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ON THE CODISK-CYCLIC LINEAR RELATIONS

ALI ECH-CHAKOURI AND HASSANE ZGUITTI

Abstract. In this paper we extend and study the notions of codisk-cyclicity and
codisk transitivity, studied in [5, 16, 17, 21, 22] for linear operators, to linear relations
(multivalued linear operators) on a complex Hilbert space H. Among other things,
we show that if a closed and bounded linear relation T is codisk-cyclic then its range
is dense in H and T p is also codisk-cyclic for every p \in \BbbN . We also show that the
codisk-cyclicity is equivalent to codisk-transtivity. A codisk-cyclicity criterion is given.
Some examples that illustrate our results are presented.

У цiй статтi ми розширюємо та вивчаємо поняття кодиск-циклiчностi та кодиск-
транзитивностi, що дослiджувались в [5, 16, 17, 21, 22] для лiнiйних операторiв,
до лiнiйних вiдношень (багатозначних лiнiйних операторiв) на комплексному
гiльбертовому просторi H. Серед iншого, ми показуємо, що якщо замкнене та
обмежене лiнiйне вiдношення T є кодиск-циклiчним, то його область значень
щiльна в H, а T p також є кодиск-циклiчним для кожного p \in \BbbN . Ми також
показуємо, що кодиск-циклiчнiсть еквiвалентна кодиск-транзитивностi. Наведено
критерiй кодиск-циклiчностi. Надано деякi приклади, що iлюструють нашi
результати.

1. Introduction

For two separable infinite dimensional Hilbert spaces H and K over the field \BbbK = \BbbR 
or \BbbC , we denote the set of all bounded linear operators from H to K by \scrB (H,K). If
K = H, we use the shorthand notation \scrB (H) := \scrB (H,H). For a subset \Lambda of H, we use
int(\Lambda ) and \Lambda to represent the interior and the closure of \Lambda , respectively. We recall some
important concepts in the study of linear dynamical properties, with a specific focus on
the notions of hypercyclicity and codisk-cyclicity. We say that T \in \scrB (H) is hypercyclic if
there exists a non-zero vector x in H such that the set Orb(T, x) := \{ x, Tx, T 2x, ...\} is
norm dense in H. In this case, x is called a hypercyclic vector for T . In addition, we say
that T satisfies the hypercyclicity criterion if there exist two subsets \scrD 1 and \scrD 2 dense in
H, an increasing sequence of integers \{ nk\} and a sequence of maps Snk

: \scrD 2  - \rightarrow H such
that:

i) Tnkx  - \rightarrow 0, for every x \in \scrD 1;
ii) Snk

y  - \rightarrow 0, for every y \in \scrD 2;
iii) TnkSnk

y  - \rightarrow y, for every y \in \scrD 2.
If T satisfies the hypercyclicity criterion, then T is hypercyclic. Also, if A is the unilateral
backward shift on \ell 2, then \lambda A is hypercyclic if and only if | \lambda | > 1, (see [14]). This
motivates the following notion introduced in [22] and studied by [5, 16, 17, 21, 22]. A
linear operator T \in \scrB (H) is said to be codisk-cyclic if there exists a non-zero vector x in
H such that

\BbbU Orb(T, x) := \{ \alpha Tnx : \alpha \in \BbbU , n \geqslant 0\} 
\| .\| 

= H,

where \BbbU := \{ \alpha \in \BbbC : | \alpha | \geqslant 1\} . In this case, the vector x is said to be a codisk-cyclic
vector for T . We say that T is codisk transitive if for any pair (U, V ) of non-empty open
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subsets of H, there exist \alpha \in \BbbU and n \geqslant 0 such that

\alpha Tn(U) \cap V \not = \emptyset .

The codisk-cyclicity criterion stands as a fundamental outcome of linear dynamics [5, 22].
A bounded linear operator T on H is said to satisfy the codisk-cyclicity criterion if there
exist an increasing sequence of integers \{ nk\} , a sequence \{ \alpha nk

\} in \BbbU , two dense sets
\scrD 1,\scrD 2 \subset H and a sequence of maps Snk

: \scrD 2  - \rightarrow H such that:
i) \alpha nk

Tnkx  - \rightarrow 0, for every x \in \scrD 1;
ii) \alpha  - 1

nk
Snk

y  - \rightarrow 0, for every y \in \scrD 2;
iii) TnkSnk

y  - \rightarrow y, for every y \in \scrD 2.
If T satisfies the codisk-cyclicity criterion, then T is codisk-cyclic. For a more comprehen-
sive understanding of hypercyclicity, codisk-cyclicity and their interconnected properties in
the context of linear dynamics, we refer the reader to the references [5, 13, 16, 17, 22, 21].

Recently, a study of linear dynamics of linear relations appeared in [11]. Moreover,
Abakumov et al. 2018 have also studied hypercyclicity of linear relations on an infinite
separable Hilbert space, see [1]. Additionally, in [6], we study the notion of disk-cyclicitiy
of linear relations. This paper is a continuation of the study of dynamics of linear relations.
We present and study the concept of codisk-cyclicity in the context of linear relations.

This paper is structured as follows. In Section 2, we recall the fundamental definitions
and the symbols used for linear relations. In Section 3, we introduce and study the notion
of codisk-cyclicity for a linear relation, which extends the concept of codisk-cyclicity
for a bounded linear operator. We also show that the same properties known for a
codisk-cyclic linear operator hold true for codisk-cyclicity of linear relations. Section 4 is
devoted to present the concept of a codisk transitive linear relation and provide several
characterizations for it. Among these characterizations, we prove that a linear relation
is codisk-cyclic if and only if it is codisk transitive if and only if the set of codisk-cyclic
vectors is a dense G\delta -set. In the last section, we conclude by presenting two criteria
for determining the codisk-cyclicity of linear relations and giving a relationship between
them.

2. Preliminaries of Linear relations

A linear relation or multivalued linear operator T on H is a mapping from a subspace
\scrD (T ) := \{ x \in H : Tx is a non-empty subset of H\} called the domain of T into 2H \setminus \emptyset 
the set of all non-empty subsets of H, such that

T (x+ \lambda y) = T (x) + \lambda T (y),

for all x, y \in \scrD (T ) and all non-zero scalar \lambda [12]. We denoted by \scrL \scrR (H) the set of all
linear relations on H. If T \in \scrL \scrR (X) then it is uniquely determined by its graph G(T )
which is defined by

G(T ) := \{ (x, y) \in H \times H : x \in \scrD (T ) and y \in T (x)\} .

The inverse of T is the linear relation T - 1 defined by

G(T - 1) := \{ (y, x) \in H \times H : (x, y) \in G(T )\} .

Let T \in \scrL \scrR (H) and M be a subspace of H. Then the restriction of T to M , denoted by
TM , is the linear relation defined by G(TM ) := G(T ) \cap (M \times H). For two linear relations
T and S on H, the linear relations T + S and TS are defined respectively by

G(T + S) := \{ (x, y + z) \in H \times H : (x, z) \in G(S) and (x, y) \in G(T )\} 
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and

G(TS) := \{ (x, y) \in H \times H : \exists z \in H such that (x, z) \in G(S) and (z, y) \in G(T )\} .

Note that T (0) = \{ 0\} if and only if T maps the points of its domain to singletons; in this
case T is said to be a single valued operator or a linear operator.

