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EXISTENCE OF CLASSICAL SOLUTIONS FOR A CLASS OF
(p(z), ¢(z))-LAPLACIAN SYSTEMS

SONIA MEDJBAR, SVETLIN GEORGIEV GEORGIEV, AREZKI KHELOUFI,
AND KARIMA MEBARKI

ABsTRACT. In this paper we investigate a class of (p(z), ¢(z))-Laplacian systems for
existence of global classical solutions. We give conditions under which the considered
equations have at least one, at least two and at least three classical solutions. To
prove our main results we propose a new approach based on the use of fixed points
for the sum of two operators.

V wiii crarti Mu gocaimkyemo kiac (p(z),q(x)) - JangaciBCbKuX CUCTEM Ha
npeaMer iCHyBaHHsI IVIODAJbHUX KJIACUYHUX pimeHb. Mu HaBogumo yMOBH, Ipu
SAKUX PO3IVIAHYTI PIBHSHHSI MAIOTh IPUHANMHI OfHE, IPUHANMHI JIBa 1 NpUHANMHI Tpu
kiacuuHux pimenss. 11106 moBecTn Hami OCHOBHI pe3ysbTaTH, MU IIPOIIOHYEMO HOBHI
miaXifl, 3aCHOBAHUN HA BUKOPHCTAHHI HEPYXOMHX TOYOK JJIsl CYMHU JBOX OII€PATOPIB.

1. INTRODUCTION

Many problems of the real world and applied sciences such as elastic mechanics, fluid
dynamics, electrorheological fluids, image processing, flow in porous media, calculus of
variations, nonlinear elasticity theory, heterogeneous porous media models lead directly
to partial differential equations involving variable exponent conditions (such as the
p(z)—Laplacian), see for example [7, 19, 30]. It is the reason for which there is an
intensive research on this subject in the last decades, see for example the papers [1, 9, 22,
15, 18, 23, 24, 25, 26, 27] and the references therein.

In this paper, we investigate the following (p(x), g(x))-Laplacian system

—Apyu = fi(z,u,v,Vou, Vav)
~Ayyv = folz,u,v,Veu,Vev), o €R”,

(1.1)

where

(H1): p,q € CY(R"), 1 < p,q < B on R for some constant B > 2, n € N.
(H2): [ € CR™?),

0 S |fl(x,u,v,vzu,vxv)|
ann (z) + a(@)|u(@) ") + ag(z)o(z) 2 + agg(@)u(@)] "o (z)[ )
+ Y s (@) g, ()50 oy, ()05 13 age (@) ug, ()7

=1

ij=1

IN

30 am (@), (o),
i=1

r € R, u,v € C*(R"),
0 < aw,asig, aei, a7y < B,
0 < b, bisij, bisij, bizis bisi < B
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onR" 1€ {1,2}, ke{l,...,4},i,j€{1,....n}.

0 ou
- p(z)—2 2%
(1vupe-222).

Lj J
L5

j=1 o
"9 ov
— E : q(z)—2
Ay = P (VU| Oz )

Here

Apyu =

J

for u,v € C2(R™). Our aim is to investigate the problem (1.1) for existence and nonunique-
ness of global classical solutions. Our work is motivated by the interest of researchers
in many mathematical questions related to partial differential equations involving p(x)-
Laplacian. In fact, existence and multiplicity of solutions for an elliptic system involving
the p(z)-Laplacian are obtained in [28]. In [3], some sufficient conditions for the existence
of non-trivial solutions for a strongly coupled nonlinear elliptic system on the whole
space RY involving the p(z)—Laplacien operator were established. Existence of positive
smooth solutions for a class of singular (p(z), ¢(z))—Laplacian systems was investigated
in [2] by using sub and supersolution method. In [4], the techniques of Young measure-
valued solutions are used to prove the existence of weak solutions for a class of nonlinear
p(z)—Laplace system. In the paper [5], the authors study the existence and asymptotic
behavior of positive solutions for a class of elliptic systems involving (p(x), ¢(z))-Laplacian
systems using sub-super solutions method, with respect to symmetry conditions. In the
non-stationary case, the sub-super solutions method is used in [6] to study the existence
of weak positive solutions for a class of the (p(z), ¢(x))-Laplacian. Some other references
on partial differential equations involving p(z)-Laplacian and coupled p(x)-Laplacian are
[20, 21] and [11, 12], respectively.

