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BICOMPLEX PALEY-WIENER THEOREM

SANJAY KUMAR AND STANZIN DOLKAR

Abstract. In this paper, we study the bicomplex version of the Paley-Wiener
theorem and the Cauchy integral formula in the upper half-plane.

Вивчається теорема Пейлi-Вiнера та iнтегральна формула Кошi в верхнiй
пiвплощинi у випадку бiкомплексних чисел.

1. Introduction

The study of bicomplex numbers started in 1892 when Segre [36] found that the
property of commutativity had been missing from the skew field of quaternions. The
quaternions were first introduced by W. R. Hamilton in 1844. The study of bicomplex
numbers has always been an active field of research. Segre was inspired by the works of
Hamilton, and then he introduced a new number system called the bicomplex numbers.

The work of J. D. Riley in [30] has further developed the theory of functions with
bicomplex variables. Also, without forgetting to mention the work of G. B. Price [28], who
provided us with a very powerful method to study holomorphic functions with bicomplex
variables.

We denote the set of bicomplex numbers by \BbbB \BbbC and define it as follows:

\BbbB \BbbC = \{ z1 + jz2 | z1, z2 \in \BbbC \} ,
where \BbbC is the set of complex numbers. Therefore, bicomplex numbers are sometimes
called complex numbers with complex coefficients. The set of complex numbers has the
imaginary unit i. In \BbbB \BbbC , there are two imaginary units, i and j, which commute, i.e.,
ij = ji, and satisfy i2 = j2 =  - 1. Bicomplex numbers can be added and multiplied, and
both operations are commutative and associative.

There are three types of conjugations on the set of bicomplex numbers. These are
the “bar conjugation,” the “ \star -conjugation,” and the “\dagger -conjugation”, which are given as
follows:

— Z = \=z1 + j \=z2 the bar conjugation.
— Z = z1  - jz2 the \dagger -conjugation.
— Z\ast = \=z1  - j \=z2 the  \star -conjugation.

Here z1, z2 \in \BbbC (i) and \=z1 and \=z2 are the classical conjugates of z1 and z2. Due to these
three types of conjugations, three types of moduli arise in the set of bicomplex numbers.
Among the three, we use only the moduli that arise due to the  \star -conjugation. For more
details on these conjugations, one can see [6, p. 8]. We will provide more details on this
in later sections.

Another important set of numbers is the set of hyperbolic numbers, which can be
defined independently of \BbbB \BbbC . We denote the set of hyperbolic numbers by

\BbbD = \{ a+ kb | a, b \in \BbbR \} ,
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where k is called the hyperbolic unit with k2 = 1. The set of hyperbolic numbers is
also called split-real numbers, Lorentz numbers, perplex numbers, etc. These were first
introduced by Cockle [9]. While working with \BbbB \BbbC , we encounter ij = k. Thus, we realize
that there exists a subset of the bicomplex numbers that is isomorphic to the set of
split-real numbers. Thus, we can define the set of split-real numbers as

\BbbD = \{ a+ ijb | a, b \in \BbbR \} .

The following subset of \BbbD , which is given as

\BbbD + = \{ a+ kb | a2  - b2 \geq 0, a \geq 0\} ,

will be especially useful later.
Another important feature of the bicomplex numbers \BbbB \BbbC is the presence of idempotent

units e and e\dagger , which makes it possible to represent the bicomplex numbers in their
idempotent form. The idempotent units are also called special zero divisors as

e =
1 + ij

2
and e\dagger =

1 - ij

2

Observe that e.e\dagger = 0 and 1 = e+ e\dagger . Also,

e2 = e and (e\dagger )2 = e\dagger .

Thus any bicomplex number Z can be represented as Z = e\beta 1 + e\dagger \beta 2, where \beta 1 and \beta 2

are complex numbers. This is called representing a bicomplex number in terms of its
idempotent units. Next, we describe a few representations of Z \in \BbbB \BbbC . Any Z \in \BbbB \BbbC can
be written as

Z =z1 + jz2 (1.1)

=e\beta 1 + e\dagger \beta 2 (1.2)
=a1 + ia2 + ja3 + ka4. (1.3)

The equation (1.1) determines Z as an element of \BbbC 2(i), while the equation (1.3) identifies
Z as an element of \BbbR 4, equation (1.2) is the idempotent representation of Z see [12, Page
7] for more details. As we have mentioned earlier, among the three moduli that arise due
to the three conjugations, we use the modulus that arises due to the \ast -conjugation and
call it the k-modulus. Let us discuss this in more detail.

Definition 1.1. [6] The k-modulus is denoted by \| \cdot \| k. It is hyperbolic-valued and is
defined as

\| Z\| 2k = Z \cdot Z\ast .

Using the idempotent decompositions of Z \in \BbbB \BbbC , we see that

\| Z\| 2k = e| \beta 1| 21 + e\dagger | \beta 2| 22,

where | \cdot | 1 and | \cdot | 2 are the classical complex components of \| \cdot \| k. This means we have a
map \| \cdot \| k : \BbbB \BbbC  - \rightarrow \BbbD +, which satisfies all the properties of a norm and hence is called a
hyperbolic-valued norm, or a \BbbD -norm, or k-norm.

The next definition presents the upper half-plane in \BbbB \BbbC .

Definition 1.2. [22] We denote the upper half-plane in \BbbB \BbbC by \prod +
\BbbB \BbbC and it is defined as\prod +

\BbbB \BbbC = \{ Z \in \BbbB \BbbC : Z = z1 + jz2 or Z = e\beta 1 + e\dagger \beta 2 : (\beta 1, \beta 2) \in 
\prod + \times \prod +\} ,

where \prod + = \{ z \in \BbbC (i) : z = x+ iy and y > 0 \in \BbbC (i)\} is the upper half-plane in \BbbC .
By using the consequence of the idempotent decompositions, it is very easy to see that\prod +

\BbbB \BbbC = e
\prod + + e\dagger 

\prod +. (1.4)



BICOMPLEX PALEY-WIENER THEOREM 39

Definition 1.3. [29] A set G \subset \BbbB \BbbC is called a product type set if G = eG1+e\dagger G2, where
G1 = \Pi 1,i(G) and G2 = \Pi 2,i(G), and \Pi 1,i(G) and \Pi 2,i(G) are the idempotent projections
of G on G1 and G2, respectively. That is, a set G \subset \BbbB \BbbC is said to be of product type in
\BbbB \BbbC if \Pi 1,i(G) and \Pi 2,i(G) are open and connected sets in the complex plane.

Definition 1.4. [6] Let a and b be two hyperbolic numbers such that a \leq b. Then a
hyperbolic interval, denoted by [a, b]\BbbD , is defined as

[a, b]\BbbD = \{ z \in \BbbD ; a \leq z \leq b\} .

