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SOME REMARKS ON STATISTICAL COMPLETENESS
IN METRIC SPACES

SOURABH NATH AND NABA KANTA SARMA

Abstract. In this paper, we study statistical convergence of sequences in met-
ric spaces and derive some results on statistically Cauchy sequence and statistical
completeness. We also generalize Cantor’s intersection theorem in the statistical
setting.

У цiй статтi ми вивчаємо статистичну збiжнiсть послiдовностей в метричних
просторах i отримуємо деякi результати про статистичнi фундаментальнi послiдовностi
i статистичну повноту. Ми також узагальнюємо теорему Кантора про перетин в
статистичному сенсi.

1. Introduction

The idea of statistical convergence, which grew out from the usual convergence using
the asymptotic density of a set, was first developed by H. Fast [8] and H. Steinhaus
[23] in 1951. However, Zygmund’s monograph [27] in 1935 contained the concept of
statistical convergence under the name “almost convergence" for the first time. Over the
years, several authors have employed statistical convergence under a variety of names.
In 1959, Schoenberg [22] used statistical convergence under the name of D-convergence
and established a connection with a summability approach. Statistical convergence was
abundantly used by numerous authors in diverse areas including number theory [7],
measure theory [17], probability theory [10], optimization theory [19], and approximation
theory [11].

Generalizations of statistical convergence in different spaces has also been studied
([15, 16]). In 1980, Salat [20] obtained some results on statistically convergent sequences
in the real number setting. Kostyrko et al. [14] characterized the set of all statistical
limit points of a sequence in terms of F\sigma -sets and discontinuity points of distribution
functions of the sequence. Fridy [9] obtained a statistical analogue of limit point results
and completeness theorems by distinguishing between statistical limit point and statistical
cluster point. Di Maio et al. [6] studied statistical convergences in topological and uniform
spaces and demonstrated how these convergences can be used in selection theory, function
spaces, and hyperspaces. Ilkhan and Kara [12] introduced the statistical Bourbaki-Cauchy
sequence and also proved some results in quasi-metric spaces [13]. Bilalov and Nazarova
[1] introduced p-strong convergence and proved the equivalence of statistical convergence
to the p-strong convergence and statistical fundamentality, followed by the derivation
of Tauberian theorems involving statistical convergence in metric spaces. Debnath &
Rakshit [5] introduced I-statistical limit points and I-statistical cluster points of a real
number sequence and studied some of its basic properties. Tripathy & Hazarika [26]
studied the notion of I-monotonic sequences and introduced the notion of I-convergence
for series of real or complex numbers and also derived some results on them.

Savas & Debnath [21] presented a novel idea of lacunary statistically \phi  - convergence
and its associated sequence space denoted by S\theta  - \phi as a generalization of the statistical
convergence and lacunary statistical convergence by using the lacunary sequence ‘\theta ’ and
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Orlicz function ‘\phi ’ and investigated some of its basic properties and relations. Choudhury
& Debnath [3] developed the concept of quasi statistical convergence and strong quasi
statistical summability in gradual normed linear spaces and investigated some of its basic
properties and their interrelationship. They also introduced the concept of gradual quasi
statistical Cauchy sequences. Choudhury et al. [4] introduced the notion of I - deferred
statistical limit point, cluster point, limit superior, limit inferior and analyzed various
properties of these concepts based on I - deferred statistical convergence.

In this work, we have done a thorough study of statistical convergence and derived,
in Theorem 3.1, that statistical convergence is not metrizable. We then investigate
a relationship between usual Cauchy and statistically Cauchy sequences in a metric
space. It has been proved in Proposition 3.3, that every usual Cauchy sequence is
statistically Cauchy in a metric space. Then, a counter-example 3.5 is given to prove that
a statistically Cauchy sequence may not be Cauchy in the usual sense. Following this, a
necessary and sufficient condition for a sequence to be statistically Cauchy is derived in
Proposition 3.6. Then Corollary 3.7 shows that a uniformly continuous function maps
every statistically Cauchy sequence onto a statistically Cauchy sequence. The equivalence
of usual completeness and statistical completeness is proved in Theorem 3.8. In the last
section, in Theorem 3.9, we generalize the Cantor’s intersection theorem for metric spaces
in the statistical convergence setting.

