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HYPERCYCLICITY OF AFFINE COMPOSITION OPERATORS ON
ALGEBRAS OF SYMMETRIC ANALYTIC FUNCTIONS

ZORIANA NOVOSAD

Abstract. The paper is devoted to studying the dynamics of affine composition
operators on the Fréchet algebras of symmetric analytic functions on \ell p. We introduced
a class of affine composition operators preserving the symmetry of functions and
found necessary and sufficient conditions of hypercyclicity of such operators. Some
applications for dynamics of composition operators on the space of entire functions
of several complex variables, H(\BbbC n) are proposed. In particular, we found some
conditions of hypercyclicity for a class of polynomial composition operators on H(\BbbC n).

Стаття присвячена вивченню динамiки афiнних композицiйних операторiв
на алгебрах Фреше симетричних аналiтичних функцiй на \ell p. Ведено клас
афiнних композицiйних операторiв, що зберiгають симетрiю функцiй, i знайдено
необхiднi та достатнi умови гiперциклiчностi таких операторiв. Пропонуються
деякi застосувыння динамiки композицiйних операторiв в просторi H(\BbbC n) цiлих
функцiй декiлькох комплексних змiнних. Зокрема, знайжено деякi умови гiпер-
циклiчностi для класу операторiв полiномiальної композицiї на H(\BbbC n).

1. Introduction

The dynamics of bounded linear operators on infinite dimensional topological linear
spaces can generally be very complicated. In particular, such an operator may have a
dense orbit (that is, to be hypercyclic) or other “chaotic” and “mixing” properties. The
first example of a hypercyclic operator on the Fréchet space of entire functions H(\BbbC ) on
the complex plane \BbbC was constructed by Birkhoff [10] in 1929. The Birkhoff theorem
states that the translation operator T (f)(z) = f(z + 1) is hypercyclic on H(\BbbC ). Later, in
1952 MacLane [30] proved that the differentiation operator D : H(\BbbC ) \rightarrow H(\BbbC ), D(f) = f \prime ,
f \in H(\BbbC ), is also hypercyclic. Rolewicz in 1969 observed that the weighted backward
shift operator T : \ell 2 \rightarrow \ell 2 given by

T (x1, x2, x3, . . .) = \lambda (x2, x3, . . .)

is hypercyclic on \ell 2 whenever | \lambda | > 1, \lambda \in \BbbC . Operators of such a type are hypercyclic in
more general situations. For details about various generalizations of Rolewicz weighted
backward shift operators we refer the reader to [4, 6, 26, 35, 37].

G. Godefroy and J. Shapiro generalized the Birkhoff result involving what are called
convolution operators [22].

Theorem 1.1 ([22]). Let T : \BbbC n \rightarrow \BbbC n be a continuous linear operator such that

T (f)(z + b) = T (\tau b(f))(z)

(where for f \in H(\BbbC n) and z \in \BbbC n, \tau b(f)(z) := f(z + b)). If T is not a multiple of the
identity, then T is hypercyclic.
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Further generalizations of Theorem 1.1 for spaces of entire functions on finite and
infinite dimensional Banach spaces were obtained in [2, 8, 12, 17, 31, 32].

Let us recall that an operator C\Phi on H(\BbbC n) is said to be a composition operator
if C\Phi f(x) = f(\Phi (x)) for some analytic map \Phi : \BbbC n \rightarrow \BbbC n. It is known that only the
translation operator Ta, for some a \not = 0, is a hypercyclic composition operator on H(\BbbC ) [9].
However, if n > 1, H(\BbbC n) supports more hypercyclic composition operators.

In [7] Bernal-González established some necessary and sufficient conditions for a
composition operator by an affine map to be hypercyclic. In particular, in [7] it is
proved that a given affine automorphism S = A + b on \BbbC n, the composition operator
CS : f(x) \mapsto \rightarrow f(S(x)) is hypercyclic if and only if the linear operator A is bijective and
the vector b is not in the range of A - I.

In this paper we consider composition operators with affine mappings on the space
Hbs(\ell p) of symmetric analytic functions of bounded type on \ell p, 1 \leq 1 < \infty and find
necessary and sufficient conditions for hypercyclicity of such operators. For this purpose
we used a method developed in [34] (see also [17, 33]). Also, we find some applications
for dynamics of composition operators on the space H(\BbbC n) of entire functions of several
complex variables. In particular, we find some conditions of hypercyclicity for a class of
polynomial composition operators on H(\BbbC n).

For details of the theory of analytic functions on Banach spaces we refer the reader
to Dineen’s book [20]. All basic information about hypercyclic operators can be found
in [24, 25].