Definition 1.5. [16, 29] Let G \subset \BbbB \BbbC be such that G = eG1 + e\dagger G2, where G1 and
G2 are the idempotent components of the domain G in the complex plane. Then, a
bicomplex function F : G \subset \BbbB \BbbC  - \rightarrow \BbbB \BbbC is said to be of product type if F (Z) =
ef1(\beta 1) + e\dagger f2(\beta 2), where each fk : Gk  - \rightarrow \BbbC for k = 1, 2 are complex-valued functions
such that F (e\beta 1 + e\dagger \beta 2) = ef1(\beta 1) + e\dagger f2(\beta 2), for all e\beta 1 + e\dagger \beta 2 \in G.

Definition 1.6. [24] Let \frakM be a \sigma -algebra on a set G. A hyperbolic real-valued bicomplex
function m = em1 + e\dagger m2 defined on G is called a hyperbolic measure if m1 and m2 are
real measures on \frakM .

Definition 1.7. [6] Let F be a bicomplex product type function defined on a domain
G \subset \BbbB \BbbC . Then

F (e\beta 1 + e\dagger \beta 2) = eF1(\beta 1) + e\dagger F2(\beta 2), (1.5)

where G \subset \BbbB \BbbC , is a bicomplex domain of product type defined in Definition 1.5.
It is worth noting that any Z in the upper half plane \prod +

\BbbB \BbbC can also be written as

Z = e\beta 1 + e\dagger \beta 2 \in \prod +
\BbbB \BbbC if and only if \beta 1 = z1  - iz2 \in \prod + and \beta 2 = z1 + iz2 \in \prod +.

Then a simple elaboration shows that

\beta 1 = z1  - iz2 = (x0 + ix1) - i(x2 + ix3) = (x0 + x3) + i(x1  - x2).

Thus,
\beta 1 \in \prod + if and only if x1  - x2 > 0 (1.6)

and
\beta 2 = z1 + iz2 = (x0 + ix1) + i(x2 + ix3) = (x0  - x3) + i(x1 + x2).

Therefore,
\beta 2 \in \prod + if and only if x1 + x2 > 0. (1.7)

Hence equations (1.6) and (1.7) imply that \beta 1, \beta 2 \in \prod + if and only if x1 > | x2| .

Now we denote the boundary of the bicomplex upper half-plane by \partial 
\prod +

\BbbB \BbbC ; it is defined
as

\partial 
\prod +

\BbbB \BbbC =e\partial 
\prod + + e\dagger \partial 

\prod +

=e\BbbR + e\dagger \BbbR 
=\BbbD , (1.8)

which is the set of hyperbolic numbers. Here \partial 
\prod + is the boundary of the idempotent

components of the bicomplex upper half-plane as given in Definition 1.2.
Then we define the \BbbD  - integral of F on the boundary of the bicomplex upper half-plane\prod +

\BbbB \BbbC by\int 
\partial 
\prod +

\BbbB \BbbC 

F (Z)dZ \odot dZ\dagger = e

\int \infty 

 - \infty 
F1(\beta 1)d\beta 1 + e\dagger 

\int \infty 

 - \infty 
F2(\beta 2)d\beta 2 , Z \in \prod +

\BbbB \BbbC .
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Using this definition of \BbbD  - integral, we say that a bicomplex function F on \partial 
\prod +

\BbbB \BbbC is
\BbbD  - square integrable if \int 

\partial 
\prod +

\BbbB \BbbC 

\| F\| 2kdm < \infty ,

where dm is the four-dimensional Lebesgue measure such that dm = edm1 + e\dagger dm2.
Using equation (1.5), we can say that F is \BbbD -square integrable if and only if F1 and

F2 are square integrable. That is,\int \infty 

 - \infty 
| Fi| 2kdmi < \infty .

We denote the space of all \BbbD  - square integrable functions on \partial 
\prod +

\BbbB \BbbC by L2
k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 
, see

[27] and consequently,

L2
k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 
= eL2( - \infty ,\infty ) + e\dagger L2( - \infty ,\infty ). (1.9)

The hyperbolic norm of F \in L2
k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 

is defined as

\| F\| 2k,2 = e| F1| 21,2 + e\dagger | F2| 22,2,

where | \cdot | 21,2 and | \cdot | 22,2 are the classical components of the hyperbolic norm. That is,\int 
\partial 
\prod +

\BbbB \BbbC 

\| F\| 2kdm = e

\int \infty 

 - \infty 
| F1| 21,2dm1 + e\dagger 

\int \infty 

 - \infty 
| F2| 21,2dm2.

Theorem 1.8. For 1 \leqslant p \leqslant \infty , a Cauchy sequence \{ Fn\} in Lp
k(dm) with limit F has a

pointwise convergent subsequence, almost everywhere to F (x0, x3).

Proof. The proof of the above theorem is quite simple. From the definition of \BbbD -square
integrable in [27], we have

Lp
k(dm) = eLp(dm1) + e\dagger Lp(dm2). (1.10)

Let Z = e\beta 1 + e\dagger \beta 2. Then, knowing the fact that for every Cauchy sequence \{ Fn,1\} 
and \{ Fn,2\} in Lp(dm1) and Lp(dm2) with limits F1 and F2, there exist convergent
subsequences converging to F1(Re(\beta 1)) and F2(Re(\beta 2)), respectively. Thus, the theorem
holds for every Cauchy sequence \{ Fn\} in Lp

k(dm). \square 

Corollary 1.9. Let \^F be the bicomplex Fourier transform of the bicomplex function F .
If F lies in L2

k and \^F \in L1
k, then

F (x0, x3) =

\int 
\partial 
\prod +

\BbbB \BbbC 

\^F (t) \mathrm{e}\mathrm{x}\mathrm{p}\{ i(x0 + kx3)\} dm(t) a.e.

For recent work on bicomplex analysis and its applications, one can refer to [8, 10, 26,
6, 12] and the references therein.

2. Bicomplex Fourier Transforms

The bicomplex Fourier transform for functions of bicomplex variables is studied in
[7, 8, 18]. The standard bicomplex Fourier transform is defined as

\^F\BbbB \BbbC =
1\surd 
2\pi 

\int 
\partial 
\prod +

\BbbB \BbbC 

\mathrm{e}\mathrm{x}\mathrm{p}\{  - itZ\} F (t) dt\odot dt\dagger ,

where Z = e\beta 1 + e\dagger \beta 2 and dt\odot dt\dagger is notation to separate the e and e\dagger components when
we apply the idempotent decompositions.
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Now, using the idempotent units e and e\dagger , we have

\^F\BbbB \BbbC =
1

2\pi 

\int 
\partial 
\prod +

\BbbB \BbbC 

\mathrm{e}\mathrm{x}\mathrm{p}\{  - it(e\beta 1 + e\dagger \beta 2)\} dt\odot dt\dagger 

=
1

2\pi 
e

\int \infty 

 - \infty 
\mathrm{e}\mathrm{x}\mathrm{p}\{  - it\beta 1\} F1(t) dt+

1

2\pi 
e\dagger 

\int \infty 

 - \infty 
\mathrm{e}\mathrm{x}\mathrm{p}\{  - it\beta 2\} F2(t) dt

\dagger 

=e\scrF 1(F1) + e\dagger \scrF 2(F2).