An outline of the present paper is as follows: In the next section, we give some existence
and multiplicity results about fixed points of the sum of two operators. In Section 3,
we give an integral representation and a priori estimates related to solutions of problem
(1.1). In Section 4, we prove our main results. Finally, in Section 5, we give an example
to illustrate our main results.

2. SUM OF OPERATORS: EXISTENCE AND MULTIPLICITY OF FIXED POINTS

In this section, we will recall two results which concern the existence of fixed points
and nonnegative fixed points for the sum of two operators.
The proof of the following theorem can be found in [10] or [13].

Theorem 2.1. Let E be a Banach space, Y a closed, convex subset of E, U be any open
subset of Y with 0 € U. Consider two operators T and S, where

Tx =ex, zeU,
fore>1and S:U — E is continuous such that

(i): (I — S)(U) resides in a compact subset of Y and
(ii): {z €U :x=AI—S)z} =0, forany A€ (0, 1).

Then there exists x* € U such that
Tx* 4+ Sa* = z*.
In the sequel, F is a real Banach space.

Definition 2.2. A closed, convex set P in F is said to be cone if

(1) aw € P for any a > 0 and for any x € P,
(2) x,—x € P implies z = 0.
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Definition 2.3. A mapping K : E — FE is said to be completely continuous if it is
continuous and maps bounded sets into relatively compact sets.

Definition 2.4. Let X and Y be real Banach spaces. A mapping K : X — Y is said to
be expansive if there exists a constant h > 1 such that

Kz — Kylly > hllz —ylx
for any z,y € X.

The following result will be used to prove the existence of two nonnegative solutions of
the problem (1.1). Its proof is based on the theory of fixed point index for the sum of
two operators developed by Mebarki et al. in [8] and [14].

Theorem 2.5. [16, 29| Let P be a cone of a Banach space E and Uy,Us and Us three
open bounded subsets of P such that U, CUyCU;z and 0 € Uy. Let  be a subset of P
such that (U \U1)NQ # 0 and (U3 \U)NQ # 0. Assume that T : Q — E is an expansive
mapping and S : Us — E is a completely continuous one such that S(Us) C (I —T)(£).
Suppose that there exist wg € P\{0} and € > 0 small enough such that the following

conditions hold:

(1): Sx# (I —T)(x — dwg), for all x>0 and x € OUL N (2 + Awyp),
(ii): Sz # (I -T)(Mz), forall X>1+¢e, x€ U and Az € Q,
(iii): Sz # (I —T)(x — Awp), for all A >0 and x € U3 N (2 + Awy).

Then T + S has at least two non-zero fixed points x1,xo € P such that
1 € OUs N and x5 € (Ug\Ug) NN

or
r1 € (UQ\U1)QQ and To € (Ug\ﬁg)ﬂg

The following result will be used to prove the existence of three nonnegative solutions
(at least two non zeros) of the problem (1.1). More precisely, it will be used to prove
Theorem 4.3. For the proof, we use the same arguments used in [16, 29].

Theorem 2.6. Let P be a cone of a Banach space E and Uy, Uy, and Us three open
bounded subsets of P such that Uy C Uy C Uz and 0 € Uy. Let 2 be a subset of P such
that (Us \U1) N Q # 0 and (U3 \ U2) N Q # 0. Assume that T : Q — E is an expansive
mapping and S : Uz — E is a completely continuous one such that S(Uz) C (I —T)(Q).
Suppose that there exist wy € P\{0} and € > 0 small enough such that the following
conditions hold:

(i): Sz # (I —-T)(Az), forall A\>1+4¢, € dU; and Az € Q,
(ii): Sz # (I —T)(x — Mwp), for all A >0 and x € OU3 N (2 + Awy),
(iii): Sz # (I = T)(Az), forall A>14¢, x € OUs and Az € .

