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ON THE CODISK-CYCLIC LINEAR RELATIONS

ALI ECH-CHAKOURI AND HASSANE ZGUITTI

ABsTRACT. In this paper we extend and study the notions of codisk-cyclicity and
codisk transitivity, studied in [5, 16, 17, 21, 22| for linear operators, to linear relations
(multivalued linear operators) on a complex Hilbert space H. Among other things,
we show that if a closed and bounded linear relation 7' is codisk-cyclic then its range
is dense in H and TP is also codisk-cyclic for every p € N. We also show that the
codisk-cyclicity is equivalent to codisk-transtivity. A codisk-cyclicity criterion is given.
Some examples that illustrate our results are presented.

V wiit cTaTTi MU PO3IIUPIOEMO Ta BUBYAEMO OHATTS KOIAMCK-IIUKJIIIHOCTI Ta KOIUCK-
TPAH3UTUBHOCTI, 10 JOCIIzKyBanuch B |5, 16, 17, 21, 22| aya ainifinux oneparopis,
0 JiHIHHEX BigHOmIeHb (6araTo3HAYHHUX JIHIMHAX OMEpaTOpiB) Ha KOMILIEKCHOMY
rine6eproBoMy npocropi H. CepeJ iHIIOro, Mu mMoKa3yeMo, IO SIKIIO 3aMKHEHE Ta
obMexkeHe JiiHiliHe BigHOIIeHHsT T € KOAUCK-IIUKJIYHUM, TO HOro 06J1acTh 3HAYEHb
misibHa B H, a TP TakoXK € KOAUCK-IMKJ/IIIHUM 115t KoyKHoro p € N. Mwu Takoxk
TOKa3y€EMO, 1[0 KOIUCK-ITUKJIIYHICTh eKBiBaJIeHTHA KOAUCK-Tpan3nTuBHOCTi. HaBeneno
KpuTepiit koguck-mukiaiyaocri. Hapgano meski npukiamy, 1o LIFOCTPYIOTH Hali
pe3yJbTaTH.

1. INTRODUCTION

For two separable infinite dimensional Hilbert spaces H and K over the field K =R
or C, we denote the set of all bounded linear operators from H to K by B(H, K). If
K = H, we use the shorthand notation B(H) := B(H, H). For a subset A of H, we use
int(A) and A to represent the interior and the closure of A, respectively. We recall some
important concepts in the study of linear dynamical properties, with a specific focus on
the notions of hypercyclicity and codisk-cyclicity. We say that T' € B(H) is hypercyclic if
there exists a non-zero vector x in H such that the set Orb(T, z) := {x, Tz, T?x,...} is
norm dense in H. In this case, x is called a hypercyclic vector for T. In addition, we say
that T satisfies the hypercyclicity criterion if there exist two subsets Dy and Dy dense in
H, an increasing sequence of integers {ny} and a sequence of maps S,,, : Do — H such
that:

i) T™ x — 0, for every z € Dy;
1) Sp,y — 0, for every y € Dy;
wi) T™ Sy, y — vy, for every y € Ds.
If T satisfies the hypercyclicity criterion, then T is hypercyclic. Also, if A is the unilateral
backward shift on 3, then AA is hypercyclic if and only if |A| > 1, (see [14]). This
motivates the following notion introduced in [22] and studied by [5, 16, 17, 21, 22]. A

linear operator T' € B(H) is said to be codisk-cyclic if there exists a non-zero vector z in
H such that

UOrb(T,z) :={admx: a €U, n > 0}‘|AH =H,
where U := {@ € C : |a| > 1}. In this case, the vector z is said to be a codisk-cyclic
vector for T. We say that T is codisk transitive if for any pair (U, V') of non-empty open
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subsets of H, there exist « € U and n > 0 such that
aT™"(U)NV #£0.

The codisk-cyclicity criterion stands as a fundamental outcome of linear dynamics [5, 22].
A bounded linear operator T' on H is said to satisfy the codisk-cyclicity criterion if there
exist an increasing sequence of integers {ny}, a sequence {ay,,} in U, two dense sets
D;,Dy C H and a sequence of maps Sy, : D2 — H such that:

i) an, T™x — 0, for every x € Dy;
i) o, LSy, y — 0, for every y € Dy;
wi) TSy, y — vy, for every y € Ds.
If T satisfies the codisk-cyclicity criterion, then T is codisk-cyclic. For a more comprehen-

sive understanding of hypercyclicity, codisk-cyclicity and their interconnected properties in
the context of linear dynamics, we refer the reader to the references [5, 13, 16, 17, 22, 21].

Recently, a study of linear dynamics of linear relations appeared in [11]. Moreover,
Abakumov et al. 2018 have also studied hypercyclicity of linear relations on an infinite
separable Hilbert space, see [1|. Additionally, in [6], we study the notion of disk-cyclicitiy
of linear relations. This paper is a continuation of the study of dynamics of linear relations.
We present and study the concept of codisk-cyclicity in the context of linear relations.

This paper is structured as follows. In Section 2, we recall the fundamental definitions
and the symbols used for linear relations. In Section 3, we introduce and study the notion
of codisk-cyclicity for a linear relation, which extends the concept of codisk-cyclicity
for a bounded linear operator. We also show that the same properties known for a
codisk-cyclic linear operator hold true for codisk-cyclicity of linear relations. Section 4 is
devoted to present the concept of a codisk transitive linear relation and provide several
characterizations for it. Among these characterizations, we prove that a linear relation
is codisk-cyclic if and only if it is codisk transitive if and only if the set of codisk-cyclic
vectors is a dense Gs-set. In the last section, we conclude by presenting two criteria
for determining the codisk-cyclicity of linear relations and giving a relationship between
them.