Example 2.1. [7] Consider F (t) = \mathrm{e}\mathrm{x}\mathrm{p}\{  - \| t\| k\} . Then,

\^F\BbbB \BbbC =
2

1 + Z2
, where Z = z1 + jz2,

with
\^F\BbbB \BbbC = e \^F1(z1) + e\dagger \^F2(z2),

\^F1(z1) =
2

1 + z21
and \^F2(z2) =

2

1 + z22
,

such that \^F1(z1) and \^F2(z2) are holomorphic in  - 1 < \mathrm{I}\mathrm{m}(z1) and \mathrm{I}\mathrm{m}(z2) < 1.

The above example shows that, often, \^F can be extended to a function holomorphic in
some regions of \BbbB \BbbC . Next, keeping in mind that \mathrm{e}\mathrm{x}\mathrm{p}\{ itZ\} is a holomorphic function of Z,
we can expect and discuss a few conditions on F that, when imposed, turn its bicomplex
Fourier transform \^F (t) into a holomorphic function in certain regions of \BbbB \BbbC .

For the above claim, let \frakF \in L2
k(\partial 

\prod +
\BbbB \BbbC , dm) such that \frakF (t) = 0 on ( - \infty , 0)\times ( - \infty , 0).

Then define

F (Z) =

\int 
(0,\infty )\times (0,\infty )

\frakF (t) \mathrm{e}\mathrm{x}\mathrm{p}\{ itZ\} dt\odot dt\dagger , (2.11)

where Z lies in the bicomplex upper half-plane \prod +
\BbbB \BbbC . Then

\mathrm{e}\mathrm{x}\mathrm{p}\{ itZ\} =\mathrm{e}\mathrm{x}\mathrm{p}\{ it(e\beta 1 + e\dagger \beta 2)\} 

=e \mathrm{e}\mathrm{x}\mathrm{p}\{ it\beta 1\} + e\dagger exp\{ it\beta 2\} 

=e \mathrm{e}\mathrm{x}\mathrm{p}\{ it[(x0 + x3) + i(x1  - x2)]\} + e\dagger \mathrm{e}\mathrm{x}\mathrm{p}\{ it[(x0  - x3) + i(x1 + x2)]\} .

Therefore, if Z \in \prod +
\BbbB \BbbC , then

\| \mathrm{e}\mathrm{x}\mathrm{p}\{ itZ\} \| k =\| e \mathrm{e}\mathrm{x}\mathrm{p}\{ it[(x0 + x3) + i(x1  - x2)]\} 

+e\dagger \mathrm{e}\mathrm{x}\mathrm{p}\{ it[(x0  - x3) + i(x1 + x2)]\| k
\leqslant e\| \mathrm{e}\mathrm{x}\mathrm{p}\{ it(x0 + x3)\} \mathrm{e}\mathrm{x}\mathrm{p}\{  - t(x1  - x2)\} \| 1
e\dagger \| \mathrm{e}\mathrm{x}\mathrm{p}\{ it(x0  - x3)\} \mathrm{e}\mathrm{x}\mathrm{p}\{  - t(x1 + x2)\} \| 2

\leqslant e\| \mathrm{e}\mathrm{x}\mathrm{p}\{  - t(x1  - x2)\} \| 1 + e\dagger \| \mathrm{e}\mathrm{x}\mathrm{p}\{  - t(x1 + x2)\} \| 2
= e\| \mathrm{e}\mathrm{x}\mathrm{p}\{  - tImg(\beta 1)\} \| 1 + e\dagger \| \mathrm{e}\mathrm{x}\mathrm{p}\{  - tImg(\beta 2)\} \| 2
=\mathrm{e}\mathrm{x}\mathrm{p}\{ (e( - tImg\beta 1)) + e\dagger ( - tImg\beta  - 2)\} 

=\mathrm{e}\mathrm{x}\mathrm{p}\{  - t(e(x1  - x2) + e\dagger (x1 + x2))\} 
=\mathrm{e}\mathrm{x}\mathrm{p}\{  - t(x1  - kx2)\} .

Hence, (2.11) exists and is well-defined.
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From equation (2.11),

F (Z) =

\int 
(0,\infty )\times (0,\infty )

\frakF (t) \mathrm{e}\mathrm{x}\mathrm{p}\{ itZ\} dt\odot dt\dagger 

=e

\int \infty 

0

\frakF 1(t) \mathrm{e}\mathrm{x}\mathrm{p}\{ it\beta 1\} dt+ e\dagger 
\int \infty 

0

\frakF 2(t) \mathrm{e}\mathrm{x}\mathrm{p}\{ it\beta 2\} dt\dagger 

=eF1(\beta 1) + e\dagger F2(\beta 2). (2.12)

Thus F is holomorphic on \prod +
\BbbB \BbbC , as each Fi is holomorphic in \prod +. Here each Fi is defined

as

Fi(\beta i) =

\int \infty 

0

\frakF i(t) \mathrm{e}\mathrm{x}\mathrm{p}\{ it\beta 1\} .

For more details, see [35].
Next, we show that the restrictions of these functions to the horizontal lines in \prod +

\BbbB \BbbC 
is bounded in L2

k

\bigl( 
\partial 
\prod +

\BbbB \BbbC )
\bigr) 
. Let Z \in \prod +

\BbbB \BbbC . Then Z = e\beta 1 + e\dagger \beta 2 = x0 + ix1 + jx2 + kx3,
and from equation (2.12), we have

F (Z) = eF1(\beta 1) + e\dagger F2(\beta 2), (2.13)

where each F1 and F2 are of the form

F1(\beta 1) =

\int \infty 

0

\frakF 1(t) \mathrm{e}\mathrm{x}\mathrm{p}\{  - t(x1  - x2)\} \mathrm{e}\mathrm{x}\mathrm{p}\{ it(x0 + x3)\} dt, (2.14)

F2(\beta 2) =

\int \infty 

0

\frakF 2(t) \mathrm{e}\mathrm{x}\mathrm{p}\{  - t(x1 + x2)\} \mathrm{e}\mathrm{x}\mathrm{p}\{ it(x0  - x3)\} dt. (2.15)

Then F1 and F2 are the restrictions to the horizontal lines in \prod + and, from [35], we see
that these restrictions form a bounded set in L2( - \infty ,\infty ). Hence from equation (2.13),
we see that the restrictions of F to the horizontal lines in \prod +

\BbbB \BbbC form a bounded set in
L2
k(\partial 

\prod +
\BbbB \BbbC ). Thus, the following remark concludes that:

Remark 2.2. The restrictions F1 and F2 of F to the horizontal lines also form a bounded
set in L2

k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 
. For more details, we refer to [35].