Let T \in \scrL \scrR (H). The image of T of a subset X of H and the inverse image of T - 1 of
a subset Y of H are defined, respectively, by

T (X) :=
\bigcup 

x\in \scrD (T )\cap X

Tx and T - 1(Y ) := \{ x \in D(T ) : Tx \cap Y \not = \emptyset \} .

The subspace \mathrm{k}\mathrm{e}\mathrm{r}(T ) := T - 1(0) is called the kernel of T and the range of T is defined by
R(T ) := T (\scrD (T )). A linear relation T is said to be one-to-one if \mathrm{k}\mathrm{e}\mathrm{r}(T ) = \{ 0\} .

Let A, B and C \in \scrL \scrR (H). Then we know from [2, Lemma 2.5] that
i) G((A+B)C) \subset G(AC +BC). If C(0) \subset \mathrm{k}\mathrm{e}\mathrm{r}(A) \cup \mathrm{k}\mathrm{e}\mathrm{r}(B), then

(A+B)C = AC +BC.

ii) If A is everywhere defined, then A(B + C) = AB + AC. We know from [12,
Corollary I.2.11] that TT - 1 = IR(T ) + T (0) and T - 1T = I\scrD (T ) + T - 1(0).

The adjoint T \ast of a linear relation T (see [19]) is defined by

G(T \ast ) := \{ (y, y
\prime 
) \in H \times H : < x

\prime 
, y >=< y

\prime 
, x >, for all (x, x

\prime 
) \in G(T )\} 

and we have (see [19, 12])

\mathrm{k}\mathrm{e}\mathrm{r}(T \ast ) = R(T )\bot and T \ast (0) = \scrD (T )\bot .

If \scrD (T ) = H, then T \ast is a single-valued operator.
A linear relation T is called closed, if G(T ) = G(T ). We say that a linear relation T is

continuous, if for each neighbourhood V in R(T ), T - 1(V ) is a neighbourhood in \scrD (T ). If
T is continuous and \scrD (T ) = H, then in this case, T is said bounded. The class of closed
and bounded linear relations is denoted by \scrB \scrC \scrR (H). Note that if T is closed, then T (0)
is closed.

For n \in \BbbN \cup \{ 0\} , we let T 0 = I (the identity operator in H) and if Tn - 1 is defined,
then

Tnx := TTn - 1x =
\bigcup 

y\in \scrD (T )\cap Tn - 1x

Ty,

where
\scrD (Tn) := \{ x \in \scrD (Tn - 1) : \scrD (T ) \cap Tn - 1x \not = \emptyset \} .

By induction, we can show that (Tn) - 1 = (T - 1)n for all n \in \BbbN . A linear relation
T \in \scrB \scrC \scrR (H) is said to satisfy stabilization property [10], if T (0) = T 2(0). We also know
by [18, Proposition 3.1] and [2, Lemma 3.1] that if T \in \scrB \scrC \scrR (H) and T (0) \subset \mathrm{k}\mathrm{e}\mathrm{r}(T ), then
Tn \in \scrB \scrC \scrR (H) for all n \in \BbbN .

We say that a linear operator A is a selection of the linear relation T if \scrD (T ) = \scrD (A)
and

Tx = Ax+ T (0) for all x \in \scrD (T ).

Note that if A is continuous, then T is continuous. In addition, let T \in \scrB \scrC \scrR (H) and
x \in H. If A is a selection of T \in \scrB \scrC \scrR (H), then from [7, Theorem 2.5.6], An is a selection
of Tn. This implies that

Tnx = Anx+ Tn(0), for all n \in \BbbN \cup \{ 0\} . (2.1)

For more details about linear relations, we refer the reader to [2, 3, 4, 7, 10, 12, 18] and
the references therein.
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3. Codisk-cyclic linear relations

In this section, we present the concept of codisk-cyclicity in the context of linear
relations as an extension of the notion of codisk-cyclicity for linear operators.

Definition 3.1. Let T \in \scrB \scrC \scrR (H). We say that T is a codisk-cyclic linear relation, if
there exists a non-zero vector x \in H such that

\BbbU Orb(T, x) :=
\bigcup 
n\geqslant 0

\bigcup 
\alpha \in \BbbU 

\alpha Tnx

is dense in H. In this case, the vector x is called a codisk-cyclic vector for T and
\BbbU Orb(T, x) is said the orbit of T at x.

The set of all codisk-cyclic linear relations on a separable Hilbert space H is denoted
by \BbbU \scrC \scrR (H). For T \in \scrB \scrC \scrR (H), we denoted by \BbbU \scrC \scrR (T ) the set of all codisk-cyclic vectors
for T . If T /\in \BbbU \scrC \scrR (H), then we set \BbbU \scrC \scrR (T ) := \emptyset .

Following [1], T \in \scrB \scrC \scrR (H) is hypercyclic if there exists a sequence \{ xi, i \in \BbbN \cup \{ 0\} \} 
such that \{ xi, i \in \BbbN \cup \{ 0\} \} = H and

\bigcup 
n\geqslant 0

Tnxi = H, for each i \geqslant 0.

Proposition 3.2. Let T \in \scrB \scrC \scrR (H) be a bounded linear relation such that T (0) \not = H
and T satisfies the stabilization property. If T is a hypercyclic linear relation, then T is a
codisk-cyclic linear relation.

Proof. Since T (0) \not = H and T satisfies the property of stabilization, we have that
T (0) = T (0) = Tn(0) \not = H for all n \in \BbbN . Using the fact that T is hypercyclic, it follows
from [1, Corollary 2.1] that there exists a non-zero vector x in H such that

\bigcup 
n\geqslant 0

Tnx is

dense in H. Hence

H =
\bigcup 
n\geqslant 0

Tnx \subset 
\bigcup 
\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha Tnx = \BbbU Orb(T, x) \subset H,

which implies that the set \BbbU Orb(T, x) is dense in H. Finally, we deduce that T is a
codisk-cyclic linear relation. \square 

In general, the converse of Proposition 3.2 is not true as shown by the following
example.

Example 3.3. Let \ell 2(\BbbZ ) be the complex Hilbert space defined by

\ell 2(\BbbZ ) := \{ (xi)i\in \BbbZ : xi \in \BbbC , \forall i \in \BbbZ and
\sum 
i\in \BbbZ 

| xi| 2 < \infty \} .

Let \{ an\} be a sequence defined by

an =

\left\{   
1
9 , if n \geqslant 0,

1
3 , if n < 0.

Let T be the bilateral weighted shift with weights \{ an\} defined on \ell 2(\BbbZ ) by

T (en) = anen+1 for all n \in \BbbZ ,

where \{ en\} n\in \BbbZ is the canonical basis for \ell 2(\BbbZ ). Then T is codisk-cyclic but not hypercyclic.
Indeed, since \mathrm{i}\mathrm{n}\mathrm{f}

n\in \BbbZ 
an > 0, T is invertible by [20, Proposition 10]. Now, let S be the inverse

of T . Hence

Sen =
1

an - 1
en - 1 for all n \in \BbbZ .
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We consider the sequence \{ \alpha n\} defined by \alpha n = 4n for all n \in \BbbN . Clearly \{ \alpha n\} \subset \BbbU .
Moreover, we have

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| \alpha nT
ne0\| = \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
\alpha n

n - 1\prod 
k=0

ak

= \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

( 49 )
n

= 0,

and
\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| \alpha  - 1
n Sne0\| = \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
\alpha  - 1
n

n\prod 
k=1

1
a - k

= \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

( 34 )
n

= 0.