2. PRELIMINARIES OF LINEAR RELATIONS

A linear relation or multivalued linear operator T on H is a mapping from a subspace
D(T) :={z € H : Tx is a non-empty subset of H} called the domain of T into 27 \ §
the set of all non-empty subsets of H, such that

T(x+ \y) =T(x) + A\T(y),

for all z,y € D(T) and all non-zero scalar A [12]. We denoted by LR(H) the set of all
linear relations on H. If T' € LR(X) then it is uniquely determined by its graph G(T')
which is defined by

GT):={(z,y) e Hx H : x € D(T) and y € T(x)}.
The inverse of T is the linear relation 7! defined by
G(T™Y :={(y,x) e Hx H : (x,y) € G(T)}.

Let T € LR(H) and M be a subspace of H. Then the restriction of T' to M, denoted by
T, is the linear relation defined by G(Th) := G(T) N (M x H). For two linear relations
T and S on H, the linear relations 7'+ S and T'S are defined respectively by

GT+S)={(z,y+2)€HxXH : (x,2) € G(S) and (x,y) € G(T)}
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and

G(TS) :={(x,y) € Hx H:3z € H such that (z,z) € G(S) and (z,y) € G(T)}.
Note that T(0) = {0} if and only if T" maps the points of its domain to singletons; in this
case T' is said to be a single valued operator or a linear operator.

Let T € LR(H). The image of T of a subset X of H and the inverse image of T~! of
a subset Y of H are defined, respectively, by

T(X):= |J Tz and T7(Y):={xeD(T): TznY #0}.
zeD(T)NX
The subspace ker(T) := T1(0) is called the kernel of T' and the range of T is defined by
R(T) :=T(D(T)). A linear relation T is said to be one-to-one if ker(7') = {0}.
Let A, B and C € LR(H). Then we know from [2, Lemma 2.5 that
i) G((A+ B)C) Cc G(AC + B(C). If C(0) C ker(A) Uker(B), then
(A+ B)C = AC + BC.
ii) If A is everywhere defined, then A(B + C) = AB + AC. We know from [12,
Corollary 1.2.11] that TT~" = Igr) +T(0) and T7'T = Ipe) + T (0).
The adjoint T* of a linear relation T' (see [19]) is defined by

GT):={(y,y) e Hx H: <z ,y>=<y x>, forall (z,2') € G(T)}
and we have (see [19, 12])
ker(T*) = R(T)* and T*(0) = D(T)*.

If D(T) = H, then T* is a single-valued operator.

A linear relation T is called closed, if G(T) = G(T'). We say that a linear relation T is
continuous, if for each neighbourhood V' in R(T'), T~!(V) is a neighbourhood in D(T). If
T is continuous and D(T') = H, then in this case, T is said bounded. The class of closed
and bounded linear relations is denoted by BCR(H). Note that if T is closed, then T'(0)
is closed.

For n € NU {0}, we let T° = I (the identity operator in H) and if 7"~! is defined,
then

Ty :=TT" tz = U Ty,
yeD(T)NT™ 1
where
D(T") :={z € D(T" ) : D(T)NT" 'z # 0}.
By induction, we can show that (7™)~! = (T~!)" for all n € N. A linear relation
T € BCR(H) is said to satisfy stabilization property |10], if T(0) = T?(0). We also know
by [18, Proposition 3.1] and [2, Lemma 3.1] that if T € BCR(H) and T'(0) C ker(T), then
T™ € BCR(H) for all n € N.
We say that a linear operator A is a selection of the linear relation T if D(T') = D(A)
and
Tx = Az +T(0) for all x € D(T).
Note that if A is continuous, then T is continuous. In addition, let 7' € BCR(H) and
x € H. If Ais aselection of T € BCR(H), then from [7, Theorem 2.5.6], A™ is a selection
of T™. This implies that
Tz = A"z +T7(0), for all n € NU{0}. (2.1)

For more details about linear relations, we refer the reader to [2, 3, 4, 7, 10, 12, 18] and
the references therein.
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3. CODISK-CYCLIC LINEAR RELATIONS

In this section, we present the concept of codisk-cyclicity in the context of linear
relations as an extension of the notion of codisk-cyclicity for linear operators.

Definition 3.1. Let T € BCR(H). We say that T is a codisk-cyclic linear relation, if
there exists a non-zero vector x € H such that

UOrb(T,x) := U U oT"x

n>20 aclU

is dense in H. In this case, the vector x is called a codisk-cyclic vector for T and
UOrb(T, x) is said the orbit of T at x.

The set of all codisk-cyclic linear relations on a separable Hilbert space H is denoted
by UCR(H). For T' € BCR(H), we denoted by UCR(T) the set of all codisk-cyclic vectors
for T. If T ¢ UCR(H), then we set UCR(T) := 0.

Following [1], T € BCR(H) is hypercyclic if there exists a sequence {z;, i € NU {0}}
such that {x;, 1 e NU{0}} = H and | T"z; = H, for each i > 0.

n=0

Proposition 3.2. Let T € BCR(H) be a bounded linear relation such that T(0) # H
and T satisfies the stabilization property. If T is a hypercyclic linear relation, then T is a
codisk-cyclic linear relation.