3. Bicomplex Paley-Wiener Theorem

In this section, we generalize the Paley-Wiener theorem in a bicomplex setting. The
basis of the Paley-Wiener theorem lies in the outstanding fact that the converse of the
Remark 2.2 is also true.

Theorem 3.1. Let F :
\prod +

\BbbB \BbbC  - \rightarrow \BbbB \BbbC be a holomorphic function on \prod 
\BbbB \BbbC + and

\mathrm{s}\mathrm{u}\mathrm{p}
\BbbD 

x1>| x2| 

1

2\pi 

\int 
\partial 
\prod +

\BbbB \BbbC 

\| F (Z)\| 2kdx0 = M < \infty .

Then there exists \frakF \in L2
k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 

such that

F (Z) =

\int 
(0,\infty )\times (0,\infty )

\frakF (t) \mathrm{e}\mathrm{x}\mathrm{p}\{ itZ\} dt\odot dt\dagger ,

where Z lies in \prod +
\BbbB \BbbC with Z = e\beta 1 + e\dagger \beta 2 = x0 + ix1 + jx2 + kx3 and\int 

(0,\infty )\times (0,\infty )

\| F (t)\| 2kdt = M

for some constant M.
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Proof. We begin the proof with an assumption that a holomorphic L2
k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 

function
exists, say \frakF and let F be a bicomplex holomorphic function defined on the upper
half-plane \prod +

\BbbB \BbbC . Then
F (Z) = eF1(\beta 1) + e\dagger F2(\beta 2),

where Fl for l = 1, 2 is holomorphic on the complex upper half-plane \prod +. Then, by the
classical Paley-Wiener Theorem, for each F1 and F2 \in H(

\prod +), there exist \frakF 1 and \frakF 2 in
L2((0,\infty )) such that each F1((x0+x3)+ i(x1 - x2)) and F2((x0 - x3)+ i(x1+x2)) are the
inverse Fourier transform of \frakF 1 \mathrm{e}\mathrm{x}\mathrm{p}\{  - (x1  - x2)t\} and \frakF 2 \mathrm{e}\mathrm{x}\mathrm{p}\{  - (x1 + x2)t\} , respectively,
that is,

F1(\beta 1) = \scrF  - 1
\bigl( 
\frakF 1(t) \mathrm{e}\mathrm{x}\mathrm{p}\{  - (x1  - x2)\} 

\bigr) 
(3.16)

and
F2(\beta 2) = \scrF  - 1

\bigl( 
\frakF 2(t) \mathrm{e}\mathrm{x}\mathrm{p}\{  - (x1 + x2\} 

\bigr) 
. (3.17)

Then, by the inversion formula, we have

\frakF 1(t) = \scrF \{ F1(\beta 1) \mathrm{e}\mathrm{x}\mathrm{p}\{  - (x1  - x2)t\} \} (3.18)

\frakF 2(t) = \scrF \{ F2(\beta 2) \mathrm{e}\mathrm{x}\mathrm{p}\{  - (x1 + x2)t\} \} . (3.19)
Now, from equations (3.18) and (3.19), we get

e\frakF 1(t) + e\dagger \frakF 2(t) =e

\biggl( 
1

2\pi 

\int \infty 

 - \infty 
F1(\beta 1) \mathrm{e}\mathrm{x}\mathrm{p}\{  - it(x0 + x3) - tx1 + tx2\} dx0

\biggr) 
+ e\dagger 

\biggl( 
1

2\pi 

\int \infty 

 - \infty 
F2(\beta 2) \mathrm{e}\mathrm{x}\mathrm{p}\{  - it(x0  - x3) - tx1 + tx2\} dx\dagger 

0

\biggr) 
=e

1

2\pi 

\int \infty 

 - \infty 
F1(\beta 1) \mathrm{e}\mathrm{x}\mathrm{p}\{  - it\beta 1\} dx0 + e\dagger 

1

2\pi 

\int \infty 

 - \infty 
F2(\beta 2) \mathrm{e}\mathrm{x}\mathrm{p}\{  - it\beta 2\} dx\dagger 

0

=
1

2\pi 

\int 
\partial 
\prod +

\BbbB \BbbC 

F (Z) \mathrm{e}\mathrm{x}\mathrm{p}\{  - itZ\} dZ \odot dZ\dagger 

=\frakF (Z).

Thus, for a bicomplex holomorphic function in \prod +
\BbbB \BbbC , we assumed the existence of an

L2
k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 

function \frakF such that

\frakF (Z) =
1

2\pi 

\int 
F (Z) \mathrm{e}\mathrm{x}\mathrm{p}\{  - itZ\} dZ \odot dZ\dagger . (3.20)

Note that dZ \odot dZ\dagger is a notation to separate the terms when we apply the idempotent
decompositions. The integral in (3.20) is the result of choosing a horizontal line in \prod +

\BbbB \BbbC ,
as the equations (3.16) and (3.17) are representations along the horizontal lines in \prod +.
Now, we need to show that \frakF \in L2

k

\bigl( 
(0,\infty )\times (0,\infty )

\bigr) 
is uniquely defined. So, we use the

Cauchy theorem here.
For this, let \curlywedge \alpha be a rectangular path in \prod +

\BbbB \BbbC . Then \curlywedge \alpha being a closed path, can be
written as

\curlywedge \alpha = e\curlywedge \alpha 1
+e\dagger \curlywedge \alpha 2

, (3.21)
where \curlywedge \alpha 1 and \curlywedge \alpha 2 are rectangular paths in e

\prod + and e\dagger 
\prod +, respectively. Using the

equation (3.21), we can assume the vertices of \curlywedge \alpha 1
as e(\pm \alpha + i), e\dagger (\pm \alpha + i) and e(\pm \alpha +

iy), e\dagger (\pm \alpha + iy), let

I =

\int 
\curlywedge \alpha 

F (Z) \mathrm{e}\mathrm{x}\mathrm{p}\{  - itZ\} dZ \odot dZ\dagger .