2. Definitions and Preliminaries

Definition 2.1 ([20]). The asymptotic density of A \subseteq \BbbN , denoted by \delta (A), is defined to
be \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
A(n)
n , whenever the limit exists; where A(n) := | \{ k \in A : k \leq n\} | . That is,

\delta (A) := \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

A(n)

n
= \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

| \{ k \in A : k \leq n\} | 
n

Obviously, from the definition of asymptotic density, we immediately infer that \delta (A) = 0
provided that A is a finite set of positive integers. On the other hand, the set of squares of
positive integers, i.e., the set \{ 1, 4, 9, 16, . . . , \} is an infinite set having asymptotic density
zero. This follows from the observation that the number of square numbers up to n is at
most

\surd 
n. Note also that \delta (\BbbN \setminus A) = 1 - \delta (A).

Definition 2.2 ([1, 20]). Let (X, d) be a metric space. We say that a sequence (xn) \subseteq X

is statistically convergent to x \in X, denoted by xn
st - \rightarrow x as n \rightarrow \infty , if \forall \varepsilon > 0, we have

\delta (\{ n \in \BbbN : d(xn, x) \geq \varepsilon \} ) = 0.

Or equivalently,
\delta (\{ n \in \BbbN : d(xn, x) < \varepsilon \} ) = 1.

If xn
st - \rightarrow x as n \rightarrow \infty , we call x a statistical limit of (xn).

Theorem 2.3 ([24]). If a sequence (xn) in a metric space (X, d) is statistically convergent,
then its statistical limit is unique.

Theorem 2.4 ([24]). A convergent sequence in a metric space is also statistically con-
vergent and the statistical limit and the usual limit are the same.

The converse of Theorem 2.4 is not true in general. This can be established by the
following counter-example :

Example 2.5 ([24]). Let us consider a sequence (xn) in the metric space \BbbR with the
usual metric such that

xn :=

\biggl\{ 
1, if n = k2 for some k \in \BbbN ,
0, otherwise .
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Definition 2.6 ([24]). A subset K of \BbbN is said to be statistically dense in \BbbN if \delta (K) = 1.
For example, the set \{ n \in \BbbN : n is not a square\} is statistically dense as the asymptotic
density of its complement was seen to be 0.

Lemma 2.7 ([24]). The following statements are true and will be useful in our study.
(i) If A \subseteq B \subseteq C and A is statistically dense in B and B is statistically dense in C,

then A is statistically dense in C.
(ii) If A and B are two sets such that \delta (A) = 1, \delta (B) = 1, then \delta (A \cap B) = 1 and

\delta (A \cup B) = 1.

Theorem 2.8 ([20]). Let (xn) and (yn) be two statistically convergent sequences. If
xn

st - \rightarrow a and yn
st - \rightarrow b as n \rightarrow \infty , and c is any real number, then

(i) xn + yn
st - \rightarrow a+ b as n \rightarrow \infty ,

(ii) c xn
st - \rightarrow c a as n \rightarrow \infty .

Theorem 2.9 ([20]). Let (X, d) be a metric space. A sequence (xl) in X is statistically
convergent and xl

st - \rightarrow b as l \rightarrow \infty if and only if there exists a set L = \{ l1 < l2 < \cdot \cdot \cdot <
ln < \cdot \cdot \cdot \} \subset \BbbN such that \delta (L) = 1 and xln \rightarrow b as n \rightarrow \infty .

Definition 2.10 ([2]). Let G \not = \emptyset be any set in a metric space (X, d) and l \in X. Then l
belongs to the statistical closure of G if there exists a sequence (xk) of points in G such
that xk

st - \rightarrow l as k \rightarrow \infty . We denote the statistical closure of a set G by G
st
.

Definition 2.11 ([2]). A non-empty set G in a metric space (X, d) is said to be statistically
closed if G

st \subseteq G.

Theorem 2.12 ([24]). Union of two statistically closed sets is statistically closed.

Definition 2.13 ([24]). Let (X, d) be any metric space. Let \scrT f denote the family of
all statistically closed sets in X. Then it is easy to check that \scrT f is a topology on X,
known as the statistical topology on X. On the other hand, the topology obtained from
the closed subsets of X, which are induced by usual convergence in (X, d), is called the
classical topology on X.

Theorem 2.14 ([24]). Let F be a non-empty subset in a metric space (X, d). Then F is
statistically closed if and only if F is closed, i.e., the statistical topology \scrT f on X coincides
with the classical topology on X.

Definition 2.15 ([1, 24]). A sequence (xn) in a metric space (X, d) is said to be a
statistically Cauchy sequence if for every \varepsilon > 0, there exists a number N = N(\varepsilon ) \in \BbbN such
that

\delta (\{ n \in \BbbN : d(xn, xN ) \geq \varepsilon \} ) = 0 or \delta (\{ n \in \BbbN : d(xn, xN ) < \varepsilon \} ) = 1.