Proof. Since T(0) # H and T satisfies the property of stabilization, we have that
T(0) =T(0) =T"(0) # H for all n € N. Using the fact that T is hypercyclic, it follows
from [1, Corollary 2.1] that there exists a non-zero vector x in H such that |J T"z is

n=0
dense in H. Hence
H= U Trx C U U aTmx =U0rb(T,x) C H,
n>=0 aclUnz0
which implies that the set UOrb(T,x) is dense in H. Finally, we deduce that T is a
codisk-cyclic linear relation. O

In general, the converse of Proposition 3.2 is not true as shown by the following
example.

Example 3.3. Let ¢5(Z) be the complex Hilbert space defined by
05(Z) == {(z:)iez : i € C, Vi€ Zand Y _ |z;|* < oo}.
i€Z
Let {a,} be a sequence defined by
5 ifn>0,

QAp =

%, if n <0.
Let T be the bilateral weighted shift with weights {a, } defined on ¢5(Z) by
T(en) = aneniq for alln € Z,

where {e,, }nez is the canonical basis for £5(Z). Then T is codisk-cyclic but not hypercyclic.
Indeed, since ian an > 0, T is invertible by [20, Proposition 10]. Now, let S be the inverse
ne

of T'. Hence

1
Se, =

en—1 forallneZ.
n—1
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We consider the sequence {a,} defined by a,, = 4™ for all n € N. Clearly {a,} C U.
Moreover, we have

n—1
lim ||a,T"e|| = lim a, [] ax
_ : 4\n
= )

and

n
nh—>H;o ||Oé;15n60|| - nh—>H;O Oé;l kl;[ 1

Let
D1 =Dy := {x € {3(Z) : = has only finitely many non-zero coordinates}.

Then D; and D5 are dense sets in ¢2(Z). Let € D; and y € Dy. Using [13, Lemma 3.1]
and triangle inequality we deduce that

lanT"z|| — 0 and |lo,'S™y| — 0 as n — oo.

Furthermore, we have T™S"y = y. Hence T satisfies the codisk-cyclicity criterion. This
implies that T is codisk-cyclic.

On the other hand, let {n;} be any sequence of positive integers such that n; — +oo.
Then

Nk 1
1_[—:3"’c — 400 as k — +o0.
j=1""7

Thus, it follows from [13, Theorem 4.1] that 7" is not hypercyclic.

In the following we prove that every linear relation which has a codisk-cyclic selection
is a codisk-cyclic linear relation.

Proposition 3.4. Let A € B(X) be a selection of a linear relation T € BCR(H). If A
is codisk-cyclic, then T is a codisk-cyclic linear relation.

Proof. Let x € H. Since A is a selection of T', by Equality (2.1) we obtain
{aA"x :n > 0,0 € U} C UOrH(T, x)
Since A is a codisk-cyclic linear operator,
H={aA"z :n > 0,0 € U} Cc UOrb(T,z) C H.

This implies that the set UOrb(T,x) is dense in H. Finally, we conclude that T is a
codisk-cyclic linear relation. O

Proposition 3.5. Fvery non-injective codisk-cyclic linear operator is a selection for a
codisk-cyclic linear relation.

Proof. Let A € B(H) be a codisk-cyclic linear operator such that ker(A) # {0}. Let
T € BCR(H) be the linear relation defined by
T: H — 27\
r — AT1A%(2).
Then A is a selection of T'. Indeed, let € D(T) = H, then we have
Tr = A1A%(2)
A1 A(Ax)
Az + ker(A)
= Az +T(0).
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It follows that A is a selection of T. Since A is a codisk-cyclic linear operator, by
Proposition 3.4 we deduce that T is a codisk-cyclic linear relation. O

In the following, we give an example of A which satisfies the conditions of Example 3.

Example 3.6. Let A be an operator defined on ¢5(N) by

A: €2 — 62
x=(x1,22,...) — 3(x2,23,...).

Then A is a hypercyclic linear operator by Example 2.22 in [14]. Hence A is a codisk-cyclic
operator and ker(A) # {0}. Let T be a bounded linear relation defined by

T: 6(N) — 22M)\(
r o AT1A%(z).

Therefore T is a codisk-cyclic linear relation as A is a non one-to-one selection of T

Proposition 3.7. Let T € BCR(H), S € BCR(K), and G € B(H,K) be such that
SG = GT and R(G) is dense in K. Then

G(UCR(T)) C UCR(S).
In particular, if T is codisk-cyclic, then S is codisk-cyclic.

Proof. If T ¢ UCR(H), then G(UCR(T)) = G(0#) = § € UCR(S). Now assume that
T € UCR(H). Let x be a codisk-cyclic vector for T, then UOrb(T, x) is dense in H. We
have

UOrb(S,Gz) = U U aS"Gzx
aclUn=0

= U U aGTrz
aclUnz0

- U UG

aclUnz=0

7)
- U U Gt
)
7)

aclUnz=0

= G(U U oTm

aclUnz=0
> 6(U U ot
aclUn=0
= G(H)
= R(G).
As R(G) is dense in K, we see that UOrb(S, Gz) is dense in K. Hence Gx € UCR(S). O

As immediate consequence of the preceding proposition is AUCR(T) = UCR(T) for all
A e C\ {0}
Now, let z € H. We define the set U, as follows:
U, :=={az:acU}.
Lemma 3.8. Let T € UCR(H). Then x € UCR(T) if and only if UOrb(T, z) \ U, is

dense in H.