Then,

I = e

\int 
\curlywedge \alpha 1

F1(\beta 1) \mathrm{e}\mathrm{x}\mathrm{p}\{  - it\beta 1\} d\beta 1 + e\dagger 
\int 
\curlywedge \alpha 2

F2(\beta 2) \mathrm{e}\mathrm{x}\mathrm{p}\{  - it\beta 2\} d\beta 2, (3.22)
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where F = eF1 + e\dagger F2 such that F1, F2 \in H(
\prod +) and Z = e\beta 1 + e\dagger \beta 2 such that

(\beta 1, \beta 2) \in 
\prod + \times \prod +. So, by using Cauchy’s theorem, we get

I = 0. (3.23)

Using the equation (3.22), we have I = eI1+e\dagger I2. Solving I1 for the straight lines e(\gamma + i)
to e(\gamma + iy), we get a sequence (\alpha 1,j)

\infty 
j=1 such that I1(\alpha 1,j)  - \rightarrow 0 and I1( - \alpha 1,j)  - \rightarrow 0 as

j \rightarrow \infty in e
\prod +.

Similarly, for I2, we find a sequence (\alpha 2,j)
\infty 
j=1 such that I2(\alpha 2,j)  - \rightarrow 0 as j \rightarrow \infty and

I2( - \alpha 2,j)  - \rightarrow 0 as j \rightarrow \infty in e\dagger 
\prod +. Thus there must be a sequence \{ \alpha k,j\} \infty j=1 such that

\{ \alpha k,j\} \infty j=1 = e\{ \alpha 1,j\} \infty j=1 + e\dagger \{ \alpha 2,j\} \infty j=1 and

I(\alpha k,j)  - \rightarrow 0 and I( - \alpha k,j)  - \rightarrow 0. (3.24)

Proceeding further, define

Gj(x1, x2, t) =
1

2\pi 

\int \alpha k,j

 - \alpha k,j

F (z1 + jz2) \mathrm{e}\mathrm{x}\mathrm{p}\{  - it(x0 + kx3)\} dx0.

Then, by equations (3.23) and (3.24), we get

\mathrm{l}\mathrm{i}\mathrm{m}
j\rightarrow \infty 

\{ \mathrm{e}\mathrm{x}\mathrm{p}\{  - ktx2 + tx1\} Gj(x1, x2, t) - \mathrm{e}\mathrm{x}\mathrm{p}\{  - kt+ t\} Gj(1, 1, t)\} = 0. (3.25)

Now, let \^F\BbbB \BbbC be the bicomplex Fourier transform and writing Fx1,x2
(x0, x3) for F (x0 +

ix1 + jx2 + kx3). Then Fx1,x2
lies in L2

k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 
.

By the bicomplex Plancheral theorem [18], we have

\mathrm{l}\mathrm{i}\mathrm{m}
j\rightarrow \infty 

\int 
\partial 
\prod +

\BbbB \BbbC 

\| \^Fx1,x2
(t) - Gj(x1, x2, t)\| 2kdt\odot dt\dagger = 0.

Thus, by Theorem 1.8, the sequence \{ Gj(x1, x2, t)\} has a pointwise convergent subsequence
that converges to \^Fx1,x2(t) for almost every t. Now, defining

\frakF (t) = \mathrm{e}\mathrm{x}\mathrm{p}\{  - kt+ t\} \^F1,1(t). (3.26)

From equation (3.25), we have

\frakF (t) = \mathrm{e}\mathrm{x}\mathrm{p}\{  - ktx2 + tx1\} \^Fx1,x2
(t). (3.27)

Thus again, from the Plancheral Theorem for \BbbB \BbbC , we have for every x1, x2 \in (0,\infty ) \times 
(0,\infty ),\int 

\partial 
\prod +

\BbbB \BbbC 

\mathrm{e}\mathrm{x}\mathrm{p}\{  - 2( - ktx2 + tx1)\} \| \frakF (t)\| 2kdt\odot dt\dagger =

\int 
\partial 
\prod +

\BbbB \BbbC 

\| \^Fx1,x2
(t)\| 2kdt\odot dt\dagger 

=
1

2\pi 

\int 
\partial 
\prod +

\BbbB \BbbC 

\| Fx1,x2(x0, x3)\| 2kdx0

\leqslant M. (3.28)

If we let x2, x1 \rightarrow \infty , then equation (3.28) shows that \frakF (t) = 0 a.e in ( - \infty , 0)\times ( - \infty , 0),
and if x2, x1 \rightarrow 0, then \int 

(0,\infty )\times (0,\infty )

\| \frakF (t)\| 2k dt\odot dt\dagger \leqslant M. (3.29)

Thus

Fx1,x2
(x0, x3) =

\int 
\partial 
\prod +

\BbbB \BbbC 

\^Fx1,x2
(t) \mathrm{e}\mathrm{x}\mathrm{p}\{ it(x0, x3)\} dt\odot dt\dagger (3.30)
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or

F (Z) =

\int 
(0,\infty )\times (0,\infty )

\frakF (t) \mathrm{e}\mathrm{x}\mathrm{p}\{  - ( - ktx2 + tx1)\} \mathrm{e}\mathrm{x}\mathrm{p}\{ it(x0 + kx3)\} dt\odot dt\dagger 

=

\int 
(0,\infty )\times (0,\infty )

\frakF (t) \mathrm{e}\mathrm{x}\mathrm{p}\{ itZ\} dt\odot dt\dagger ; Z \in \prod +
\BbbB \BbbC .

Keeping x2, x1 fixed and again applying the bicomplex Plancheral theorem, we obtain
1

2\pi 

\int 
\partial 
\prod +

\BbbB \BbbC 

\| F (z1 + jz2)\| 2kdx0 =

\int 
(0,\infty )\times (0,\infty )

\| \frakF \| 2k \mathrm{e}\mathrm{x}\mathrm{p}\{  - 2(t( - kx2 + x1))\} dt\odot dt\dagger 

\leqslant 
\int 
(0,\infty )\times (0,\infty )

\| \frakF (t)\| 2kdt\odot dt\dagger .

Thus

\mathrm{s}\mathrm{u}\mathrm{p}
\BbbD 

0<x1,x2<\infty 

1

2\pi 

\int 
\partial 
\prod +

\BbbB \BbbC 

\| F (x0+ix1+jx2+kx3)\| 2kdx0 = M \leqslant 
\int 
(0,\infty )\times (0,\infty )

\| \frakF (t)\| 2kdt\odot dt\dagger .

(3.31)
Thus, from equations (3.29) and (3.31), we get\int 

(0,\infty )\times (0,\infty )

\| \frakF \| 2kdt\odot dt\dagger = M.