Then T + S has at least three non trivial fized points x1,xs,x3 € P such that
1 EUl NQ and zo € (Ug \Ul) NQ and xr3 € (Ug) \ﬁg) N Q.

3. SOME PROPERTIES OF SOLUTIONS OF PROBLEM (1.1)

Let X! = C?(R") be endowed with the norm

lullx: = rnax{ sup [u(x)], sup |ug, ()|, sup |ug;q; (@), J€ {1,...,11}},
xER™ TeR” xER™
provided it exists. Let X = X' x X! be endowed with the norm

||(U,U)|| = max{”ulleﬂ HU”Xl}ﬂ (uvv) € X,
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provided it exists. For (u,v) € X, we will write (u,v) > 0 if u(z) > 0, v(z) > 0 for any
x € R". Set

dst = / / dsy ...dss, ds;=dsy,...dss,

Zj J+1
/ ds; = / / / / dsy ...dsj11dsj—1 ... dsq,
0

ds; =dsyp...dsjpadsj_1...ds1, je€{2,...,n—1},

/ ds, = / / ) dsp_1...dsy, ds, =ds,_1...dsy,
0 0 0

/ds = / / ’dsn...dsl,

0 0 0

Sz = (x17523"'75n)7
Sx; = (51,...,Sj_1,$j78j+1,...,8n), j6{2,...,n—1},
Sz, = (81,00, 8n-1,%n), S$=(81,...,8n), x=(x1,...,2,) €ER™

For (u,v) € X, define operators St, S? and S; as follows:

:Z/ ’ |vu(s$,)v’<s:j>*2@dg
£ J al.‘] J

/ fi(s,u(s),v(s), Vau(s), Vyv(s))ds,
S%(u,v) Z/ IVou(se,) )[P(s2s) 2@d 52,

/ fa(s,u(s),v(s), Vau(s), Vzu(s))ds,
$1(u,0)(2) = (SL(w, 0)(x), S2(w, v)(x)), @ € R™.
Note that if (u,v) € X satisfies the equation
Si(u,v)(x) =0, xeR", (3.2)

and we differentiate it with respect to x1, o, ..., x,, we get that u and v satisfy the first
two equations of (1.1). Thus, any (u,v) € X, (u,v) > 0, that satisfies the equation (3.2),
is a solution to the problem (1.1).

Lemma 3.1. Suppose that (H1) and (H2) hold. If (u,v) € X, ||(u,v)| < B, then
|fi(z, u(x),v(z), Vou(z), Voo(z))] < (n* +2n+4)B*PT 2 e R™, 1€ {1,2}.
Proof. We have
|filz, u,v, Vau, Vo)

< ap(@) + ap(@)u(@) " + ag(@)|v(z )\b’2($)+az4( u(@)[? ) v () [P1)
+ Z al51] |uw )|b15u‘(3¢)|v ‘bleu(éﬂ) 4 Zal& |bm($)
,j=1
+Za/l7l ‘blBL(T)
< B+BB+1+BB+1+BQB+1 +n4B2B+1 +nBB+1—|—nBB+1
< (n*+2n4+4)B*BF 2R, 1e€{1,2}.
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This completes the proof. O

Let
B
B = (n7 +nt —|—2n+4> B25+1L

Lemma 3.2. Suppose that (H1) and (H2) hold. If (u,v) € X, ||(u,v)| < B, then
n
1St (u,v)(2)| < By H(l +lz;]), zeR" 1le{1,2}.
Proof. We have

‘PSJ.) 2811,

|51 (u, v) ()]

\Vu Sz;) -dsy;

v

/ fi(s,u(s),v(s), Vyu(s), Vyu(s))ds
>

Jj=1

/ " f1 (5 u(s).v(5), Vau(s), Va(s))ds

Ju
p(éa: )—2
[ wutsa e 2

IA

dsy;

J

IN
NE
:j:

(1+ |zx)n" 7 BB~ 1+H|x]| n* + 44 2n)B?B+1
§=1k=1,k#j j=1

IA
N
3

vl
3
_|_
S
+
[N~}
3
N—
i E 3
=
_|_
&
U:J
[\
%
+

= B[+ 1z, zeRr™
j=1

As above,
n

155 (u,v)(z)| < By H(1+\$j|), x € R".
j=1
This completes the proof. O

Let A be a positive constant and g € C(R™) be a function such that
9> 0onR"\{{z; = 0}_,},

9(0, 9, ..., x,) = g(x1,0,23,...,2,) = 9(x1,. .., Tp-1,0) =0, (x1,...,2,) € R",

and
T

n
22n+3 H(l + |z | + 25 + |z5]°) g(s)ds
j=1
In the last section, we will give an example of such a function g. For u,v € X, define
operators S1, Sz and S, as follows:

It
1

Sa(u,v)(@) = (S

< A. (3.3)

Sy (u,v)(w) = 29(s)51 (u,v)(s)ds,

:]: I :]:

S3(u,v)(x) = 29(s) S (u, v)(s)ds,

/\u

,v)( ), SQ(u v)(z)), ze€R"
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Lemma 3.3. Suppose that the conditions (H1) and (H2) are satisfied. If (u,v) € X,
(u,v) >0 on R™, and
So(u,v)(z) = (C,C), =eR™,
for some constant C, then (u,v) is a solution to the problem (1.1).
Proof. We have
S3(u,0)(2) = S3(u,0)(z) = C, = ER".
We differentiate the last two equations three times in z1, o, ..., x, and we get
g(2)ST (u,v)(z) = g(x)S?(u,v)(z) =0, x€R"
Hence,
S1(u,v)(@) = S2(u,0)(2) =0, @ € R™\{{a; = 0}, }.

Since ST (u,v)(-) and S%(u,v)(+) are continuous on R™, we find

0 = lim St(u,v)(x1,22,...,20) = St(u,v)(0,22,...,2,)
= hm S2(u,v) (21,22, ..., 2n) = SZ(u,v)(0,z2,...,2,)
= 1im0S11(u,v)(x1,x2,...,xn_l,mn) = S1(u,v)(x1,22,...,2,_1,0)
Ty —>
= 1imOS%(u,v)(x1,x2,...,J;n_l,xn) = S} (u,v)(x1, 22, ..., 2y_1,0),
T —>

(z1,22,...,2,) € R™. Therefore
S (u,v)(z) = S2(u,v)(z) =0, zER™.
This completes the proof.

Lemma 3.4. Under hypotheses (H1) and (H2) and for (u,v) € X with ||(u,v)| < B,
the following estimate holds:

152 (u,v)|| < AB;.

Proof. Suppose that (H1) and (H2) are satisfied. Let (u,v) € X, with ||(u,v)|| < B.
(i): An estimate of |S3(u,v)(z)], * € R™, is as follows:

Shu.0)(a)| = / J = 57)%a(5)S} (u,0) ()ds

< / 5 = 53)%9(5)|S 1w, v)(s) ds

< 2"B H/( H1+|51|
=170 j=1

< 22ntip Hx (1 + |zj]) ’/
Jj=1

2n+3 & 2 3 ’

< 2B [+ lay +af + 2P | | gls)ds
i=1 0

< ABj.
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52(u v)(x)|, z€R”, ke{l,...,n}, we get
a x n
L Shu)()| = 2 / I @ - 52k — s1)g()Sk (w0} (5)ds
k 0 j=1,j#k
* N 2 1
< 2 [ TT =)= sg()ISk ) (s)lds
O j=1,j#k
< 2.2 | ] / ) L0+ 1ss Dl + e g(s)do
j=1,j#k i=1
< 92ntlp H 1+|x] Nk (1 + |zk]) '/
J=1,j#k
2n+2 - 2 3 ’
< 2208y [T+ Jal + 25 + |2 °) | | g(s)ds
j=1 0
< ABj.