Proof. Let x be a codisk-cyclic vector for T. Then UOrb(T, x) is dense in H. We set
B = U U ad"z.
neN aecl
Hence B = UOrb(T, z) \ U,. Using the fact that span(x) is a closed subspace of H, we
have span(x) = span(z) # H. Which implies that int(span(z)) = (. Since U, is a subset
of span(x),

int(Uy) = 0.
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From |1, Lemma 2.1] it follows that
int(U, U B) = int(B).

So, we get

I
~.
S
=

= nt

= nt

C H.
This means that B is dense in H. The converse is obvious. O
Proposition 3.9. Let T € BCR(H). If T is codisk-cyclic, then the range of T is dense
m H.

Proof. Suppose that T is a codisk-cyclic linear relation. Then there exists a non-zero
vector x € H such that UOrb(T, ) is dense in H. Let y € UOrb(T,x) \ U,. Then there
exist n € N and « € U such that y € oT™x. This means that

yeal"r =T"(azx) C R(T") C R(T).
Therefore
UOrb(T,x) \ U, C R(T).
From Lemma 3.8, we obtain that UOrb(T, x) \ U, is dense in H. Finally, we deduce that
the range of T is dense in H. O

Proposition 3.10. Let T € BCR(H) and S € UCR(H) be such that S(0) = ST(0),
TS = ST, and the range of T is dense in H. Then

Tz C UCR(S)
for all x € UCR(S).
Proof. Let x € UCR(S), then the set UOrb(S, ) is dense in H. Let y € T, then

STz = S(y+7T(0)
Sy + ST(0)
= Sy+5(0)
= Sy.

Since T'S = ST, it follows that
TS "z =S"Tx =S"y

for all n € N. We set Q@ = UOrb(S, z) \ U. Then by Lemma 3.8, Q is dense in H. Hence
from [12, p. 33|, we obtain

R(T)

|
NS

N
’ﬂ'ﬂ

U U I(a5)

aclUneN

= U U oISz

aclUneN

= U U aSy

aclUneN
c UOrb(S,y)
Cc H.
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Since the range of T' is dense in H, UOrb(S,y) is dense in H. We conclude that y is a
codisk-cyclic vector for S. Then Tz is a subset of UCR(SS). O

Theorem 3.11. Let T € BCR(H) be such that T(0) C ker(T). Then T is a codisk-cyclic
linear relation if and only if TP is a codisk-cyclic linear relation for all p € N.

Proof. Assume that T' is a codisk-cyclic linear relation. Then by Proposition 3.9, the
range of T is dense in H. Since T'(0) C ker(T), we have by [10, Proposition 3.1] that
T(0) =Tm(0) and T € BCR(H) for all n € N. Therefore, according to Proposition 3.10,

we have
T(UCR(T)) c UCR(T).
By induction we obtain

T (UCR(T)) C UCR(T) foralln e N.

Now, we prove that T? is a codisk-cyclic linear relation. Indeed, since T is a codisk-cyclic
linear relation, there exists € H such that UOrb(T,x) is dense in H. Let n € N and
y € T"x C UCR(T). Using the fact that T(0) = T™(0) and [2, Lemma 2.5], we obtain

T?"y = T"T"z

T(y +77(0))
Ty +T%"(0)
Ty +17(0)
= T"y.

This implies that
UOrb(T?,x) \ U, = UOrb(T,y) \ U,,.

Since y is a codisk-cyclic vector for T, from Lemma 3.8 it follows that UOrb(T,y) \ U,
is also dense in H. Therefore UOrb(T? x) is dense in H. This means that T2 is a
codisk-cyclic linear relation. By induction, we can show that 7% is a codisk-cyclic linear
relation for all p € N. O

Theorem 3.12. Let T, S € BCR(H) be such that TST(0) = TS(0) = TS(0), STS(0) =

ST(0) = ST(0), and the ranges of T and S are dense in H. Then TS is codisk-cyclic if
and only if ST is codisk-cyclic.

Proof. Assume that ST is codisk-cyclic. Let n € N. Since T'ST(0) = T'S(0), we have

(T'S)"T(0) = (T'S)™(0). Since ST is codisk-cyclic, there exists © € H = D(T) such that
UOrb(ST, x) is dense in H and there exists y € Tz. Therefore

T(ST)"x =

|
AN AN TN TN T
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We set M := UOrb(ST,z) \ U,. By Lemma 3.8, we obtain that M is dense in H.
Furthermore, from [12, p.33] it follows that

R(T) = T(H)
(M

(
T(U U o(ST)"z)

neN ael
U U aT(ST)"x
neN aclU

= U U aTs)"y

neN aclU
UOry(TS,y)

C
Cc H.

I
N

N
S

Since R(T) = H, we see that UOrb(TS,y) is dense in H. This means that T'S is
codisk-cyclic. The converse is proved similarly. O

Let T € LR(H) and S € LR(K). Then the linear relation T @ S is defined by
TeS: DT)eDS) — 20K\
TDy — Tx &Sy

where HO K :={z®y:=(2,y):x € H and y€ K} and D(T @ S) := D(T) & D(S).
For k € N, we then have
(ToSrz®y ="k S*y.

Proposition 3.13. Let T € BCR(H) and S € BCR(K). If T & S is codisk-cyclic, then
T and S are codisk-cyclic linear relations.