\square 

Next, we discuss another class of all bicomplex F of the form

F (Z) =

\int 
( - A,A)\BbbD 

\frakF (t) \mathrm{e}\mathrm{x}\mathrm{p}\{ itZ\} dt\odot dt\dagger , (3.32)

where \frakF \in L2
k( - A,A)\BbbD , and A is finite and positive. The interval ( - A,A)\BbbD is a hyperbolic

interval as defined in Definition 1.4.
We proceed by bounding the norm \| F (Z)\| k:

\| F (Z)\| k \leqslant 
\surd 
2

\int 
( - A,A)\BbbD 

\| \frakF (t)\| k \mathrm{e}\mathrm{x}\mathrm{p}\{  - ( - ktx2 + tx1)\} dt\odot dt\dagger 

\leqslant 
\surd 
2 \mathrm{e}\mathrm{x}\mathrm{p} \{ A\| (tx1  - ktx2)\| k\} 

\int 
( - A,A)\BbbD 

\| \frakF (t)\| k dt\odot dt\dagger . (3.33)

Now, define

C =
\surd 
2

\int 
( - A,A)\BbbD 

\| \frakF (t)\| k dt\odot dt\dagger .

Since C < \infty (due to the finiteness of the integral and the properties of \frakF ), equation
(3.33) becomes

\| F (Z)\| k \leqslant C \mathrm{e}\mathrm{x}\mathrm{p}\{ A\| Z\| k\} . (3.34)
We can also prove that F being entire functions that satisfy (3.34) are called bicomplex
exponential types. The context of our next theorem is as:
The type of functions in equation (3.32) are exponential functions whose restrictions to
the real and kth-axis lie in L2

k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 
. We prove that the converse is also true.

Theorem 3.2. Let F be a bicomplex function of exponential type and\int 
\partial 
\prod +

\BbbB \BbbC 

\| F (x0 + kx3)\| 2kdx0 \odot dx\dagger 
0 < \infty . (3.35)

Then there exists \frakF \in L2
k( - A,A)\BbbD such that,

F (Z) =

\int 
( - A,A)\BbbD 

\frakF (t) \mathrm{e}\mathrm{x}\mathrm{p}\{ itZ\} dt\odot dt\dagger (3.36)
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for all Z \in \BbbB \BbbC .

Proof. Let \epsilon \BbbD be a number greater than 0, and let F\epsilon \BbbD (x0+kx3) = F (x0+kx3) \mathrm{e}\mathrm{x}\mathrm{p}\{  - \epsilon \BbbD \| x0+
kx3\| k\} . Then, we show that

\mathrm{l}\mathrm{i}\mathrm{m}
\BbbD 

\epsilon \BbbD \rightarrow 0

\int 
\partial 
\prod +

\BbbB \BbbC 

F\epsilon \BbbD (x0 + kx3) \mathrm{e}\mathrm{x}\mathrm{p}\{  - it(x0 + kx3)\} dx0 \odot dx\dagger 
0 = 0, (3.37)

where t \in \partial 
\prod +

\BbbB \BbbC and \| t\| k > A. As we see that \| F\epsilon \BbbD  - F\| k,2 \rightarrow 0 as \epsilon \BbbD \rightarrow 0. The bicomplex
Plancheral theorem implies that \| \^F\epsilon \BbbD  - \frakF \| k,2 \rightarrow 0 as \epsilon \BbbD \rightarrow 0, where \frakF is the bicomplex
Fourier transform of F. Thus, equation (3.37) implies that \frakF (t) = 0 outside [ - A,A]\BbbD 
and hence from Corollary 1.9 , we see that (3.36) holds for almost every Z = x0 + kx3.
Also, the left and right-hand sides of the equation (3.36) represent the entire bicomplex
function. Thus, (3.36) holds for every Z \in \BbbB \BbbC .

Thus, in order to prove the theorem, we shall show that (3.37) holds.
For this, let \curlywedge \alpha be a bicomplex path, defined as

\curlywedge \alpha (u) = u \mathrm{e}\mathrm{x}\mathrm{p}\{ i\alpha \} ,

where u \in [0,\infty )\times [0,\infty ). Then,

\curlywedge \alpha (u) = e\curlywedge \alpha 1 +e\dagger \curlywedge \alpha 2 , (3.38)

where \curlywedge \alpha 1 and \curlywedge \alpha 2 are complex paths. Putting, the half-plane in \BbbB \BbbC as

\prod 
\BbbB \BbbC (\alpha ) = \{ W : Re(W \mathrm{e}\mathrm{x}\mathrm{p}\{ i\alpha \} ) > A\} 

and again \prod 
\BbbB \BbbC (\alpha ) = e

\prod 
\alpha + e\dagger 

\prod 
\alpha , (3.39)

where \prod 
\alpha are decomposition of \prod 

\BbbB \BbbC (\alpha ) in the complex plane. Define,

\Omega \alpha (W ) =

\int 
\curlywedge \alpha 

F (Z) \mathrm{e}\mathrm{x}\mathrm{p}\{  - WZ\} dZ \odot dZ\dagger . (3.40)

Then \Omega \alpha (W ) = e\Omega \alpha (W1) + e\dagger \Omega \alpha (W2), where

\Omega \alpha (Wi) =

\int 
\curlywedge \alpha 1

Fi(\beta i) \mathrm{e}\mathrm{x}\mathrm{p}\{  - Wi\beta i\} d\beta i for i = 1, 2.

Using the complex version of this theorem on [35, Page 375], we see that each \Omega \alpha (Wi)
is holomorphic in the half-plane \prod 

\alpha , and so \Omega \alpha (W ) is holomorphic in \prod 
\BbbB \BbbC (\alpha ). Also, if

\alpha = 0, then

\Omega 0(W ) =

\int 
(0,\infty )\times (0,\infty )

F (x0 + kx3)exp\{  - W (x0 + kx3)\} dx0 \odot dx\dagger 
0 ; ReW > 0

and if \alpha = \pi ,

\Omega \pi (W ) =  - 
\int 
( - \infty ,0)\times ( - \infty ,0)

F (x0 + kx3)exp\{  - W (x0 + kx3)\} dx0 \odot dx\dagger 
0 ; ReW < 0.

Thus, \Omega 0 and \Omega \pi are holomorphic in the indicated half-planes in (3.35).
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Now, if we see that

\Omega 0(\epsilon \BbbD +it) - \Omega \pi ( - \epsilon \BbbD  - it)

=

\int 
(0,\infty )\times (0,\infty )

F (x0 + kx3) \mathrm{e}\mathrm{x}\mathrm{p}\{  - (\epsilon \BbbD + it)(x0 + kx3)\} dx0+\int 
( - \infty ,0)\times ( - \infty ,0)

F (x0 + kx3) \mathrm{e}\mathrm{x}\mathrm{p}\{  - ( - \epsilon \BbbD + it)(x0 + kx3)dx
\dagger 
0

=

\int 
\partial 
\prod +

\BbbB \BbbC 

F (x0 + kx3) \mathrm{e}\mathrm{x}\mathrm{p}\{  - (\epsilon \BbbD + it)(x0 + kx3) - ( - \epsilon \BbbD + it)(x0 + kx3)\} dx\dagger 
0

=

\int 
\partial 
\prod +

\BbbB \BbbC 

F (x0 + kx3) \mathrm{e}\mathrm{x}\mathrm{p}\{ (x0 + kx3)[ - \epsilon \BbbD  - it+ \epsilon \BbbD  - it]\} dx0 \odot dx\dagger 
0

=

\int 
\partial 
\prod +

\BbbB \BbbC 

F (x0 + kx3) \mathrm{e}\mathrm{x}\mathrm{p}\{ (x0 + kx3)( - it)\} dx0 \odot dx\dagger 
0,

then it is sufficient to show that \Omega 0(\epsilon \BbbD )  - \Omega \pi ( - \epsilon \BbbD + it) \rightarrow 0 as \epsilon \BbbD \rightarrow 0 if t > A and
t <  - A.