(iii): An estimate of ’ >S4 (u,v)()

,xeR™ ke{l,...,n}is

n

= 2/: H (z; — 5;)%9(5)5] (u,v)(s)ds

j=1,j7#k

[T G- sPaisi s

Jj=1,j#k

o

87,35% (u, v)(z)

IN
N

n

9.92n-2p H / q;—i—s H1+ISJ da
0
j=1

j=1.j#k

2B, H 23 (1 + |a5]) (1 + |ax)) ‘/

j=1,j#k

IN

IN

x

223 B, H(l + |aj| + 2F + |a;) g(s)ds
0

j=1

IN

IN

AB;.

Thus,
1S5 (u, v)[| x1 < ABy.
As above,
155 (u, v) [ x+ < ABu.
This completes the proof. O

4. EXISTENCE AND MULTIPLICITY OF SOLUTIONS

Our first main result for existence of classical solutions of the problem (1.1) is as
follows.

Theorem 4.1. Under hypothesis (H1) and (H2), the problem (1.1) has at least one
bounded solution (u,v) € C*(R™) x C*(R™).
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Proof. Let Y denote the set of all equicontinuous families in X with respect to the norm
|- |l. Let also, Y =Y be the closure of ¥ and
U={(u,v)eY: |(u,v)||<B andif |(u,v)||> B/2, then (u,v)> (B/2,B/2)}.
Note that U is a compact set in Y. For (u,v) € U and € > 1, define the operators

T(u,v)(x) = e(u,v)(x),
S(u,v)(z) = (u,v)(z) —€e(u,v)(x) — €So(u,v)(x) + €(AB1,ABy), z€R"™.

For (u,v) € U, we have

I(Z = S)(u, )| = lle(u,v) + €Sa(u,v) — e(ABy, ABy)|
< ell(u,0)]| + €llSa(u, )| + €l (ABr, ABy)|
< €By +2¢AB;.

Thus, S: U — X is continuous and (I — S)(U) resides in a compact subset of Y. Now,
suppose that there is a (u,v) € AU so that

(u,v) = A = S)(u,v)
or
(u,v) = Xe[(u,v) + So(u,v) — (ABy, ABy)]
for some A € (0,2). Then, using that ||Sz(u,v)|| < ABy, we get
(u,v)(z) < Ae(u,v)(x), =eR™

Since the last inequality holds for any z € R™ and ||(u,v)|| = B, or ||(u,v)|| > £ and
(u,v) > 0 on R™, we get Ae > 1, which is a contradiction. Consequently

{(u,v) € U : (u,v) = M\ (I —S)(u,v)} =0
for any \; € (0, %) Then, from Theorem 2.1, it follows that the operator 17"+ S has a
fixed point (u*,v*) € Y. Therefore
(u"0") (@) = T(u",v")(@)+ S, v")(z)
= e, v")(z) + (u*,v")(z) — e(u”,v")(z) — eSa(u™,v*)(x)
+6(ABl, ABl),

x € R™, whereupon
(ABl7ABl) :SQ(U*v’U*)('x)a r € R".

From here and from Lemma 3.3, it follows that (u*,v*) is a solution to the problem (1.1).
This completes the proof. 0

Let r, L, Ry be positive constants that satisfy the following conditions
r<L<R <B, AB1<§.
Here, B and A are the constants which appear in the conditions (H1) and formula (3.3),
respectively and By = (ng +nt 4 2n+ 4) B2B+1 Our second main result for existence
and multiplicity of classical solutions of the problem (1.1) is as follows.

Theorem 4.2. Suppose (H1) and (H2) hold. Then the problem (1.1) has at least two
nonnegative bounded solutions (ui,v1), (ug,v2) € C*(R™) x C*(R™).
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Proof. Set X = C?(R™) x C*(R"™) and let
P={(u,v) € X:(u,0) >0 on R"}.