Proof. Let y :=yg @y € H® K. Since T' @ S is a codisk-cyclic linear relation, there
exists  := zg ® rx € UCR(H @ K) such that UOrb(T & S,x) is dense in H @ K.
Therefore, there exists {yx} in UOrb(T @& S, x) such that {y;} converges to y as k — oc.
Then, for all & € N there exist {ay} in U and {ns} in N such that

yp — y with y € (T @ S)™* .
Let P be the bounded projection defined on H & K such that R(P) = H. Then
P(yx) € axgT™ x g such that P(yx) — yu

and so vy € UCR(T). Similarly, we prove that zx € UCR(S). Therefore T and S are
codisk-cyclic linear relations. O

In the following, we establish a connection between orthogonal projection and the
concept of codisc-cyclic linear relations.

Lemma 3.14. [6, Lemma 4.1] Let T € LR(H) and M be a non-trivial closed subspace
of H such that T(M) C M and T(M=*) C M*. If P € B(H) is the projection onto M+,
then

(TP)*=1T"P=PT"
for alln € N.

Proposition 3.15. Let T € UCR(H) and let M be a non-trivial closed subspace of H
such that T(M) C M. If P is the projection onto M+, then

Pz #0
for all x € UCR(T).
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Proof. Let x be a codisk-cyclic vector for T'. For the sake of contradiction suppose that

Pz =0, thus © € M. Since T(M) C M,
pgrtxe C pIT"M

Cc M

= M

for all € U and all n € NU {0}. It follows that

H=|]J|JBIacM=MCcCH.
BeEUN>0
This is a contradiction to M # H. Therefore Pz is not zero. O

Proposition 3.16. Let T € UCR(H) and M be a non-trivial subspace of H such that
T(M)C M and T(M*) C M. Then Ty;1 and Tys are codisk-cyclic linear relations.

Proof. Since T is a codisk-cyclic linear relation, there exists x € H such that the set
UOrb(T, x) is dense in H. According to Lemma 3.8, UOrb(T, z) \ U, is also dense in H.
As H =M @& M™, there exit 1 € M and zo € M~ such that z = 1 + 2. Now, let P
be the bounded projection P onto M+. Then Pz = x. Using Lemma 3.14, we obtain
(TP)* =T"P = PT™ for all n € N. Since P is bounded, we then have

MY =P(H) = PUOMT,z)\U,)
C PUOry(T,z)\U,)
= P(U U oTrz)

aclUneN
U U aPTrx
aclUneN
= U U aT"Px
aclUneN

= U U aTPrz

aclUneN

U U aTy, z

aclUneN

UOTb(T]V[J_ 5 .'1,'2)

ML

M+,

Finally, we can say that Tj,. is a codisk-cyclic linear relation. Similarly, we obtain Ty, is
a codisk-cyclic linear relation. O

NN

4. CODISK TRANSITIVE LINEAR RELATIONS

In this section, we introduce and investigate the concept of a codisk transitive linear
relation.

Definition 4.1. Let T' € BCR(H). We say that T is codisk transitive, if for any pair (U, V)
of non-empty open subsets of H, there exist & € U and n > 0 such that «7T™(U)NV # 0.

Example 4.2. Let T € BCR(H) and let A be a selection of T'. If A is a codisk transitive
operator, then T' is a codisk transitive linear relation. Indeed, since A is a codisk transitive
linear operator, for any two non-empty open sets U and V of H there exist n € NU {0}
and a € U such that

aA™(U)NV #0.
Therefore there exists y € «A™(U) N V. Hence y = aA™x, for some z € U. By (2.1) we
obtain
aAmx
aT™x

y =
€
Cc odmU.
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As aresult, «T™(U) NV # (. Then T is a codisk transitive linear relation.

Proposition 4.3. Let T € BCR(H), S € BCR(K), and A € B(H,K) be such that
SA = AT and the range of A is dense in K. If T is a codisk transitive linear relation,
then S is a codisk transitive linear relation.

Proof. Let U and V be two non-empty open subsets of K. Since A is bounded and has
dense range, A~}(U) and A~1(V) are two non-empty open subsets of H. Since T is a
codisk transitive linear relation, there exist n € NU {0} and 8 € U such that

BT"AN(U)N A~ (V) #£ 0.

So there exist y € A=Y(V) and z € A~1(U) such that y € BT™z. From equality SA = AT,
we have
BS"Ax = BAT™x
= A(BT"z)

Aly + BT7(0))
= Ay -+ pAT™(0)
= Ay+ BS™(0).

Thus, Ay € 8S™Ax C BS™(U) and Ay € V. Hence
BS™U)YNV # 0.

Finally, we conclude that S is a codisk transitive linear relation. g

Corollary 4.4. Let T € BCR(H), S € BCR(K), and A € B(H,K) be such that
SA = AT and A is bijective. Then T is a codisk transitive linear relation if and only if S
is a codisk transitive linear relation.

In the sequel, the closed unit disk in C is denoted by D. The following theorem gives a
characterization of a codisk transitive linear relation.
Theorem 4.5. Let T' € BCR(H). Then the following assertions are equivalent.
i) T is codisk transitive.
ii) For each pair (U, V) of non-empty open subsets of H, there exist « € D\ {0} and
n > 0 such that
aT™™U)NV £0.
iii) For any non-empty open subset U of H, the set
U U o)
aclUn=0

is dense in H.
iv) For any non-empty open subset U of H, the set

U U aT™™(U)
aeD\{0} n=0
is dense in H.