Definition 2.16 ([25]). A sequence (Fl) is said to be statistically increasing if there
exists a subset L = \{ l1 < l2 < \cdot \cdot \cdot < ln < \cdot \cdot \cdot \} \subset \BbbN such that \delta (L) = 1 and Fln \subseteq Fln+1 ,
for all n \in \BbbN .

Definition 2.17 ([25]). A sequence (Fl) is said to be statistically decreasing if there
exists a subset L = \{ l1 < l2 < \cdot \cdot \cdot < ln < \cdot \cdot \cdot \} \subset \BbbN such that \delta (L) = 1 and Fln \supseteq Fln+1

,
for all n \in \BbbN .

Definition 2.18 ([16]). A metric space (X, d) is said to be statistically complete if every
statistically Cauchy sequence in X is statistically convergent in X.

Theorem 2.19 ([18]). Let (X, d) and (Y, \rho ) be two metric spaces and f : X \rightarrow Y be a
uniformly continuous function. Then f maps every Cauchy sequence in X onto a Cauchy
sequence in Y .
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3. Main Results

3.1. Statistical completeness.

Theorem 3.1. Let (X, d) be a metric space such that | X| \geq 2. Then there is no metric
\rho on X such that given any (xn) \subseteq X and given any x \in X such that xn

st - \rightarrow x in (X, d)
only if xn \rightarrow x in (X, \rho ) as n \rightarrow \infty .

Proof. If possible, let \rho be a metric on X such that statistical convergence in (X, d) is
equivalent to the topological convergence in (X, \rho ). Let G \not = \emptyset be an open set in (X, \rho )
and let x0 \in G. If possible, let G \not = X. Take any x \in X \setminus G. Define a sequence (xn) in
X by

xn :=

\biggl\{ 
x, if \exists k \in \BbbN such that n = k2,
x0, otherwise

Clearly, xn
st - \rightarrow x0 in (X, d) and so xn \rightarrow x0 in (X, \rho ) as n \rightarrow \infty . Since G is an open set in

(X, \rho ) containing x0, we have xn \in G eventually entailing x \in G, which is a contradiction.
Hence G = X and so the topology generated by \rho is the indiscrete topology on X. This
is not possible as the indiscrete topology on X is not metrizable. Hence proved. \square 

Remark 3.2. Theorem 3.1 shows that the statistical convergence is not metrizable.

Proposition 3.3. If a sequence in a metric space (X, d) is Cauchy, then it is statistically
Cauchy in (X, d).

Proof. Let (xn) be a Cauchy sequence in a metric space (X, d). Then, \forall \varepsilon > 0,\exists n0 \in \BbbN ,
such that d(xn, xm) < \varepsilon for all m,n \geq n0. In particular, d(xn, xn0

) < \varepsilon for all n \geq n0.
This implies \{ n \in \BbbN : d(xn, xn0

) \geq \varepsilon \} \subseteq \{ 1, 2, \cdot \cdot \cdot , n0  - 1\} , so therefore \delta (\{ n \in \BbbN :
d(xn, xn0

) \geq \varepsilon \} ) \leq \delta (\{ 1, 2, \cdot \cdot \cdot , n0  - 1\} ) = 0. Hence, (xn) is statistically Cauchy. \square 

Remark 3.4. The converse of the above theorem need not be true as seen below.

Example 3.5. Consider the sequence (xk) of real numbers with usual metric d, whose
terms are as follows :

xk :=

\Biggl\{ 
k, if k = n2 for some n \in \BbbN ,
1
k , otherwise .

Clearly, (xk) is statistically Cauchy as there exists a subsequence ( 1k ) which is Cauchy.
But (xk) is not Cauchy because for any k \in \BbbN , we have

d(x(k+1)2 , xk2) = d((k + 1)2, k2) = | (k + 1)2  - k2| = 2k + 1 \rightarrow \infty as k \rightarrow \infty .

Proposition 3.6. Let (X, d) be a metric space. A sequence (xl) in X is statistically
Cauchy if and only if there exists a set L = \{ l1 < l2 < \cdot \cdot \cdot < ln < \cdot \cdot \cdot \} \subset \BbbN with \delta (L) = 1
such that (xln) is a Cauchy sequence in X.