With P we will denote the set of all equicontinuous families in P. For (u,v) € X, define
the operators

T (u,v)(x) = (14 me)(u,v)(x) — (ef{),ef()) ,
Sz(u,v)(z) = —€eSa(u,v)(x) —me(u,v)(z) — (61[;), 611;)) , ¢ eR™
where € is a positive constant and m > 0 is large enough. Note that any fixed point
(u,v) € X of the operator T} + S5 is a solution to the problem (1.1). Define
Q = P,
Ur = Pr={(wv) eP:|(uv)l] <r}
U = Pr=A{(u,v) €P:|(u,v)| <L}
U3 = Pgr, ={(uv)eP:|(uv)] < Ri}.
(1) For (uy,v1), (uz,v2) € Q, we have
1Ty (ur, v1) = T (ug, v2)|| = (14 me)|(ur, v1) — (uz, v2)],

whereupon 77 : Q — X is an expansive operator with a constant h = 1 + me > 1.
(2) For (u,v) € Pg,, we get

A

L
153 (w, v}l < €llSa(u, v)]| + mell(u, v)|| + €5

IN

L
AB — .
6( 1 + le + 10)
Therefore S5(Pg,) is uniformly bounded. Since S5 : Pr, — X is continuous, we
have that S3(Pg,) is equicontinuous. Consequently S : Pr, — X is completely
continuous.

(3) Let (u1,v1) € Pg,. Set

(g, v) = (ul,v1)+%52(u1,v1)+ ( L L )

S 5m
Note that S3(ui,v1) + £ >0, S3(u1,v1) + £ > 0 on R". We have ug,v2 > 0 on
R™. Therefore (uz,vy) € Q and

em(ug,w)em(ul’vl)e&(uwl)%L L>€<L L>

10710 10710
or
L L
(I—Tl)(’LLQ,’UQ) = —em(u27112) + € (10,10>
= Sg(ul,vl).

Consequently S3(Pr,) C (I —T1)(Q).
(4) Assume that for any (ug,vo) € P\{0} there exist A > 0 and (u,v) € 0P, N (2 +
Aug,vg)) or v € PR, N (Q + A(ug,vp)) such that

S3(u,v) = (I —T1)((u,v) — A(ug, v9)).-
Then

~eSa(u,v) —me(u,v) — ¢ (fo fo) = —me((u,v) = Mup, 0)) +e (fo 1L0>
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or

L L
—Sa(u,v) = Am(ug,vo) + (5, 5) .

Hence,
L L L
S = ||\ -, = > —.
H 2U|| H m(u05v0)+ (57 5)H =75

This is a contradiction.
(5) Let €; = #=-. Suppose that there exist (uy,v,) € Py and A\; > 1 + ¢; such that

5m*
S3(ur,v1) = (I = T1)(A1(u1,v1)).

Then,
L L L L
_€S2(U1,U1) — me(ul,vl) — € (10, 10) = —>\1m6(U17’01) +e€ (107 10) s
or
L L
SQ(Ul,Ul) + (5, 5) = (/\1 — 1)m(u1,v1).
From here,
L L L
22 > [satuo) + (5.5 ) | = O = Do)l = O = D
and
2
— 4+ 1> A\,
5m

which is a contradiction.

Therefore all conditions of Theorem 4.2 hold. Hence, the problem (1.1) has at least two
solutions (u1,v1) and (u2,v2) so that

[(ur, v1) [l = L < [|(ug, va2) | < Ba
or

’I“<||(U1,U1)||<L< H('UQ,'UQ)H < R;. O

In this sequel, we will use the notations of the proof of Theorem 4.2 and we choose the
positive constant m such that emr > % Then, our third main result for existence and
multiplicity of classical solutions of the problem (1.1) is as follows.

Theorem 4.3. Suppose (H1) and (H2) hold. Then the problem (1.1) has at least three
nonnegative bounded solutions (u1,v1), (ug,v2), (u3,v3) € C2(R™) x C?(R™).