Proof. i) = ii): Since T is codisk transitive, for any pair (U, V) of non-empty open
subsets of H there exist 8 € U and n > 0 such that 87" (U) NV # 0. Therefore

BU+T0))NT™V) #0.
Let z € (BU +T-™(0)) N T~™(V). Then there exist w € U, y € T~"(0), and v € V such
that = fu+y and € T~ "(v). Hence
T="(v) = z+T7™(0)
= Puty+T7(0)
= pu+T77(0).
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Thus fu € T~"(v). We obtain v € «T~"(V)NU with |a| :=|
U#(and e D\ {0}.

i1) = i). This is similar to ¢) implies ii).

%| < 1. Finally oT~™(V)N

i) <= iii). Let U be an open non-empty subset of H and (O;);en be a countable basis
of open sets of H. Since T is a codisk transitive linear relation, for each i € N we can
find n; > 0 and «; € U such that ;7™ (U) N O; # (. Tt follows that the set

U U o)
acelUn=>0

is dense in H. Conversely, Let U and V' be two open non-empty subsets of H. Since the

U U aT™(U)

aclUn=0

is dense in H, there exist @ € U and n > 0 such that oT"(U) NV # 0. Therefore T is a
codisk transitive linear relation.

set

i1) <= 4v): This is similar to i) <= iii). O
In the sequel, the open ball centred at * € H and with radius r > 0 is denoted by
B(z,r).
Theorem 4.6. Let T € BCR(H). Then the following assertions are equivalent.

i) T is a codisk transitive linear relation.
ii) For each x,y € H there exist sequences {ny} in N, {xy} in H, {ax} in U, and
{yr} in H such that

T — T, yp — Yy and Tz, =y + T7(0).
ili) For each (z,y) € H® H and for each neighbourhood W of 0 there exist z,t € H,
a €U, and n € N such that
r—zeW, t—yeW and oI"z=1t+T"(0).

Proof. i) = ii) Let ,y € H and let By, := B(z, 1), B,; := B(y, 1) for all k € N. Then
By, and B,; are non-empty open subsets of H. Since T is a codisk transitive linear relation,

there exist two sequences {ay} in U and {ng} in N such that T"* (ay By,) N B,, # 0 for all
k > 1. Then there exists a sequence {y;} in H such that

Yi € T (Oszk) n Bl/c

for all k > 1. Consequently, there exists a sequence {xj } in By, such that y, € T™ (agar)N
B,; for all £ > 1. We then have

apT™ 2, = yr + apT™(0)
= yp+ T (0)

Furthermore,

low — 2l < & and g~ yll < ¢
for all £ > 1. Therefore x;, — = and yr, — y as k — oo.

i1) = i4i) Suppose that for each (x,y) € H x H there exist sequences {ny} in N, {x}}
in H, {ay} in U, and {yx} in H such that z;, — =, y, — y and axT™ xp, = yp+T7*(0).
Let W be a neighbourhood of zero. Hence there exists kg € N such that z — x; € W and
yr —y € W, for all k > ko. If we take z := xy, and ¢ := y,, we then have

x—zeW, t—yeW and ap,T™ 0z =t+ T (0).
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ii1) = 1) Let U and V be two non-empty open subsets of H. Let (z,y) € U@ V. For
all k > 1, Wy, := B(0, %) is a neighbourhood of zero. By assumption there exist sequences
{zx}in H, {og} in U, {n} in N, and {yx} C H such that

1 1
lzx — 2| < T llye — yll < Z and y € apT"*xp.

Then {xy} converges to x and {yx} converges to y as k — co. Using the fact that U
and V are two non-empty open subsets of H such that (z,y) € U x V, we see that for k
large enough z, € U and y, € V. Therefore

0 ZapT™ 2, NV C o, T™UNV.
This shows that T is a codisk transitive linear relation. O

Proposition 4.7. Let T € BCR(H). Then T is a codisk-transitive linear relation if and
only if
R = UJ U o7V
keNn20 acD\{0}

is a dense Gs-set in H, where (Vi)ken is a countable basis of open subsets of H.

Proof. Let (Vi;)ren be a countable basis of open subsets of H. Then

x € UCR(T) VeE=1,Vin(U U oTmz) #£0
n>0 aclU
Vk > 1,38 €U, 3n > 0 such that VN BT "z # ()
Vk >1,38 €U, 3n > 0 such that Sz e T-"(V})
Vk > 1, 3o € D\ {0}, 3In > 0 such that = € oT"(V})
ze N U U oT™™(Vi)

kENn>0 aeD\{0}

rree 1

Let T be a codisk transitive linear relation. We prove that UCR(T) is dense in H. Indeed,

let k> 1 and
Or:=J U e (W)
n>0 aeD\{0}

By Theorem 4.5, it follows that Oy is dense in H. Since O, is an open set of H (see [,
Remark 2.2]), by the Baire category theorem we obtain (| Op = UCR(T) is Gs-set dense

keEN
in H.

Conversely, let U and V' be two non-empty open subsets of H. Since (Vi)ren is a
countable basis of open subsets of H and (| O = UCR(T) is dense in H, we see that
keN
U= Vi with I C Nand () Ox NV # 0. Therefore, for all k € N we get O NV # ().

kel keN
For i € I we have

0 # o,nv = (U U oI ™(V)NnV
n=0 aeD\{0}
c (U U ar(yv)nv
n>0 aeD\{0} kel

(U U oI m@)nv.

n>0 a€D\{0}

n20 aecD\{0}
that J | a7 ™(U) is dense in H. Finally, by virtue of Theorem 4.5, T is a codisk
n>0 a€D\{0}
linear relation. O

Then < U u aT"(U)> NV # § for all non-empty open subset V of H. We deduce
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In the following, we prove the equivalence between a codisk-cyclic liner relation and a
codisk transitive linear relation.

