in \scrP 0(X). By Proposition 5.4, \varphi = \psi . \square 

The following theorem gives a complete description of the spectrum of Hs(\ell 1) because
by [13], the case p = 1 satisfies conditions of this theorem. We do not know if it is true
for any other p > 1.

Theorem 5.6. Let p be such that every character in Mbs(\ell p) can be represented as a
convolution of a point evaluation functional \delta x, x \in \ell p and an exceptional functional \psi \lambda ,
\lambda \in \BbbC . Then the spectrum Ms(\ell p) of Hs(\ell p) consists of point evaluation functionals.

Proof. It is enough to show that \psi \lambda , \lambda \not = 0, can not be extended to a continuous
homomorphism of Hs(\ell p) for any positive integer p. In [14] it is proved that Hs(\ell 1)
contains analytic functions of unbounded type. This result was generalized for any
Hs(\ell p), 1 \leq p <\infty in [28].

For a given p \in \BbbN we denote by G\{ p\} 
n the np-homogeneous polynomial on \ell p defined by

G\{ p\} 
n (x) = Gn(x

p) =

\infty \sum 
k1<\cdot \cdot \cdot <kn

xpk1
\cdot \cdot \cdot xpkn

.

From Newton’s formula we have

nG\{ p\} 
n (x) =nGn(x

p) = F1(x
p)Gn - 1(x

p) - F2(x
p)Gn - 2(x

p) + \cdot \cdot \cdot + ( - 1)n+1Fn(x
p)

=Fp(x)G
\{ p\} 
n - 1(x) - F2p(x)G

\{ p\} 
n - 2(x) + \cdot \cdot \cdot + ( - 1)n+1Fnp(x).

(5.12)
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Taking into account \| Gn\| = 1/n! [12] and the following relations\Bigl( 
\| x\| p \leq 1

\Bigr) 
\leftrightarrow 
\Bigl( \infty \sum 

k=1

| xpk| \leq 1
\Bigr) 
\leftrightarrow 
\Bigl( 
\| xp\| 1 \leq 1

\Bigr) 
,

we can obtain

\| G\{ p\} 
n \| = \mathrm{s}\mathrm{u}\mathrm{p}

\| x\| p\leq 1

| Gn(x
p)| = \mathrm{s}\mathrm{u}\mathrm{p}

\| xp\| 1\leq 1

| Gn(x
p)| = \mathrm{s}\mathrm{u}\mathrm{p}

\| x\| 1\leq 1

| Gn(x)| =
1

n!
.

Let us denote by gr, r > 0, the following analytic function on \ell p:

gr(x) =

\infty \sum 
n=1

n!G
\{ p\} 
n (x)

rnp
.

Then the radius of boundedness of gr at the origin is equal to

\varrho 0(gr) = \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

r

\| n!G\{ p\} 
n \| 1/np

= r.

According to Theorem 2 and Theorem 1 in [28], the function gr is well-defined on \ell p and
belongs to Hs(\ell p) \setminus Hbs(\ell p).

Let \lambda \geq r. Then from the equalities \psi \lambda (Fp) = \lambda p, \psi \lambda (Fk) = 0 for k > p, and formula
(5.12), we have

\psi \lambda (gr) =

\infty \sum 
n=1

\Bigl( \lambda 
r

\Bigr) pn
= \infty .

Thus, \psi \lambda is not defined on gr \in Hs(\ell p) for \lambda \geq r. \square 

6. Conclusions

The paper’s main result is the representation of the spectrum of Hb(\ell p) as a multi-
plicative semigroup of entire functions on \BbbC . However, we have a complete description
of the spectrum only for the case p = 1. The general case will be the subject of further
investigations. For this purpose, it would be useful to have a value of

\bigm\| \bigm\| G(p)
n

\bigm\| \bigm\| . We know
only that

\bigm\| \bigm\| G(1)
n

\bigm\| \bigm\| = 1/n!. Thus, we have the following question: What is value of
\bigm\| \bigm\| G(p)

n

\bigm\| \bigm\| 
in \ell p for every p > 1 and integer n > p?

In addition, it would be interesting to find a structure of an analytic manifold on
the spectrum of Hb(\ell p) such that the Gelfand extension of any function in Hb(\ell p) is an
analytic function on this manifold.

References

[1] R. Alencar, R. Aron, P. Galindo and A. Zagorodnyuk, Algebras of symmetric holomorphic functions
on \ell p, Bull. Lond. Math. Soc. 35 (2003), 55–64, doi:10.1112/S0024609302001431.

[2] J.M. Ansemil, R.M. Aron and S. Ponte, Behavior of entire functions on balls in a Banach space,
Indag. Math. 20 (2009), 483–489, doi:10.1016/S0019-3577(09)80021-9.

[3] R.M. Aron, B.J. Cole, and T.W. Gamelin, Spectra of algebras of analytic functions on a Banach
space, J. Reine Angew. Math. 415 (1991), 51–93, doi:10.1515/crll.1991.415.51.

[4] R.M. Aron, J. Falcó and M. Maestre, Separation theorems for group invariant polynomials, J.
Geom. Anal. 28 (2018), 393–404, doi:10.1007/s12220-017-9825-0.
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