Let

\scrD 1 = \scrD 2 := \{ x \in \ell 2(\BbbZ ) : x has only finitely many non-zero coordinates\} .
Then \scrD 1 and \scrD 2 are dense sets in \ell 2(\BbbZ ). Let x \in \scrD 1 and y \in \scrD 2. Using [13, Lemma 3.1]
and triangle inequality we deduce that

\| \alpha nT
nx\|  - \rightarrow 0 and \| \alpha  - 1

n Sny\|  - \rightarrow 0 as n  - \rightarrow \infty .

Furthermore, we have TnSny = y. Hence T satisfies the codisk-cyclicity criterion. This
implies that T is codisk-cyclic.

On the other hand, let \{ nk\} be any sequence of positive integers such that nk \rightarrow +\infty .
Then

nk\prod 
j=1

1

a - j
= 3nk  - \rightarrow +\infty as k  - \rightarrow +\infty .

Thus, it follows from [13, Theorem 4.1] that T is not hypercyclic.

In the following we prove that every linear relation which has a codisk-cyclic selection
is a codisk-cyclic linear relation.

Proposition 3.4. Let A \in \scrB (X) be a selection of a linear relation T \in \scrB \scrC \scrR (H). If A
is codisk-cyclic, then T is a codisk-cyclic linear relation.

Proof. Let x \in H. Since A is a selection of T , by Equality (2.1) we obtain

\{ \alpha Anx : n \geqslant 0, \alpha \in \BbbU \} \subset \BbbU Orb(T, x)

Since A is a codisk-cyclic linear operator,

H = \{ \alpha Anx : n \geqslant 0, \alpha \in \BbbU \} \subset \BbbU Orb(T, x) \subset H.

This implies that the set \BbbU Orb(T, x) is dense in H. Finally, we conclude that T is a
codisk-cyclic linear relation. \square 

Proposition 3.5. Every non-injective codisk-cyclic linear operator is a selection for a
codisk-cyclic linear relation.

Proof. Let A \in \scrB (H) be a codisk-cyclic linear operator such that \mathrm{k}\mathrm{e}\mathrm{r}(A) \not = \{ 0\} . Let
T \in \scrB \scrC \scrR (H) be the linear relation defined by

T : H  - \rightarrow 2H \setminus \emptyset 
x \mapsto  - \rightarrow A - 1A2(x).

Then A is a selection of T . Indeed, let x \in \scrD (T ) = H, then we have

Tx = A - 1A2(x)
= A - 1A(Ax)
= Ax+ \mathrm{k}\mathrm{e}\mathrm{r}(A)
= Ax+ T (0).
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It follows that A is a selection of T . Since A is a codisk-cyclic linear operator, by
Proposition 3.4 we deduce that T is a codisk-cyclic linear relation. \square 

In the following, we give an example of A which satisfies the conditions of Example 3.

Example 3.6. Let A be an operator defined on \ell 2(\BbbN ) by

A : \ell 2  - \rightarrow \ell 2
x = (x1, x2, . . .) \mapsto  - \rightarrow 3(x2, x3, . . .).

Then A is a hypercyclic linear operator by Example 2.22 in [14]. Hence A is a codisk-cyclic
operator and \mathrm{k}\mathrm{e}\mathrm{r}(A) \not = \{ 0\} . Let T be a bounded linear relation defined by

T : \ell 2(\BbbN )  - \rightarrow 2\ell 2(\BbbN ) \setminus \emptyset 
x \mapsto  - \rightarrow A - 1A2(x).

Therefore T is a codisk-cyclic linear relation as A is a non one-to-one selection of T .

Proposition 3.7. Let T \in \scrB \scrC \scrR (H), S \in \scrB \scrC \scrR (K), and G \in \scrB (H,K) be such that
SG = GT and R(G) is dense in K. Then

G(\BbbU \scrC \scrR (T )) \subset \BbbU \scrC \scrR (S).

In particular, if T is codisk-cyclic, then S is codisk-cyclic.

Proof. If T /\in \BbbU \scrC \scrR (\scrH ), then G(\BbbU \scrC \scrR (T )) = G(\emptyset ) = \emptyset \subset \BbbU \scrC \scrR (S). Now assume that
T \in \BbbU \scrC \scrR (\scrH ). Let x be a codisk-cyclic vector for T , then \BbbU Orb(T, x) is dense in H. We
have

\BbbU Orb(S,Gx) =
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha SnGx

=
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha GTnx

=
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha G(Tnx)

=
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\geqslant 0

G(\alpha Tnx)

= G(
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha Tnx)

\supseteq G(
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha Tnx)

= G(H)
= R(G).

As R(G) is dense in K, we see that \BbbU Orb(S,Gx) is dense in K. Hence Gx \in \BbbU \scrC \scrR (S). \square 

As immediate consequence of the preceding proposition is \lambda \BbbU \scrC \scrR (T ) = \BbbU \scrC \scrR (T ) for all
\lambda \in \BbbC \setminus \{ 0\} .

Now, let x \in H. We define the set \BbbU x as follows:

\BbbU x := \{ \alpha x : \alpha \in \BbbU \} .

Lemma 3.8. Let T \in \BbbU \scrC \scrR (H). Then x \in \BbbU \scrC \scrR (T ) if and only if \BbbU Orb(T, x) \setminus \BbbU x is
dense in H.

Proof. Let x be a codisk-cyclic vector for T . Then \BbbU Orb(T, x) is dense in H. We set

B :=
\bigcup 
n\in \BbbN 

\bigcup 
\alpha \in \BbbU 

\alpha Tnx.

Hence B = \BbbU Orb(T, x) \setminus \BbbU x. Using the fact that span(x) is a closed subspace of H, we
have span(x) = span(x) \not = H. Which implies that int(span(x)) = \emptyset . Since \BbbU x is a subset
of span(x),

int(\BbbU x) = \emptyset .
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From [1, Lemma 2.1] it follows that

int(\BbbU x \cup B) = int(B).

So, we get
H = int(H)

= int(\BbbU x \cup B)
= int(\BbbU x \cup B)
= int(B)
\subset H.

This means that B is dense in H. The converse is obvious. \square 

Proposition 3.9. Let T \in \scrB \scrC \scrR (H). If T is codisk-cyclic, then the range of T is dense
in H.

Proof. Suppose that T is a codisk-cyclic linear relation. Then there exists a non-zero
vector x \in H such that \BbbU Orb(T, x) is dense in H. Let y \in \BbbU Orb(T, x) \setminus \BbbU x. Then there
exist n \in \BbbN and \alpha \in \BbbU such that y \in \alpha Tnx. This means that

y \in \alpha Tnx = Tn(\alpha x) \subset R(Tn) \subset R(T ).

Therefore
\BbbU Orb(T, x) \setminus \BbbU x \subset R(T ).

From Lemma 3.8, we obtain that \BbbU Orb(T, x) \setminus \BbbU x is dense in H. Finally, we deduce that
the range of T is dense in H. \square 

Proposition 3.10. Let T \in \scrB \scrC \scrR (H) and S \in \BbbU \scrC \scrR (H) be such that S(0) = ST (0),
TS = ST , and the range of T is dense in H. Then

Tx \subset \BbbU \scrC \scrR (S)

for all x \in \BbbU \scrC \scrR (S).

Proof. Let x \in \BbbU \scrC \scrR (S), then the set \BbbU Orb(S, x) is dense in H. Let y \in Tx, then

STx = S(y + T (0))
= Sy + ST (0)
= Sy + S(0)
= Sy.