Proof. Let L = \{ l1 < l2 < \cdot \cdot \cdot \} \subset \BbbN be such that \delta (L) = 1 and (xln) is a Cauchy sequence
in X. Let \varepsilon > 0. Since (xln) is a Cauchy sequence in X, therefore there exists n0 \in \BbbN 
such that d(xlm , xln) < \varepsilon for all m,n \geq n0. In particular,

d(xlm , xln0
) < \varepsilon , \forall m \geq n0

\Rightarrow d(xlm , xln0
) < \varepsilon , \forall m \in \{ n0, n0 + 1, n0 + 2, \cdot \cdot \cdot \} 

\Rightarrow d(xn, xln0
) < \varepsilon , \forall n \in \{ ln0

, ln0+1, ln0+2, \cdot \cdot \cdot \} (3.1)

Let A\varepsilon := \{ n \in \BbbN : d(xn, xln0
) \geq \varepsilon \} . Then, from (3.1), we have

A\varepsilon \subseteq \BbbN \setminus \{ ln0
, ln0+1, ln0+2, \cdot \cdot \cdot \} . (3.2)
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But \BbbN \setminus \{ ln0
, ln0+1, ln0+2, \cdot \cdot \cdot \} = (\BbbN \setminus \{ l1, l2, \cdot \cdot \cdot \} )\cup \{ l1, \cdot \cdot \cdot , ln0 - 1\} . Since \delta (\{ l1, l2, \cdot \cdot \cdot \} ) =

1 and \delta (\{ l1, \cdot \cdot \cdot , ln0 - 1\} ) = 0, we find that

\delta (\BbbN \setminus \{ ln0
, ln0+1, ln0+2, \cdot \cdot \cdot \} ) = 0.

Hence, from (3.2), we get

\delta (A\varepsilon ) \leq \delta (\BbbN \setminus \{ ln0
, ln0+1, ln0+2, \cdot \cdot \cdot \} ) = 0. So, \delta (A\varepsilon ) = 0.

Thus, \forall \varepsilon > 0 \exists ln0
\in \BbbN such that \delta (\{ n \in \BbbN : d(xn, xln0

) \geq \varepsilon \} ) = 0. Hence, it is proved
that (xn) is a statistically Cauchy sequence.

Conversely, let (xn) be statistically Cauchy in X. Then for each \varepsilon > 0 there exists
N \in \BbbN such that \delta (\{ n \in \BbbN : d(xn, xN ) \geq \varepsilon \} ) = 0 or \delta (\{ n \in \BbbN : d(xn, xN ) < \varepsilon \} ) = 1.

Put

Lj := \{ n \in \BbbN : d(xn, xNj ) <
1

j
\} , (3.3)

where j \in \BbbN .
Since (xn) is statistically Cauchy, we have, \delta (Lj) = 1 for all j \in \BbbN . Now, let us define

the following sets :

L\prime 
1 := L1 ;

L\prime 
j := L\prime 

j - 1 \cap Lj , \forall j = 2, 3, 4, \cdot \cdot \cdot .

Then, clearly,

(1) L\prime 
1 \supset L\prime 

2 \supset \cdot \cdot \cdot \supset L\prime 
j \supset L\prime 

j+1 \supset \cdot \cdot \cdot 
(2) \delta (L\prime 

j) = 1, \forall j = 1, 2, 3, \cdot \cdot \cdot , by Lemma 2.7 (ii), since each L\prime 
j is an intersection of

two sets, each one having density equals to 1.

Let us choose an arbitrary number v\prime 1 \in L\prime 
1. Then, by (2), there exists v\prime 2 > v\prime 1, v

\prime 
2 \in L\prime 

2

such that for each n \geq v\prime 2, we have L\prime 
2(n)
n > 1

2 , where L\prime 
j(n) = \{ l \in L\prime 

j : l \leq n\} and

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

L\prime 
j(n)

n = \delta (L\prime 
j) = 1. Further, by (2), there exists v\prime 3 > v\prime 2, v

\prime 
3 \in L\prime 

3 such that for each

n \geq v\prime 3, we have L\prime 
3(n)
n > 2

3 . Proceeding similarly by induction, we can construct a
sequence v\prime 1 < v\prime 2 < \cdot \cdot \cdot < v\prime j < \cdot \cdot \cdot of positive integers such that v\prime j \in L\prime 

j and

L\prime 
j(n)

n
>

j  - 1

j
, (3.4)

for each n \geq v\prime j , j \in \BbbN .
Let us consider the set L as follows. Each natural number of the interval [1, v\prime 1) belongs

to L, further, any natural number of the interval [v\prime j , v\prime j+1) belongs to L if and only if it
belongs to L\prime 

j ,\forall j = 1, 2, 3, \cdot \cdot \cdot . i.e.