Theorem 4.8. Let T € BCR(H). Then T is a codisk transitive linear relation if and
only if T is a codisk-cyclic linear relation.

Proof. Suppose that T is codisk transitive. Then by Proposition 4.7 it follows that the set
UCR(T) is dense in H. Hence UCR(T) is a non-empty set of H and so T is a codisk-cyclic
linear relation.

Conversely, assume that 7" is a codisk-cyclic linear relation. Then there exists a vector
x in H such that the set UOrb(T, x) is dense in H. Let U and V be two non-empty open
sets of H. We have

UOrb(T,z)NU # 0 and UOrb(T,z) NV # 0.
Therefore there exist m,n > 0 and «, 8 € U such that
aT"zNU #0 and BT™xzNV #0,

S0, there exist two elements y; and yo such that y1 € Tz NU and yo € Tz NV. It
is clear that without loss of generality we can assume that n > m. Set p:=n—m >0

and v := 2 We therefore have

B
yo € BT™Mx <= yo € T™(Bx)
— (Bz,y2) € G(T™)
= (y2,Br) € G(T™)7)
= (y2,B2) € G(T™™))
— preTl My,
— ze€ %T*myQ.
Hence o
y1 € aImr C ET”’myg and  (y1,y2) €U DV
o mn—m
C ﬁT (V)
= 17°(V)

which implies that vT?(V) N U # 0. So, we distinguish two cases:
First case: |a| < |f|. Then we obtain
YTP(V)NU # 0 with pe NU{0} and v e D\ {0}.

Therefore

0 #£AT*(V)NUCy | [ e (V)| nU.
aclUnz0

Thus

vy U UaT”(V)) NU #0

aclUnz=0
for any non-empty open subset U of H. Which implies that the set
M=~ [ a1™(V))
aclUnz=0
is dense in H. Now, we consider the map f, defined by
fr+ H — H

1
T — -z
gl
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Clearly, f, is a homeomorphism. Using the fact that f., is closed we see that

UUear(v) = 1M
aclUn=0
f~(M)
= f'y(M)
= f’y(H)
_ 1y
v
= H.

Therefore the set |J |J aT™(V) is dense in H. Then by Theorem 4.5 we deduce that T
aclUnz0
is a codisk transitive linear relation.

Second case: |3] < |a|. Since v = 3, we get
~TP(V)NU # 0 with pe NU{0} and € U.

Finally, we conclude that T is a codisk transitive linear relation. O

Lemma 4.9. Let A and B be two non-empty subsets of H such that A=H and B # H.
Then there exists v € A such that x ¢ B.

Proposition 4.10. Let T € UCR(H). Then the range of T — A is dense in H, for every
A e UuU{0}.

Proof. If A = 0, then by Proposition 3.9, R(T) is dense in H. Now, let A € U. For the
sake of contradiction assume that R(T — AI) is not dense in H. Since T is codisk-cyclic,
we have by Theorem 4.8 and Proposition 4.7 that the set UCR(T) is dense in H. By
Lemma 4.9, there exists © € UCR(T) such that « ¢ (T'— AI)H. By the Hahn-Banach
theorem, there exists a continuous linear functional S on H such that Sz # 0 and
S(R(T — X)) = {0}. In particular, S(R(T — AI)) = {0}. From [18, Lemma 4.2 |, we
obtain R(T™ — A\"I) C R(T — AI) for all n € N. Hence

ST™y = A" Sy (4.2)

for all n € N and all y € H. Since UOrb(T,x) is dense in H, there exists {x;} in
UOrb(T,z) such that {z)} converges to 3x. Hence Sz, — $Sz as k — oo. For each
k € N, there exists n; in N and «y in U such that xp € apT™ 2 = T™ (agz). Using
Equality (4.2) and T™ agx = z, + T (0) we get

Sz = S(apT™x)
= qpST"x
= apA"tSx.

Thus apA"s Sz — 1Sz since |ap A" | > 1 and Sz # 0. Thus [apA™| — 3 > 1 as
k — oo, which is a contradiction. Finally, we deduce that the range of 7' — AI is dense
in H. 0

Let T' € LR(H). The point spectrum of T, denoted by ¢, (T), is defined by
op(T) :={A € C: T — Al is not one-to-one}.
As an immediate consequence of the previous results, we obtain the following.
Corollary 4.11. Let T € UCR(H). Then
op(I*) € T\ (UU{0}).
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Proof. Assume that o,(T™*) is a non-empty subset of C. Let A € UU {0}. Then, from
Proposition 4.10, it follows that R(T — AI) is dense in H. Consequently

ker(T — AI)* = R(T — )+
- R{T M)
= gt

= {0}.
Furthermore, as A\I is a bounded linear operator, we have
ker(T — M )* = ker(T* — \I) = {0}.

This implies that A ¢ 0,(T*). Since A € U is equivalent to A € U, we get X\ & o,(T*).
Thus 0, (T*) is a subset of C\ U. O

From Theorem 3.12 and Theorem 4.8, we obtain the following corollary.

Corollary 4.12. Let T, S € BCR(H) be such that TST(0) = T'S(0) = T'S(0), STS(0) =
ST(0) = ST(0), and the ranges of T and S are dense in H. Then TS is codisk transitive
if and only if ST is codisk transitive.

5. CODISK-CYCLIC CRITERION

This section presents two criteria for establishing the codisk-cyclicity of a linear relation.