Since TS = ST , it follows that

TSnx = SnTx = Sny

for all n \in \BbbN . We set \Omega = \BbbU Orb(S, x) \setminus \BbbU x. Then by Lemma 3.8, \Omega is dense in H. Hence
from [12, p. 33], we obtain

R(T ) = T (H)
= T (\Omega )

\subset T (\Omega )

= T (
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\in \BbbN 

\alpha Snx)

=
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\in \BbbN 

T (\alpha Snx)

=
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\in \BbbN 

\alpha TSnx

=
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\in \BbbN 

\alpha Sny

\subset \BbbU Orb(S, y)
\subset H.
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Since the range of T is dense in H, \BbbU Orb(S, y) is dense in H. We conclude that y is a
codisk-cyclic vector for S. Then Tx is a subset of \BbbU \scrC \scrR (S). \square 

Theorem 3.11. Let T \in \scrB \scrC \scrR (H) be such that T (0) \subset \mathrm{k}\mathrm{e}\mathrm{r}(T ). Then T is a codisk-cyclic
linear relation if and only if T p is a codisk-cyclic linear relation for all p \in \BbbN .

Proof. Assume that T is a codisk-cyclic linear relation. Then by Proposition 3.9, the
range of T is dense in H. Since T (0) \subset \mathrm{k}\mathrm{e}\mathrm{r}(T ), we have by [10, Proposition 3.1] that
T (0) = Tn(0) and Tn \in \scrB \scrC \scrR (H) for all n \in \BbbN . Therefore, according to Proposition 3.10,
we have

T (\BbbU \scrC \scrR (T )) \subset \BbbU \scrC \scrR (T ).

By induction we obtain

Tn(\BbbU \scrC \scrR (T )) \subset \BbbU \scrC \scrR (T ) for all n \in \BbbN .

Now, we prove that T 2 is a codisk-cyclic linear relation. Indeed, since T is a codisk-cyclic
linear relation, there exists x \in H such that \BbbU Orb(T, x) is dense in H. Let n \in \BbbN and
y \in Tnx \subset \BbbU \scrC \scrR (T ). Using the fact that T (0) = Tn(0) and [2, Lemma 2.5], we obtain

T 2nx = TnTnx
= Tn(y + Tn(0))
= Tny + T 2n(0)
= Tny + Tn(0)
= Tny.

This implies that

\BbbU Orb(T 2, x) \setminus \BbbU x = \BbbU Orb(T, y) \setminus \BbbU y.

Since y is a codisk-cyclic vector for T , from Lemma 3.8 it follows that \BbbU Orb(T, y) \setminus \BbbU y

is also dense in H. Therefore \BbbU Orb(T 2, x) is dense in H. This means that T 2 is a
codisk-cyclic linear relation. By induction, we can show that T p is a codisk-cyclic linear
relation for all p \in \BbbN . \square 

Theorem 3.12. Let T, S \in \scrB \scrC \scrR (H) be such that TST (0) = TS(0) = TS(0), STS(0) =
ST (0) = ST (0), and the ranges of T and S are dense in H. Then TS is codisk-cyclic if
and only if ST is codisk-cyclic.

Proof. Assume that ST is codisk-cyclic. Let n \in \BbbN . Since TST (0) = TS(0), we have
(TS)nT (0) = (TS)n(0). Since ST is codisk-cyclic, there exists x \in H = \scrD (T ) such that
\BbbU Orb(ST, x) is dense in H and there exists y \in Tx. Therefore

T (ST )nx = (TS)nTx
= (TS)n(y + T (0))
= (TS)ny + (TS)nT (0)
= (TS)ny + (TS)n(0)
= (TS)ny.
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We set M := \BbbU Orb(ST, x) \setminus \BbbU x. By Lemma 3.8, we obtain that M is dense in H.
Furthermore, from [12, p.33] it follows that

R(T ) = T (H)
= T (M)

\subset T (M)

= T (
\bigcup 

n\in \BbbN 

\bigcup 
\alpha \in \BbbU 

\alpha (ST )nx)

=
\bigcup 

n\in \BbbN 

\bigcup 
\alpha \in \BbbU 

\alpha T (ST )nx

=
\bigcup 

n\in \BbbN 

\bigcup 
\alpha \in \BbbU 

\alpha (TS)ny

\subset \BbbU Orb(TS, y)
\subset H.

Since R(T ) = H, we see that \BbbU Orb(TS, y) is dense in H. This means that TS is
codisk-cyclic. The converse is proved similarly. \square 

Let T \in \scrL \scrR (H) and S \in \scrL \scrR (K). Then the linear relation T \oplus S is defined by

T \oplus S : \scrD (T )\oplus \scrD (S)  - \rightarrow 2H\oplus K \setminus \emptyset 
x\oplus y \mapsto  - \rightarrow Tx\oplus Sy

where H \oplus K := \{ x\oplus y := (x, y) : x \in H and y \in K\} and \scrD (T \oplus S) := \scrD (T )\oplus \scrD (S).
For k \in \BbbN , we then have

(T \oplus S)kx\oplus y = T kx\oplus Sky.

Proposition 3.13. Let T \in \scrB \scrC \scrR (H) and S \in \scrB \scrC \scrR (K). If T \oplus S is codisk-cyclic, then
T and S are codisk-cyclic linear relations.

Proof. Let y := yH \oplus yK \in H \oplus K. Since T \oplus S is a codisk-cyclic linear relation, there
exists x := xH \oplus xK \in \BbbU \scrC \scrR (H \oplus K) such that \BbbU Orb(T \oplus S, x) is dense in H \oplus K.
Therefore, there exists \{ yk\} in \BbbU Orb(T \oplus S, x) such that \{ yk\} converges to y as k  - \rightarrow \infty .
Then, for all k \in \BbbN there exist \{ \alpha k\} in \BbbU and \{ nk\} in \BbbN such that

yk  - \rightarrow y with yk \in \alpha k(T \oplus S)nkx.

Let P be the bounded projection defined on H \oplus K such that R(P ) = H. Then

P (yk) \in \alpha kT
nkxH such that P (yk)  - \rightarrow yH

and so xH \in \BbbU \scrC \scrR (T ). Similarly, we prove that xK \in \BbbU \scrC \scrR (S). Therefore T and S are
codisk-cyclic linear relations. \square 

In the following, we establish a connection between orthogonal projection and the
concept of codisc-cyclic linear relations.

Lemma 3.14. [6, Lemma 4.1] Let T \in \scrL \scrR (H) and M be a non-trivial closed subspace
of H such that T (M) \subset M and T (M\bot ) \subset M\bot . If P \in \scrB (H) is the projection onto M\bot ,
then

(TP )n = TnP = PTn

for all n \in \BbbN .

Proposition 3.15. Let T \in \BbbU \scrC \scrR (H) and let M be a non-trivial closed subspace of H
such that T (M) \subset M . If P is the projection onto M\bot , then

Px \not = 0

for all x \in \BbbU \scrC \scrR (T ).
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Proof. Let x be a codisk-cyclic vector for T . For the sake of contradiction suppose that
Px = 0, thus x \in M . Since T (M) \subset M ,

\beta Tnx \subset \beta TnM
\subset \beta M
= M

for all \beta \in \BbbU and all n \in \BbbN \cup \{ 0\} . It follows that

H =
\bigcup 
\beta \in \BbbU 

\bigcup 
n\geqslant 0

\beta Tnx \subset M = M \subset H.

This is a contradiction to M \not = H. Therefore Px is not zero. \square 

Proposition 3.16. Let T \in \BbbU \scrC \scrR (H) and M be a non-trivial subspace of H such that
T (M) \subset M and T (M\bot ) \subset M\bot . Then TM\bot and TM are codisk-cyclic linear relations.