L := [1, v\prime 1) \cup 
\biggl( \bigcup 

j\geq 1

([v\prime j , v
\prime 
j+1) \cap L\prime 

j)

\biggr) 
.

According to (1) and (3.4), for each n, v\prime j \leq n < v\prime j+1, we get

L(n)

n
\geq 

L\prime 
j(n)

n
>

j  - 1

j
.

From this it is obvious that \delta (L) = 1. Let \varepsilon > 0. Choose a j \in \BbbN such that 1
j < \varepsilon 

2 . Let
m \geq n \geq v\prime j and m,n \in L. Then, there exist such natural numbers r \geq s \geq j such that
v\prime r \leq m < v\prime r+1 and v\prime s \leq n < v\prime s+1. But by definition of L, we have m \in L\prime 

r and n \in L\prime 
s.
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Since r \geq s, therefore L\prime 
r \subset L\prime 

s. It follows that m,n \in L\prime 
s \subset Ls. Therefore, using (3.3),

we get

d(xm, xn) \leq d(xm, xNs) + d(xNs , xn)

<
1

s
+

1

s
\leq 1

j
+

1

j

<
\varepsilon 

2
+

\varepsilon 

2
= \varepsilon 

Thus, d(xm, xn) < \varepsilon ,\forall m,n \in L with m \geq n \geq v\prime j , where \delta (L) = 1. Therefore, (xn)n\in L

is a Cauchy sequence. This completes the proof.. \square 

Corollary 3.7. Let (X, d) and (Y, \rho ) be two metric spaces, and f : X \rightarrow Y be a
uniformly continuous function. Then f maps every statistically Cauchy sequence of X
onto a statistically Cauchy sequence of Y .

Proof. Let (xl) be a statistically Cauchy sequence in (X, d). Then, by Proposition 3.6,
there exists L = \{ l1 < l2 < \cdot \cdot \cdot < ln < \cdot \cdot \cdot \} \subset \BbbN such that \delta (L) = 1 and (xln) is a Cauchy
sequence in X. Since f is uniformly continuous, by Theorem 2.19, (f(xln)) is a Cauchy
sequence in Y . Thus there exists L = \{ l1 < l2 < \cdot \cdot \cdot < ln < \cdot \cdot \cdot \} \subset \BbbN such that \delta (L) = 1
and (f(xln)) is a Cauchy sequence in Y . Hence, (f(xl)) is a statistically Cauchy sequence
in Y . \square 

Theorem 3.8. A metric space (X, d) is statistically complete if and only if it is complete.

Proof. Let (X, d) be a complete metric space and let (xl) be a statistically Cauchy sequence
in (X, d). Therefore, by Proposition 3.6, there exists L = \{ l1 < l2 < \cdot \cdot \cdot < ln < \cdot \cdot \cdot \} \subset \BbbN 
such that \delta (L) = 1 and (xln) is a Cauchy sequence in X. Since (X, d) is complete,
therefore there exists x0 \in X such that xln \rightarrow x0 as n \rightarrow \infty . Therefore, by Theorem 2.9 ,
xl

st - \rightarrow x0 \in X as l \rightarrow \infty . Hence, (X, d) is statistically complete.

Conversely, let (X, d) be statistically complete and let (xl) be a Cauchy sequence in
(X, d). Therefore, by Proposition 3.3, (xl) is a statistically Cauchy sequence in (X, d).
Since (X, d) is statistically complete, so there exists x0 \in X such that xl

st - \rightarrow x0 as l \rightarrow \infty .
Therefore, by Theorem 2.9, there exists a set L = \{ l1 < l2 < \cdot \cdot \cdot < ln < \cdot \cdot \cdot \} \subset \BbbN such
that \delta (L) = 1 and xln \rightarrow x0 as n \rightarrow \infty . Since (xl) is a Cauchy sequence and it has a
convergent subsequence (xln) converging to x0 in (X, d), therefore xl \rightarrow x0 \in X as l \rightarrow \infty .
Hence, it follows that (X, d) is a complete metric space. \square 

3.2. Generalization of Cantor’s Intersection Theorem.

Theorem 3.9. A metric space (X, d) is statistically complete if and only if given any
statistically decreasing sequence (Fn) of non-empty statistically closed subsets of X with
\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m} (Fn)

st - \rightarrow 0 as n \rightarrow \infty , there exists N \subset \BbbN with \delta (N) = 1 satisfying the property that\bigcap 
n\in N

Fn is a singleton.