Definition 5.1. Let T € BCR(H). We say that T satisfies the codisk-cyclicity criterion
if there exist two dense subsets X and Y of H and an increasing sequence of positive
integers {ny}, a sequence {ay,, } in U and a sequence of maps S, : Y — H such that:

a) For each = € X there exists z,,, € T™*x for each k € N such that a,, z,, — 0.
b) o, 1Sy y — 0foralyecy.
c¢) For each y € Y there exists y,, € TS,y for each k € N such that y,, — .

Theorem 5.2. Let T € BCR(H). If T satisfies the codisk-cyclicity criterion, then T is
codisk-cyclic.

Proof. Let U and V be two non-empty open sets in H. Since T satisfies the codisk-
cyclicity linear relation criterion, there exist two dense subsets X and Y of H, and three
sequences {ny}, {an,, } and Sy, : Y — H that satisfy the conditions in Definition 5.1.
As X and Y two dense sets in H, it follows that

UNX#0 and VNY #0.
Let ze UNX and y € VNY. Now, we consider a sequence {z;} defined by
2=+ o, Sy, forall k> 1.

Since {a;,! S, y} converges to 0, {z;} converges to . Using the fact that 2 € U and U
is open, we see that there exists N € N such that z, € U, for all k > N.
By assumption, there exists x,, € T"*x and y,, € T"*S,,y for all k € N such that

OnyTn, — 0 and y,, — .
Let {ax} be a sequence defined by

Qf = Qn,Tn, + Yn,, for all ke N.
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Therefore {ax} converges to y. Since y € V and V is an open subset of H, there exists
N’ € N such that ar € V for all k > N'. Furthermore, for all k¥ > N, we then have
G = QnTpy +Yn, € ap, T +T" S,y
= o (T + 07 )T S,,y)
= Qn, (Tnkm + 1"k (O‘;kl S y))
= Qpy e (a: + O‘;klsmg y)
= Qn, Tnk(zk)
C T (U).

We set ng := max(N, N') and obtain
ar €V and ay € a,, T (U), for all k > ng.

Therefore oy, T™ (U) NV # () and so T is codisk transitive. Now by Theorem 4.8, we
deduce that T is a codisk-cyclic linear relation. O

Theorem 5.3. Let T € BCR(H). If for any two non-empty open sets U and V of H
and for each neighbourhood W of zero, in H, there exist n € N and o € U such that

aT*(U)NW #0 and o«T"(W)NV #£0,
then T is a codisk-cyclic linear relation.

Proof. Let x,y € H. For each k € N, let Uy, = B(x, %), Vi = B(y, %), and Wy, = B(0, %)
Hence by assumption, for all k € N there exist two sequences {nx} in N and {ay} in U
such that

o T"* (Uk) N Wy # ¢ and o Tk (Wk) NV # 0.

Therefore there exist two sequence {b} in Wy, and {b,} in Vi such that by € T"*(Uy)
and b, € T™ (W},) for all k € N. Hence, there exist two sequence {a;,} in Uy and {a;} in
W, such that

by € T™(a)) and by, € T™(ay,), for all k€ N.
Now consider two sequences zj, and yj, which are defined by zy, := ay, 4—@}C and yi = by, —|—b;€,
for all k € N. Let k € N. Hence

T (x) = T™(ay +a,)

T (ag) + T (ay.)
by, + T (0) + by, + T (0)
by, + by, + T (0)
=y +717(0)

and /
llax + ap — ||

o —af) = |
< o — 2l +

1 1
< T %
< 2

Similarly, we obtain |y, — 2| < %, which implies that
rp — x and yp — y as k — oo.

As a result, according to condition #i) in Theorem 4.6, we can say that T is a codisk
transitive linear relation. Finally, by Theorem 4.8, T is a codisk-cyclic linear relation. [J

Proposition 5.4. Let T € BCR(H). If T satisfies the codisk-cyclicity criterion, then T
satisfies the conditions of Theorem 5.8 and so is codisk-cyclic.
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Proof. Let U and V be two non-empty open sets in H, and W be a neighbourhood of
zero in H. Assume that T satisfies the criterion of codisk-cyclicity. Hence there exist
two dense subsets X, Y of H such that UNX #( and V NY # (), and there exist an
increasing sequence of positive integers {n}, a sequence {ay,, } of U, and a sequence of
maps Sy, : Y —> H provided that

a) for each x € UNX there exists x,, € Tz for each k € N such that a,, z,, — 0;
b) aplSyy—0forallyeY NV;
¢) for each y € Y NV there exist y,,, € T™ S,y for each k € N such that y,,, — y.

Now, let z € U N X. Then there exists x,, € T™ x for each k € N such that {a,, x,, }
converges to 0. Therefore there exists m € N such that «,, z,, € W for every k > m.
Moreover, since x € U and oy, Tpn, € ap, T 2, we have

Oy Xy, € ap, T (U)NW, for all k = m.

Similarly, let y € Y N V. Then there exists y,, € T"*S,,y for each k € N and y,, — y.
Hence there exists m; in N such that a;lenky € W for every k > my. Since y € V|,
Ynr, — Y, and V is open, there exists my in N such that y,, € V for every k > my. We
take k' := max(my,ms). Then for each k > &’

Yny, € T Sp, y = ap, T (a’r_Llenk y) Can, " (W) and yn, €V
Now we set p = max(m,k’). Then
an, T"(U)NW #0  and  a, T (W)NV # 0.
Therefore T' satisfies the conditions of Theorem 5.3. d
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