Proof. Since T is a codisk-cyclic linear relation, there exists x \in H such that the set
\BbbU Orb(T, x) is dense in H. According to Lemma 3.8, \BbbU Orb(T, x) \setminus \BbbU x is also dense in H.
As H = M \oplus M\bot , there exit x1 \in M and x2 \in M\bot such that x = x1 + x2. Now, let P
be the bounded projection P onto M\bot . Then Px = x2. Using Lemma 3.14, we obtain
(TP )n = TnP = PTn for all n \in \BbbN . Since P is bounded, we then have

M\bot = P (H) = P (\BbbU Orb(T, x) \setminus \BbbU x)

\subset P (\BbbU Orb(T, x) \setminus \BbbU x)

= P (
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\in \BbbN 

\alpha Tnx)

=
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\in \BbbN 

\alpha PTnx

=
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\in \BbbN 

\alpha TnPx

=
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\in \BbbN 

\alpha (TP )nx2

=
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\in \BbbN 

\alpha Tn
M\bot x2

\subset \BbbU Orb(TM\bot , x2)

\subset M\bot 

= M\bot .

Finally, we can say that TM\bot is a codisk-cyclic linear relation. Similarly, we obtain TM is
a codisk-cyclic linear relation. \square 

4. Codisk Transitive linear relations

In this section, we introduce and investigate the concept of a codisk transitive linear
relation.

Definition 4.1. Let T \in \scrB \scrC \scrR (H). We say that T is codisk transitive, if for any pair (U, V )
of non-empty open subsets of H, there exist \alpha \in \BbbU and n \geqslant 0 such that \alpha Tn(U)\cap V \not = 0.

Example 4.2. Let T \in \scrB \scrC \scrR (H) and let A be a selection of T . If A is a codisk transitive
operator, then T is a codisk transitive linear relation. Indeed, since A is a codisk transitive
linear operator, for any two non-empty open sets U and V of H there exist n \in \BbbN \cup \{ 0\} 
and \alpha \in \BbbU such that

\alpha An(U) \cap V \not = \emptyset .
Therefore there exists y \in \alpha An(U) \cap V . Hence y = \alpha Anx, for some x \in U . By (2.1) we
obtain

y = \alpha Anx
\in \alpha Tnx
\subset \alpha TnU.
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As a result, \alpha Tn(U) \cap V \not = \emptyset . Then T is a codisk transitive linear relation.

Proposition 4.3. Let T \in \scrB \scrC \scrR (H), S \in \scrB \scrC \scrR (K), and A \in \scrB (H,K) be such that
SA = AT and the range of A is dense in K. If T is a codisk transitive linear relation,
then S is a codisk transitive linear relation.

Proof. Let U and V be two non-empty open subsets of K. Since A is bounded and has
dense range, A - 1(U) and A - 1(V ) are two non-empty open subsets of H. Since T is a
codisk transitive linear relation, there exist n \in \BbbN \cup \{ 0\} and \beta \in \BbbU such that

\beta TnA - 1(U) \cap A - 1(V ) \not = \emptyset .
So there exist y \in A - 1(V ) and x \in A - 1(U) such that y \in \beta Tnx. From equality SA = AT ,
we have

\beta SnAx = \beta ATnx
= A(\beta Tnx)
= A(y + \beta Tn(0))
= Ay + \beta ATn(0)
= Ay + \beta Sn(0).

Thus, Ay \in \beta SnAx \subset \beta Sn(U) and Ay \in V . Hence

\beta Sn(U) \cap V \not = \emptyset .
Finally, we conclude that S is a codisk transitive linear relation. \square 

Corollary 4.4. Let T \in \scrB \scrC \scrR (H), S \in \scrB \scrC \scrR (K), and A \in \scrB (H,K) be such that
SA = AT and A is bijective. Then T is a codisk transitive linear relation if and only if S
is a codisk transitive linear relation.

In the sequel, the closed unit disk in \BbbC is denoted by \BbbD . The following theorem gives a
characterization of a codisk transitive linear relation.

Theorem 4.5. Let T \in \scrB \scrC \scrR (H). Then the following assertions are equivalent.
i) T is codisk transitive.
ii) For each pair (U, V ) of non-empty open subsets of H, there exist \alpha \in \BbbD \setminus \{ 0\} and

n \geqslant 0 such that
\alpha T - n(U) \cap V \not = \emptyset .

iii) For any non-empty open subset U of H, the set\bigcup 
\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha Tn(U)

is dense in H.
iv) For any non-empty open subset U of H, the set\bigcup 

\alpha \in \BbbD \setminus \{ 0\} 

\bigcup 
n\geqslant 0

\alpha T - n(U)

is dense in H.

Proof. i) =\Rightarrow ii): Since T is codisk transitive, for any pair (U, V ) of non-empty open
subsets of H there exist \beta \in \BbbU and n \geqslant 0 such that \beta Tn(U) \cap V \not = \emptyset . Therefore

(\beta U + T - n(0)) \cap T - n(V ) \not = \emptyset .
Let x \in (\beta U + T - n(0)) \cap T - n(V ). Then there exist u \in U , y \in T - n(0), and v \in V such
that x = \beta u+ y and x \in T - n(v). Hence

T - n(v) = x+ T - n(0)
= \beta u+ y + T - n(0)
= \beta u+ T - n(0).
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Thus \beta u \in T - n(v). We obtain u \in \alpha T - n(V )\cap U with | \alpha | := | 1\beta | \leqslant 1. Finally \alpha T - n(V )\cap 
U \not = \emptyset and \alpha \in \BbbD \setminus \{ 0\} .

ii) =\Rightarrow i). This is similar to i) implies ii).
i) \Leftarrow \Rightarrow iii). Let U be an open non-empty subset of H and (Oi)i\in \BbbN be a countable basis

of open sets of H. Since T is a codisk transitive linear relation, for each i \in \BbbN we can
find ni \geqslant 0 and \alpha i \in \BbbU such that \alpha iT

ni(U) \cap Oi \not = \emptyset . It follows that the set\bigcup 
\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha Tn(U)

is dense in H. Conversely, Let U and V be two open non-empty subsets of H. Since the
set \bigcup 

\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha Tn(U)

is dense in H, there exist \alpha \in \BbbU and n \geqslant 0 such that \alpha Tn(U) \cap V \not = 0. Therefore T is a
codisk transitive linear relation.

ii) \Leftarrow \Rightarrow iv): This is similar to i) \Leftarrow \Rightarrow iii). \square 

In the sequel, the open ball centred at x \in H and with radius r > 0 is denoted by
B(x, r).

Theorem 4.6. Let T \in \scrB \scrC \scrR (H). Then the following assertions are equivalent.
i) T is a codisk transitive linear relation.
ii) For each x, y \in H there exist sequences \{ nk\} in \BbbN , \{ xk\} in H, \{ \alpha k\} in \BbbU , and

\{ yk\} in H such that

xk  - \rightarrow x, yk  - \rightarrow y and \alpha kT
nkxk = yk + Tnk(0).

iii) For each (x, y) \in H \oplus H and for each neighbourhood W of 0 there exist z, t \in H,
\alpha \in \BbbU , and n \in \BbbN such that

x - z \in W, t - y \in W and \alpha Tnz = t+ Tn(0).