This can be shown by using the idempotent decomposition of \Omega 0 and \Omega \pi with the help
of idempotents e and e\dagger and also using the fact that this theorem holds for its complex
version.

Therefore,

\mathrm{l}\mathrm{i}\mathrm{m}
\BbbD 

\epsilon \BbbD \rightarrow 0

\int 
\partial 
\prod +

\BbbB \BbbC 

F\epsilon \BbbD (x0 + kx3) \mathrm{e}\mathrm{x}\mathrm{p}\{  - it(x0 + kx3)\} dx0 = 0.

\square 

Now, we prove the bicomplex Cauchy integral formula for the upper half-plane. We
start with the following statement:

Theorem 3.3. If F \in Hp(
\prod +

\BbbB \BbbC ), 1 \leqslant p < \infty , then

F (Z) =
1

2\pi i

\int 
\partial 
\prod +

\BbbB \BbbC 

F (W )

W  - Z
dW \odot dW \dagger ;Z \in \prod +

\BbbB \BbbC 

and the integral vanishes for all Z \in \prod  - 
\BbbB \BbbC , where \prod  - 

\BbbB \BbbC represents the bicomplex lower
half-plane.

Conversely, if H \in Lq
k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 
(1 \leqslant p < \infty ) and

1

2\pi i

\int 
\partial 
\prod +

\BbbB \BbbC 

H(W )

W  - Z
dW \odot dW \dagger = 0

for all Z \in \prod  - 
\BbbB \BbbC . Then for Z \in \prod +

\BbbB \BbbC , this integral represents a bicomplex function
F \in Hp(

\prod +
\BbbB \BbbC ), where the boundary function

F (x0, x3) = H(x0, x3) a.e.

Proof. Since Hp(
\prod +

\BbbB \BbbC ) = eHP (
\prod +) + e\dagger Hp(

\prod +) and F \in Hp(
\prod +

\BbbB \BbbC ). Then the bicomplex
Cauchy integral Formula, see [29], is given by

C(F (Z)) = e
1

2\pi i

\int \infty 

 - \infty 

F1(W1)

W1  - \beta 1
dW1 + e\dagger 

1

2\pi i

\int \infty 

 - \infty 

F2(W2)

W2  - \beta 2
dW2.

That is,
C(F (Z)) = eI1 + e\dagger I2,

where I1 and I2 are the complex Cauchy integrals for F1, F2 \in Hp(
\prod +) which is analytic

in both \prod + and \prod  - . Then the bicomplex Cauchy integral is holomorphic in both \prod +
\BbbB \BbbC 

and \prod  - 
\BbbB \BbbC .
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Now, using the idempotent decompositions, we have

C(F (Z)) - C(F (Z\ast )) =\{ e\frakF 1(\beta 1) + e\dagger \frakF 2(\beta 2)\}  - \{ e\frakF 1( \=\beta 1) + e\dagger \frakF 2( \=\beta 2)\} 

= e\{ \frakF 1(\beta 1) - \frakF 1( \=\beta 1)\} + e\dagger \{ \frakF 2(\beta 2) - \frakF 2( \=\beta 2)\} .

So, from the complex analogy of this theorem, we have,

C(F (Z)) - C(F (Z\ast )) = e\{ F1(\beta 1)\} + e\dagger \{ F2(\beta 2)\} \beta 1, \beta 2 \in \prod +

=F (Z) ; Z \in \prod +
\BbbB \BbbC .

Thus, C(F (Z\ast )) is holomorphic for Z \in \prod +
\BbbB \BbbC . So, C(F (Z)) must be identically constant

in \prod  - 
\BbbB \BbbC . Since C(F (Z))  - \rightarrow 0 as Z  - \rightarrow \infty , we have

C(F (Z)) = 0.

Thus,
C(F (Z\ast )) = F (Z) \in \prod +

\BbbB \BbbC 
and

C(F (Z)) = 0 \in \prod  - 
\BbbB \BbbC .

Conversely, suppose H \in Lq
k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 
. Then

Lq
k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 
= eLq(\partial 

\prod +) + e\dagger Lq(\partial 
\prod +) (3.41)

and
1

2\pi i

\int 
\partial 
\prod +

\BbbB \BbbC 

H(W )

W  - Z
dW \odot dW \dagger = 0 ;Z \in \prod +

\BbbB \BbbC .

Since H \in Lq
k

\bigl( 
\partial 
\prod +

\BbbB \BbbC 
\bigr) 

and using the decomposition in equation (3.41) and using the
fact that the result holds in each Lq(\partial 

\prod +), the theorem follows. \square 
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[1] M. Bożejko and W. Bryc, On a class of free Lévy laws related to a regression problem, J. Funct.
Anal. 236 (2006), no. 1, 59–77, doi:10.1016/j.jfa.2005.09.010.

[2] F. Calogero, The discrete-time goldfish, unpublished.
[3] E.B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathe-

matics, vol. 42, Cambridge University Press, Cambridge, 1995, doi:10.1017/CBO9780511623721.
[4] M. Laurent, Sums of squares, moment matrices and optimization over polynomials, Emerging

applications of algebraic geometry, IMA Vol. Math. Appl., vol. 149, Springer, New York, 2009,
pp. 157–270, doi:10.1007/978-0-387-09686-5_7.

[5] S. Maksymenko, Deformations of functions on surfaces by isotopic to the identity diffeomorphisms,
2013, pp. 107–160, arXiv:1311.3347.

[6] D. Alpay, M. E. Luna-Elizarraras, M. Shapiro and D. C. Sruppa, Basics of functional analysis
with bicomplex scalars, and bicomplex Schur analysis, Springer Briefs in Mathematics, 2014,
10.1007/978-3-319-05110-9.

[7] A. Banerjee, S. K. Datta and Md. H. Hoque, Fourier transforms for functions of bicomplex
variable, Asian J. Math. Appl., 2015, pp. 1–18,scienceasia.asia.

[8] H. De Bie, D. C. Struppa, A. Vajiac and M. B. Vajiac, The Cauchy Kowalewski product for
bicomplex holomorphic functions, Math. Nachr., 285 (2012), no. 10, 1230–1242.