Proof. (1) Assume that there are A > 1+ €, (u,v) € OUp and A(u,v) € Q so that
S3(u,v) = (I —T1)(Au, Av).
Then

L L L L
—eSo(u,v) — me(u,v) — <610,610> = —meA(u,v) + (610,610>

or

Sa(u,v) = (A — 1)ym(u,v) — (g é) .
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Hence,

ISawo)l = |mr= v - (55|

(A_1m|uv—|!(5 i)l

Y

v
()
El
0
S
N
| &~

>

which is a contradiction. Thus, the condition (i) of Theorem 2.6 holds.
(2) Now, assume that there are A > 1+ €, (u,v) € 9Us and A(u,v) € Q so that

Sz(u,v) = (I —T1)(Au, Av).

As above,

L L
26wl = - vl - | (£ 5) |
> aml(w,0)] - £
5
L
= ele—g
> emr L
o L
5
. L
5,

which is a contradiction. Hence, the condition (iii) of Theorem 2.6 holds.
(3) Assume that for any (ug,v9) € P\{0} there exist A > 0 and (u,v) € OPL N (2 +
A(uo,vp)) such that

S3(u,v) = (I —T1)((u,v) — A(ug, v9)).-

Then
L L L L
—eSa(u,v) — me(u,v) — € (10, 10) = —me((u,v) — Aup, vo)) + € (10, 10>

or

L L

—Ss5(u,v) = Am(ug,v0) + | =, = | .

55

Hence,

L L L
= —_ — > —.
IS ]| H)\m(uo,vo) + (5, 5) H >

This is a contradiction. Form here it follows that the condition (ii) of Theorem 2.6

holds.
Now, by Theorem 2.6, it follows that the problem (1.1) has at least three classical
solutions. 0
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5. AN EXAMPLE

Below, we will illustrate our main results. Let n = 2,

1
_n_ _ _ _ _ 10250 _
Ri=B=10, L=5  «a=2, r=4, m=10*", AilOT'O’ 2.
Then
By = (2° +2* 4+8) - 10**
and )
_ 5 od 21
AB; = 10100(2 +2%+38)-10*" < B.
Next,
L
r<L<R; <B, AB1<3.
Moreover,
2L
erm=2~10250-4>2:?.
Take
1+ s1/2 + 522 s11y/2
h(S) = log m, Z(S) = arctan @, NS R, S # +1.
Then
, 221/2510(1 — 522)
h(s) ;
(1— sty/2 + 522)(1 + s11y/2 + 522)
11v/2510(1 4 5%2)
!
I'(s) en , SER, s#=+l.
Therefore
—00 < lim (14 s+ 5%+ s*)h(s) < oo,
s—too
—00 < lim (1+s+s*+5%)i(s) < oc.
s—too
Hence, there exists a positive constant Cy so that
1 1+ s11y/2 4 22 1 st1y/2
1+s+s>+s3 lo + arctan —— < (4,
( )<44\/§ Bl sia 152 | 223 1-s2) = 7
s € R. Note that lirrilll(s) = % and by [17] (pp. 707, Integral 79), we have
s—
/ dz 1 1 1+Z\@+z2+ 1 ¢ /2
= 0 arctan ——.
L+24 4y2 glfzﬁquQ 2V2 1—22
Let
510
= ) E R?
QO = Gt °
and

g1(z) =Q(x1)...Q(zn), xe€R™

Then there exists a constant Cy > 0 such that

/0”” g1(s)ds

22T (1 + |yl + 25 + |21%) dt, < Cy, x €R™

j=1

Let
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Then

Take

S. MEDJBAR, S. G. GEORGIEV, A. KHELOUFI, AND K. MEBARKI

n T
Q2n+3 H (1+ |zj| + x? + |33j|3) ’/ g(s)ds| < A, =z eR",
0

j=1
(@) =3+ ——, qle)=3+ : (21,22) € R?
xr) = , xr) = ——— = (71,7 .
3 r+ap ¢ @+a)(E+a3) b
Then for the problem
—Dpau = u g,
_AQ(I)’U = u§1 +’U§27 T = (xlaxQ) € Rza

are fulfilled all conditions of Theorem 4.1, Theorem 4.2 and Theorem 4.3.
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