Proof. i) =\Rightarrow ii) Let x, y \in H and let Bk := B(x, 1
k ), B

\prime 

k := B(y, 1
k ) for all k \in \BbbN . Then

Bk and B
\prime 

k are non-empty open subsets of H. Since T is a codisk transitive linear relation,
there exist two sequences \{ \alpha k\} in \BbbU and \{ nk\} in \BbbN such that Tnk(\alpha kBk) \cap B

\prime 

k \not = \emptyset for all
k \geqslant 1. Then there exists a sequence \{ yk\} in H such that

yk \in Tnk(\alpha kBk) \cap B
\prime 

k

for all k \geqslant 1. Consequently, there exists a sequence \{ xk\} in Bk such that yk \in Tnk(\alpha kxk)\cap 
B

\prime 

k for all k \geqslant 1. We then have

\alpha kT
nkxk = yk + \alpha kT

nk(0)
= yk + Tnk(0).

Furthermore,

\| xk  - x\| <
1

k
and \| yk  - y\| <

1

k
for all k \geqslant 1. Therefore xk  - \rightarrow x and yk  - \rightarrow y as k  - \rightarrow \infty .

ii) =\Rightarrow iii) Suppose that for each (x, y) \in H\times H there exist sequences \{ nk\} in \BbbN , \{ xk\} 
in H, \{ \alpha k\} in \BbbU , and \{ yk\} in H such that xk  - \rightarrow x, yk  - \rightarrow y and \alpha kT

nkxk = yk+Tnk(0).
Let W be a neighbourhood of zero. Hence there exists k0 \in \BbbN such that x - xk \in W and
yk  - y \in W , for all k \geqslant k0. If we take z := xk0

and t := yk0
, we then have

x - z \in W, t - y \in W and \alpha k0T
nk0 z = t+ Tnk0 (0).
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iii) =\Rightarrow i) Let U and V be two non-empty open subsets of H. Let (x, y) \in U \oplus V . For
all k \geqslant 1, Wk := B(0, 1

k ) is a neighbourhood of zero. By assumption there exist sequences
\{ xk\} in H, \{ \alpha k\} in \BbbU , \{ nk\} in \BbbN , and \{ yk\} \subset H such that

\| xk  - x\| <
1

k
, \| yk  - y\| <

1

k
and yk \in \alpha kT

nkxk.

Then \{ xk\} converges to x and \{ yk\} converges to y as k  - \rightarrow \infty . Using the fact that U
and V are two non-empty open subsets of H such that (x, y) \in U \times V , we see that for k
large enough xk \in U and yk \in V . Therefore

\emptyset \not = \alpha kT
nkxk \cap V \subset \alpha kT

nkU \cap V.

This shows that T is a codisk transitive linear relation. \square 

Proposition 4.7. Let T \in \scrB \scrC \scrR (H). Then T is a codisk-transitive linear relation if and
only if

\BbbU \scrC \scrR (T ) =
\bigcap 
k\in \BbbN 

\bigcup 
n\geqslant 0

\bigcup 
\alpha \in \BbbD \setminus \{ 0\} 

\alpha T - n(Vk)

is a dense G\delta -set in H, where (Vk)k\in \BbbN is a countable basis of open subsets of H.

Proof. Let (Vk)k\in \BbbN be a countable basis of open subsets of H. Then

x \in \BbbU \scrC \scrR (T ) \Leftarrow \Rightarrow \forall k \geqslant 1, Vk \cap (
\bigcup 
n\geqslant 0

\bigcup 
\alpha \in \BbbU 

\alpha Tnx) \not = \emptyset 

\Leftarrow \Rightarrow \forall k \geqslant 1, \exists \beta \in \BbbU , \exists n \geqslant 0 such that Vk \cap \beta Tnx \not = \emptyset 
\Leftarrow \Rightarrow \forall k \geqslant 1, \exists \beta \in \BbbU , \exists n \geqslant 0 such that \beta x \in T - n(Vk)
\Leftarrow \Rightarrow \forall k \geqslant 1, \exists \alpha \in \BbbD \setminus \{ 0\} , \exists n \geqslant 0 such that x \in \alpha T - n(Vk)
\Leftarrow \Rightarrow x \in 

\bigcap 
k\in \BbbN 

\bigcup 
n\geqslant 0

\bigcup 
\alpha \in \BbbD \setminus \{ 0\} 

\alpha T - n(Vk)

Let T be a codisk transitive linear relation. We prove that \BbbU \scrC \scrR (T ) is dense in H. Indeed,
let k \geqslant 1 and

Ok :=
\bigcup 
n\geqslant 0

\bigcup 
\alpha \in \BbbD \setminus \{ 0\} 

\alpha T - n(Vk).

By Theorem 4.5, it follows that Ok is dense in H. Since Ok is an open set of H (see [1,
Remark 2.2]), by the Baire category theorem we obtain

\bigcap 
k\in \BbbN 

Ok = \BbbU \scrC \scrR (T ) is G\delta -set dense

in H.
Conversely, let U and V be two non-empty open subsets of H. Since (Vk)k\in \BbbN is a

countable basis of open subsets of H and
\bigcap 
k\in \BbbN 

Ok = \BbbU \scrC \scrR (T ) is dense in H, we see that

U =
\bigcup 
k\in I

Vk with I \subset \BbbN and
\bigcap 
k\in \BbbN 

Ok \cap V \not = \emptyset . Therefore, for all k \in \BbbN we get Ok \cap V \not = \emptyset .

For i \in I we have

\emptyset \not = Oi \cap V = (
\bigcup 
n\geqslant 0

\bigcup 
\alpha \in \BbbD \setminus \{ 0\} 

\alpha T - n(Vi)) \cap V

\subset (
\bigcup 
n\geqslant 0

\bigcup 
\alpha \in \BbbD \setminus \{ 0\} 

\alpha T - n(
\bigcup 
k\in I

Vk)) \cap V

= (
\bigcup 
n\geqslant 0

\bigcup 
\alpha \in \BbbD \setminus \{ 0\} 

\alpha T - n(U)) \cap V.

Then

\Biggl( \bigcup 
n\geqslant 0

\bigcup 
\alpha \in \BbbD \setminus \{ 0\} 

\alpha T - n(U)

\Biggr) 
\cap V \not = \emptyset for all non-empty open subset V of H. We deduce

that
\bigcup 
n\geqslant 0

\bigcup 
\alpha \in \BbbD \setminus \{ 0\} 

\alpha T - n(U) is dense in H. Finally, by virtue of Theorem 4.5, T is a codisk

linear relation. \square 
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In the following, we prove the equivalence between a codisk-cyclic liner relation and a
codisk transitive linear relation.

Theorem 4.8. Let T \in \scrB \scrC \scrR (H). Then T is a codisk transitive linear relation if and
only if T is a codisk-cyclic linear relation.

Proof. Suppose that T is codisk transitive. Then by Proposition 4.7 it follows that the set
\BbbU \scrC \scrR (T ) is dense in H. Hence \BbbU \scrC \scrR (T ) is a non-empty set of H and so T is a codisk-cyclic
linear relation.