[9] J. Cockle, A new imaginary in algebra, Philos. Mag. Ser., 34 (1849), no. 3, 37–47.
[10] F. Colombo, I. Sabadini and D. C. Struppa, Bicomplex holomorphic functional calculus, Math.

Nachr., 287 (2013), no. 13, 1093–1105.
[11] M. E. Luna-Elizarraras, M. Panza, M. Shapiro and D. C. Struppa, Geometry and identity theorems

for bicomplex functions and functions of a hyperbolic variable, Milan J. Math., 88 (2020), 247–261,
10.1007/s00032-020-00313-8.

http://dx.doi.org/10.1016/j.jfa.2005.09.010
http://dx.doi.org/10.1017/CBO9780511623721
http://dx.doi.org/10.1007/978-0-387-09686-5_7
http://arxiv.org/abs/1311.3347
 https://doi.org/10.1007/978-3-319-05110-9
 http://scienceasia.asia
https://doi.org/10.1007/s00032-020-00313-8


BICOMPLEX PALEY-WIENER THEOREM 49

[12] M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa and A. Vajiac, Bicomplex holomorphic
functions: The algebra geometry and analysis of bicomplex numbers, Frontiers in Mathematics,
Birkh\"auser Basel, 2015.

[13] M. E. Luna-Elizarraras, Integration of functions of a Hyperbolic variable, Complex Anal. Oper.
Theory, 16(35) (2022). \tth \ttt \ttt \ttp \tts : //\ttd \tto \tti .\tto \ttr \ttg /\ttone \ttzero .\ttone \ttzero \ttzero \ttseven /\tts \ttone \ttone \ttseven \tteight \ttfive  - \ttzero \tttwo \tttwo  - \ttzero \ttone \ttone \ttnine \ttseven  - \ttnine 

[14] R. Gervais Lavoie, L. Marchildon and D. Rochon, Finite dimensional bicomplex Hilbert spaces,
Adv. Appl. Clifford Algebras, 21 (2011), 561-581.

[15] C. Flaut, and V. Shpakivskyi, On generalized Fibonacci quaternions and Fibonacci-Narayana
quaternions, Adv. Appl. Clifford Algebras, 23 (2013), no. 3, 673–688.

[16] C. M.Davenport, A commutative hypercomplex algebra with associated function theory, 1996,
pp. 213–227.

[17] R. Gervais Lavoie, L. Marchildon and D. Rochon, Infinite-dimensional bicomplex Hilbert spaces,
Ann. Funct. Anal., 1 (2010), no. 2, 75–91.

[18] A. Ghanmi and K. Zine, Bicomplex analogues of segal Bergmann and fractional Fourier transforms,
Adv. Appl. Clifford Algebras , 29 (2019), no. 74.

[19] W. R. Hamilton, On a new species of imaginary quantities connected with a theory of quaternions,
Proc. R. Ir. Acad., 2 (1844), 424-434.

[20] W. R. Hamilton, Lectures on quaternions: Containing a systematic statement of a new mathe-
matical method, Dublin: Hodges and Smith (1853).

[21] R. Kumar, R. Kumar and D. Rochon, The fundamental theorems in the framework of bicomplex
topological modules, 2011, arXiv:1109.3424v1.

[22] R. Kumar and K. Singh, Bicomplex linear operators on bicomplex Hilbert spaces and Littlewood’s
subordination theorem, Adv. Appl. Clifford Algebras, 2015, 591-610.

[23] R. Kumar and H. Saini, Topological bicomplex modules, Adv. Appl. Clifford Algebr., 26(4)
(2016), 1249-1270.

[24] R. Kumar and K. Sharma, Hyperbolic valued measure and fundamental law of probability, Global
Journal of Pure and Applied Mathematics, 13 (2017), no. 10, 7163–7177. www.ripublication.
com/gjpam.htm

[25] M. E. Luna-Elizarraras, M. Shapiro and D. C. Struppa, On Clifford analysis for holomorphic
mappings, Adv. Geom., 14(3) (2014), 413-426.

[26] M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa and A. Vajiac, Bicomplex numbers and their
elementary functions, Cubo A Mathematical Journal, 14 (2012), no. 2, 61–80.

[27] C. O. Perez-Regalado and R. Quiroga-Barranco, Bicomplex Bergman spaces on bounded domains,
2018, arXiv:1811.00150.

[28] G. B. Price, An introduction to multicomplex spaces and functions. Monographs and Textbooks in
Pure and Applied Mathematics, Marcel Dekker Inc., New York, 140, 1991.

[29] J. B. Reyes, C. O. P. Regalado and M. Shapiro, Cauchy type integral in bicomplex setting and its
properties, Complex Anal. Oper. Theory, 13 2019, 2541-2573.

[30] J. D. Riley, Contributions to the theory of functions of bicomplex variable, Tohoku Math. J.
Second Ser., 5 (1953), 132-165.

[31] R. R. Salimov, and V. A. Klishchuk, On the behavior of one class of homeomorphisms at infinity,
Ukrainian Mathematical Journal, 74 (2023), no. 10, 1617–1628.

[32] R. Salimov, L. Vyhivska, and B. Klishchuk, On distortions of the transfinite diameter of disk
image, Ukrainian Mathematical Journal, 75 (2023), no. 2, 235–243.

[33] D. Rochan, A bicomplex Riemann zeta function, Tokyo J. Math., 27 (2004), no. 2, 357–369.
[34] D Rochon and M Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Anal.

Univ. Oradea, fasc. math., 11 (2004), no. 71, 1–28.
[35] W. Rudin, Real and Complex Analysis, 3rd edn. Tata McGraw-Hill, New Delhi 2006.
[36] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann., 40

1892, 413–467.
[37] V. Shpakivskyi, Constructive description of monogenic functions in a finite-dimensional com-

mutative associative algebra, Advances in Pure and Applied Mathematics, 7 (2016), no. 1,
63–75.

Sanjay Kumar : sanjaykmath@gmail.com, sanjay.math@cujammu.ac.in
Department of Mathematics, Central University of Jammu, Rahya-Suchani (Bagla)-181 143, Jammu

(J\&K), INDIA.

Stanzin Dolkar : stanzin.math@cujammu.ac.in
Department of Mathematics, Central University of Jammu, Rahya-Suchani (Bagla)-181 143, Jammu

(J\&K), INDIA.

http://arXiv.org/abs/:1109.3424v1
http://www.ripublication.com/gjpam.htm
http://www.ripublication.com/gjpam.htm
arxiv.org/abs/1811.00150
mailto:sanjaykmath@gmail.com, sanjay.math@cujammu.ac.in
mailto:stanzin.math@cujammu.ac.in

	1. Introduction
	2. Bicomplex Fourier Transforms
	3. Bicomplex Paley-Wiener Theorem
	Acknowledgements
	References