Proof. Let (X, d) be a statistically complete metric space and let (Fn) be a statistically
decreasing sequence of non-empty statistically closed subsets of X with \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m} (Fn)

st - \rightarrow 0
as n \rightarrow \infty . Since (Fn) is statistically decreasing, therefore there exists an ordered set
K \subset \BbbN with \delta (K) = 1 such that Fm \subseteq Fn for all n \leq m where m,n \in K. Since Fn is
non-empty for all n \in \BbbN , we can choose xn \in Fn, for each n \in K. This gives rise to a
sequence (xn) in X with the property that xm \in Fn for all m \geq n and m,n \in K. Then
d(xm, xn) \leq \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m} (Fn)

st - \rightarrow 0 as n \rightarrow \infty , for all m \geq n and m,n \in K. It follows that
there is an ordered set N \subset K with \delta (N) = 1 such that d(xm, xn) \leq \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m} (Fn) \rightarrow 0 as
n \rightarrow \infty , for all m \geq n and m,n \in N . Thus (xn)n\in N is a Cauchy sequence in X. Since
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X is statistically complete, so by Theorem 3.8, X is complete and therefore there exists
x \in X such that xn \rightarrow x, n \in N as n \rightarrow \infty . This implies x \in Fn = Fn for all n \in N .
Hence x \in 

\bigcap 
n\in N

Fn. To show the uniqueness of x, assume that y \in 
\bigcap 

n\in N

Fn be any element.

Since x, y \in Fn for all n \in N, so d(x, y) \leq \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m} (Fn) for each n \in N . Since for each
n \in N , \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m} (Fn) \rightarrow 0 as n \rightarrow \infty , we obtain d(x, y) = 0 entailing x = y. Hence

\bigcap 
n\in N

Fn is

a singleton.

Conversely, let (X, d) be a metric space satisfying the given hypothesis. In view of
Theorem 3.8, it suffices to show that X is complete. So let (xn) be a Cauchy sequence
in X. For each n \in \BbbN , define Fn := \{ xk : k \geq n\} . Then, (Fn) is a decreasing (and so
statistically decreasing) sequence of closed (and so statistically closed) sets in X. Since
(xn) is a Cauchy sequence, so d(xm, xn) \rightarrow 0 as m,n \rightarrow \infty , and therefore diam(Fn) \rightarrow 0

as n \rightarrow \infty . As a result, \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m} (Fn) = \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m} (Fn)
st - \rightarrow 0 as n \rightarrow \infty , therefore by hypothesis,

there exist an ordered set N \subset \BbbN with \delta (N) = 1 and x \in X such that
\bigcap 

n\in N

Fn = \{ x\} .

Now, we will show that xn \rightarrow x. Since
\bigcap 

n\in N

Fn = \{ x\} , so x \in Fn, \forall n \in N . On the

other hand, xn \in Fn, \forall n \in \BbbN by our construction and therefore xn \in Fn, \forall n \in \BbbN .
As a result, for each n \in N, we have d(xn, x) \leq diam(Fn) \rightarrow 0 as n \rightarrow \infty . It follows
that (xn)n\in N \rightarrow x as n \rightarrow \infty . Thus (xn) is a Cauchy sequence and it has a convergent
subsequence (xn)n\in N \rightarrow x as n \rightarrow \infty , so xn \rightarrow x, \forall n \in \BbbN as n \rightarrow \infty and x \in X. Hence
(X, d) is complete and so statistically complete metric space. \square 

4. Conclusion

In this paper, we have thoroughly studied the concept of statistical convergence and
established that statistical convergence is not metrizable. We then investigated the
relationship between usual Cauchy and statistically Cauchy sequences in a metric space
and obtained that every usual Cauchy sequence is statistically Cauchy but the converse
need not be true. A counter-example is given to prove that a statistically Cauchy sequence
may not be Cauchy in the usual sense. Following this, we have established a necessary and
sufficient condition for a sequence to be statistically Cauchy in a metric space. We also
have shown that a uniformly continuous function maps a statistically Cauchy sequence
onto a statistically Cauchy sequence. Further, we have proved that usual completeness
and statistical completeness are equivalent. Finally, we generalize Cantor’s intersection
theorem in the statistical convergence setting.
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