Conversely, assume that T is a codisk-cyclic linear relation. Then there exists a vector
x in H such that the set \BbbU Orb(T, x) is dense in H. Let U and V be two non-empty open
sets of H. We have

\BbbU Orb(T, x) \cap U \not = \emptyset and \BbbU Orb(T, x) \cap V \not = \emptyset .
Therefore there exist m,n \geqslant 0 and \alpha , \beta \in \BbbU such that

\alpha Tnx \cap U \not = \emptyset and \beta Tmx \cap V \not = \emptyset ,
so, there exist two elements y1 and y2 such that y1 \in \alpha Tnx \cap U and y2 \in \beta Tmx \cap V . It
is clear that without loss of generality we can assume that n \geqslant m. Set p := n - m \geq 0

and \gamma :=
\alpha 

\beta 
. We therefore have

y2 \in \beta Tmx \Leftarrow \Rightarrow y2 \in Tm(\beta x)
\Leftarrow \Rightarrow (\beta x, y2) \in G(Tm)
\Leftarrow \Rightarrow (y2, \beta x) \in G((Tm) - 1)
\Leftarrow \Rightarrow (y2, \beta x) \in G((T - m))
\Leftarrow \Rightarrow \beta x \in T - my2

\Leftarrow \Rightarrow x \in 1

\beta 
T - my2.

Hence
y1 \in \alpha Tnx \subset \alpha 

\beta 
Tn - my2 and (y1, y2) \in U \oplus V

\subset \alpha 

\beta 
Tn - m(V )

= \gamma T p(V )

which implies that \gamma T p(V ) \cap U \not = \emptyset . So, we distinguish two cases:
First case: | \alpha | \leqslant | \beta | . Then we obtain

\gamma T p(V ) \cap U \not = \emptyset with p \in \BbbN \cup \{ 0\} and \gamma \in \BbbD \setminus \{ 0\} .
Therefore

\emptyset \not = \gamma T p(V ) \cap U \subset \gamma 

\left(  \bigcup 
\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha Tn(V )

\right)  \cap U.

Thus

\gamma 

\left(  \bigcup 
\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha Tn(V ))

\right)  \cap U \not = \emptyset 

for any non-empty open subset U of H. Which implies that the set

M := \gamma (
\bigcup 
\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha Tn(V ))

is dense in H. Now, we consider the map f\gamma defined by

f\gamma : H  - \rightarrow H

x \mapsto  - \rightarrow 1

\gamma 
x
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Clearly, f\gamma is a homeomorphism. Using the fact that f\gamma is closed we see that\bigcup 
\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha Tn(V ) = 1
\gamma M

= f\gamma (M)
= f\gamma (M)
= f\gamma (H)

=
1

\gamma 
H

= H.

Therefore the set
\bigcup 

\alpha \in \BbbU 

\bigcup 
n\geqslant 0

\alpha Tn(V ) is dense in H. Then by Theorem 4.5 we deduce that T

is a codisk transitive linear relation.
Second case: | \beta | \leq | \alpha | . Since \gamma = \alpha 

\beta , we get

\gamma T p(V ) \cap U \not = \emptyset with p \in \BbbN \cup \{ 0\} and \gamma \in \BbbU .

Finally, we conclude that T is a codisk transitive linear relation. \square 

Lemma 4.9. Let A and B be two non-empty subsets of H such that A = H and B \not = H.
Then there exists x \in A such that x \not \in B.

Proposition 4.10. Let T \in \BbbU \scrC \scrR (H). Then the range of T  - \lambda I is dense in H, for every
\lambda \in \BbbU \cup \{ 0\} .

Proof. If \lambda = 0, then by Proposition 3.9, R(T ) is dense in H. Now, let \lambda \in \BbbU . For the
sake of contradiction assume that R(T  - \lambda I) is not dense in H. Since T is codisk-cyclic,
we have by Theorem 4.8 and Proposition 4.7 that the set \BbbU \scrC \scrR (T ) is dense in H. By
Lemma 4.9, there exists x \in \BbbU \scrC \scrR (T ) such that x \not \in (T  - \lambda I)H. By the Hahn-Banach
theorem, there exists a continuous linear functional S on H such that Sx \not = 0 and
S(R(T  - \lambda I)) = \{ 0\} . In particular, S(R(T  - \lambda I)) = \{ 0\} . From [18, Lemma 4.2 ], we
obtain R(Tn  - \lambda nI) \subset R(T  - \lambda I) for all n \in \BbbN . Hence

STny = \lambda nSy (4.2)

for all n \in \BbbN and all y \in H. Since \BbbU Orb(T, x) is dense in H, there exists \{ xk\} in
\BbbU Orb(T, x) such that \{ xk\} converges to 1

2x. Hence Sxk  - \rightarrow 1
2Sx as k  - \rightarrow \infty . For each

k \in \BbbN , there exists nk in \BbbN and \alpha k in \BbbU such that xk \in \alpha kT
nkx = Tnk(\alpha kx). Using

Equality (4.2) and Tnk\alpha kx = xk + Tnk(0) we get

Sxk = S(\alpha kT
nkx)

= \alpha kST
nkx

= \alpha k\lambda 
nkSx.

Thus \alpha k\lambda 
n
kSx  - \rightarrow 1

2Sx since | \alpha k\lambda 
n
k | \geqslant 1 and Sx \not = 0. Thus | \alpha k\lambda 

nk |  - \rightarrow 1
2 \geqslant 1 as

k  - \rightarrow \infty , which is a contradiction. Finally, we deduce that the range of T  - \lambda I is dense
in H. \square 

Let T \in \scrL \scrR (H). The point spectrum of T , denoted by \sigma p(T ), is defined by

\sigma p(T ) := \{ \lambda \in \BbbC : T  - \lambda I is not one-to-one\} .

As an immediate consequence of the previous results, we obtain the following.

Corollary 4.11. Let T \in \BbbU \scrC \scrR (H). Then

\sigma p(T
\ast ) \subset \BbbC \setminus (\BbbU \cup \{ 0\} ).
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Proof. Assume that \sigma p(T
\ast ) is a non-empty subset of \BbbC . Let \lambda \in \BbbU \cup \{ 0\} . Then, from

Proposition 4.10, it follows that R(T  - \lambda I) is dense in H. Consequently

\mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\ast = R(T  - \lambda I)\bot 

= R(T  - \lambda I)
\bot 

= H\bot 

= \{ 0\} .

Furthermore, as \lambda I is a bounded linear operator, we have

\mathrm{k}\mathrm{e}\mathrm{r}(T  - \lambda I)\ast = \mathrm{k}\mathrm{e}\mathrm{r}(T \ast  - \lambda I) = \{ 0\} .

This implies that \lambda /\in \sigma p(T
\ast ). Since \lambda \in \BbbU is equivalent to \lambda \in \BbbU , we get \lambda /\in \sigma p(T

\ast ).
Thus \sigma p(T

\ast ) is a subset of \BbbC \setminus \BbbU . \square 

From Theorem 3.12 and Theorem 4.8, we obtain the following corollary.

Corollary 4.12. Let T, S \in \scrB \scrC \scrR (H) be such that TST (0) = TS(0) = TS(0), STS(0) =
ST (0) = ST (0), and the ranges of T and S are dense in H. Then TS is codisk transitive
if and only if ST is codisk transitive.

5. Codisk-cyclic criterion

This section presents two criteria for establishing the codisk-cyclicity of a linear relation.

Definition 5.1. Let T \in \scrB \scrC \scrR (H). We say that T satisfies the codisk-cyclicity criterion
if there exist two dense subsets X and Y of H and an increasing sequence of positive
integers \{ nk\} , a sequence \{ \alpha nk

\} in \BbbU and a sequence of maps Snk
: Y  - \rightarrow H such that:

a) For each x \in X there exists xnk
\in Tnkx for each k \in \BbbN such that \alpha nk

xnk
 - \rightarrow 0.

b) \alpha  - 1
nk

Snk
y  - \rightarrow 0 for all y \in Y .

c) For each y \in Y there exists ynk
\in TnkSnk

y for each k \in \BbbN such that ynk
 - \rightarrow y.

Theorem 5.2. Let T \in \scrB \scrC \scrR (H). If T satisfies the codisk-cyclicity criterion, then T is
codisk-cyclic.

Proof. Let U and V be two non-empty open sets in H. Since T satisfies the codisk-
cyclicity linear relation criterion, there exist two dense subsets X and Y of H, and three
sequences \{ nk\} , \{ \alpha nk

\} and Snk
: Y  - \rightarrow H that satisfy the conditions in Definition 5.1.

As X and Y two dense sets in H, it follows that

U \cap X \not = \emptyset and V \cap Y \not = \emptyset .

Let x \in U \cap X and y \in V \cap Y . Now, we consider a sequence \{ zk\} defined by

zk := x+ \alpha  - 1
nk

Snk
y, for all k \geqslant 1.

Since \{ \alpha  - 1
nk

Snk
y\} converges to 0, \{ zk\} converges to x. Using the fact that x \in U and U

is open, we see that there exists N \in \BbbN such that zk \in U , for all k \geqslant N .
By assumption, there exists xnk

\in Tnkx and ynk
\in TnkSnk

y for all k \in \BbbN such that

\alpha nk
xnk

 - \rightarrow 0 and ynk
 - \rightarrow y.

Let \{ ak\} be a sequence defined by

ak := \alpha nk
xnk

+ ynk
, for all k \in \BbbN .
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Therefore \{ ak\} converges to y. Since y \in V and V is an open subset of H, there exists
N

\prime \in \BbbN such that ak \in V for all k \geqslant N
\prime 
. Furthermore, for all k \geqslant N , we then have

ak = \alpha nk
xnk

+ ynk
\in \alpha nk

Tnkx+ TnkSnk
y

= \alpha nk
(Tnkx+ \alpha  - 1

nk
TnkSnk

y)
= \alpha nk

(Tnkx+ Tnk(\alpha  - 1
nk

Snk
y))

= \alpha nk
Tnk(x+ \alpha  - 1

nk
Snk

y)
= \alpha nk

Tnk(zk)
\subset \alpha nk

Tnk(U).

We set n0 := \mathrm{m}\mathrm{a}\mathrm{x}(N,N
\prime 
) and obtain

ak \in V and ak \in \alpha nk
Tnk(U), for all k \geqslant n0.

Therefore \alpha nk
Tnk(U) \cap V \not = \emptyset and so T is codisk transitive. Now by Theorem 4.8, we

deduce that T is a codisk-cyclic linear relation. \square 

Theorem 5.3. Let T \in \scrB \scrC \scrR (H). If for any two non-empty open sets U and V of H
and for each neighbourhood W of zero, in H, there exist n \in \BbbN and \alpha \in \BbbU such that

\alpha Tn(U) \cap W \not = \emptyset and \alpha Tn(W ) \cap V \not = \emptyset ,

then T is a codisk-cyclic linear relation.

Proof. Let x, y \in H. For each k \in \BbbN , let Uk = B(x, 1
k ), Vk = B(y, 1

k ), and Wk = B(0, 1
k ).

Hence by assumption, for all k \in \BbbN there exist two sequences \{ nk\} in \BbbN and \{ \alpha k\} in \BbbU 
such that

\alpha kT
nk(Uk) \cap Wk \not = \emptyset and \alpha kT

nk(Wk) \cap Vk \not = \emptyset .
Therefore there exist two sequence \{ bk\} in Wk and \{ b\prime k\} in Vk such that bk \in Tnk(Uk)

and b
\prime 

k \in Tnk(Wk) for all k \in \BbbN . Hence, there exist two sequence \{ ak\} in Uk and \{ a\prime 

k\} in
Wk such that

bk \in Tnk(ak) and b
\prime 

k \in Tnk(a
\prime 

k), for all k \in \BbbN .
Now consider two sequences xk and yk which are defined by xk := ak+a

\prime 

k and yk := bk+b
\prime 

k,
for all k \in \BbbN . Let k \in \BbbN . Hence

Tnk(xk) = Tnk(ak + a
\prime 

k)

= Tnk(ak) + Tnk(a
\prime 

k)

= bk + Tnk(0) + b
\prime 

k + Tnk(0)

= bk + b
\prime 

k + Tnk(0)
= yk + Tnk(0)

and
\| xk  - x\| = \| ak + a

\prime 

k  - x\| 
\leqslant \| ak  - x\| + \| a\prime 

k\| 

\leqslant 1
k + 1

k

\leqslant 2
k .

Similarly, we obtain \| yk  - x\| \leqslant 2
k , which implies that

xk  - \rightarrow x and yk  - \rightarrow y as k  - \rightarrow \infty .

As a result, according to condition ii) in Theorem 4.6, we can say that T is a codisk
transitive linear relation. Finally, by Theorem 4.8, T is a codisk-cyclic linear relation. \square 

Proposition 5.4. Let T \in \scrB \scrC \scrR (H). If T satisfies the codisk-cyclicity criterion, then T
satisfies the conditions of Theorem 5.3 and so is codisk-cyclic.
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Proof. Let U and V be two non-empty open sets in H, and W be a neighbourhood of
zero in H. Assume that T satisfies the criterion of codisk-cyclicity. Hence there exist
two dense subsets X, Y of H such that U \cap X \not = \emptyset and V \cap Y \not = \emptyset , and there exist an
increasing sequence of positive integers \{ nk\} , a sequence \{ \alpha nk

\} of \BbbU , and a sequence of
maps Snk

: Y  - \rightarrow H provided that
a) for each x \in U\cap X there exists xnk

\in Tnkx for each k \in \BbbN such that \alpha nk
xnk

 - \rightarrow 0;
b) \alpha  - 1

nk
Snk

y  - \rightarrow 0 for all y \in Y \cap V ;
c) for each y \in Y \cap V there exist ynk

\in TnkSnk
y for each k \in \BbbN such that ynk

 - \rightarrow y.
Now, let x \in U \cap X. Then there exists xnk

\in Tnkx for each k \in \BbbN such that \{ \alpha nk
xnk

\} 
converges to 0. Therefore there exists m \in \BbbN such that \alpha nk

xnk
\in W for every k \geqslant m.

Moreover, since x \in U and \alpha nk
xnk

\in \alpha nk
Tnkx, we have

\alpha nk
xnk

\in \alpha nk
Tnk(U) \cap W, for all k \geqslant m.

Similarly, let y \in Y \cap V . Then there exists ynk
\in TnkSnk

y for each k \in \BbbN and ynk
 - \rightarrow y.

Hence there exists m1 in \BbbN such that \alpha  - 1
nk

Snk
y \in W for every k \geqslant m1. Since y \in V ,

ynk
 - \rightarrow y, and V is open, there exists m2 in \BbbN such that ynk

\in V for every k \geqslant m2. We
take k\prime := \mathrm{m}\mathrm{a}\mathrm{x}(m1,m2). Then for each k \geqslant k\prime 

ynk
\in TnkSnk

y = \alpha nk
Tnk(\alpha  - 1

nk
Snk

y) \subset \alpha nk
Tnk(W ) and ynk

\in V

Now we set p = max(m, k\prime ). Then

\alpha np
Tnp(U) \cap W \not = \emptyset and \alpha np

Tnp(W ) \cap V \not = \emptyset .

Therefore T satisfies the conditions of Theorem 5.3. \square 
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