2. Preliminary results

Let X be a topological vector space. A continuous linear operator T : X \rightarrow X is said
to be hypercyclic if there is a vector x \in X such that the set \mathrm{O}\mathrm{r}\mathrm{b}(T, x) = \{ x, Tx, T 2x, . . .\} 
of iterates of x is dense in X. The vector x is called a hypercyclic vector associated to
the hypercyclic operator T. An operator T is called hereditarily hypercyclic if there is an
increasing sequence of positive integers (nk) such that for each subsequence (mk) of (nk)
there is some x \in X such that the set

\{ Tmk(x) : k \in \BbbN \} 

is dense in X.
An operator T is called topologically transitive if for any pair U, V of nonempty open

subsets of X there exists some integer k \geq 0 such that T k(U) \cap V \not = \varnothing . T is called
weakly mixing if T \oplus T : X \oplus X \rightarrow X \oplus X is topologically transitive. It is well known
(see e.g. [25, p. 39]) that for separable X the hypercyclicity of T is equivalent to its
topological transitivity.

A sufficient condition for hypercyclicity, the well known Hypercyclicity Criterion,
independently discovered by Kitai [27] and Gethner and Shapiro [21], has been the
fundamental tool for proving hypercyclicity. The following version of the hypercyclicity
criterion was given by Bès (see [9]).

Theorem 2.1 (Hypercyclicity Criterion). Let X be a separable Fréchet space and T : X \rightarrow 
X be a linear and continuous operator. Suppose there exist in X dense subsets X0, Y0, a
sequence (nk) of positive integers, and a sequence of mappings (possibly nonlinear, possibly
not continuous) Sn : Y0 \rightarrow X so that

(1) Tnk(x) \rightarrow 0 for every x \in X0 as k \rightarrow \infty .
(2) Sk(y) \rightarrow 0 for every y \in Y0 as k \rightarrow \infty .
(3) Tnk \circ Sk(y) = y for every y \in Y0.

Then T is hypercyclic.
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Actually, T satisfies the Hypercyclicity Criterion if and only if T is hereditarily
hypercyclic and if and only if T is weakly mixing [25, p. 76].

From the Universal Comparison Principle (see e.g. [24, Proposition 4]) we have the
following simple proposition to be used in the sequel.

Proposition 2.2. Let T be a (hereditarily) hypercyclic operator on X and A be an
isomorphism of X. Then A - 1TA is (hereditarily) hypercyclic.

If A is an isomorphism of X, then A - 1TA is said to be an perator similar to T. If
T = C\alpha is a composition operator on H(\BbbC n) for some mapping \alpha : \BbbC n \rightarrow \BbbC n and A = C\Phi 

is a composition with an analytic automorphism \Phi of \BbbC n, then A - 1TA = C\Phi \circ \alpha \circ \Phi  - 1 .
Let X be a Banach space with a symmetric basis (ei)

\infty 
i=1. A function g on X is said to

be symmetric if for every x =

\infty \sum 
i=1

xiei \in X,

g(x) = g
\Bigl( \infty \sum 

i=1

xiei

\Bigr) 
= g

\Bigl( \infty \sum 
i=1

xie\sigma (i)

\Bigr) 
for an arbitrary permutation \sigma on the set \{ 1, . . . ,m\} for any positive integer m. A sequence
of homogeneous polynomials (Pj)

\infty 
j=1, \mathrm{d}\mathrm{e}\mathrm{g}Pk = k, is called a homogeneous algebraic basis

in the algebra of symmetric polynomials if for every symmetric polynomial P of degree n
on X there exists a unique polynomial q on \BbbC n such that

P (x) = q(P1(x), . . . , Pn(x)).

More information about various algebras of symmetric analytic functions and their
algebraic bases can be found in [3, 5, 11, 14, 28, 36] and references therein.

Throughout this paper we consider the case where X = \ell p, 1 \leq p < \infty . Let us denote
by \scrP s(\ell p) the algebra of all symmetric polynomials on \ell p. From [23] we know that the
so-called power polynomials (Fk)

\infty 
k=1,

Fk(x) =

\infty \sum 
i=1

xk
i , k \geq \lceil p\rceil 

form an algebraic basis in \scrP s(\ell p), where \lceil p\rceil is the ceil of p.
We denote by Hn

s (\ell p) the algebra of entire symmetric functions on \ell p which is topologi-
cally generated by polynomials F\lceil p\rceil , . . . , F\lceil p\rceil +n - 1. It means that Hn

s (\ell p) is the completion
of the algebraic span of F\lceil p\rceil , . . . , F\lceil p\rceil +n - 1 in the uniform topology on bounded subsets.

Note that if (Pj)
\infty 
j=1 is a homogeneous algebraic basis in \scrP s(\ell p), then (P1, . . . , Pn) is a

homogeneous algebraic basis in Hn
s (\ell p). We will use notations \bfP := (Pk)

n
k=1.

For a given algebraic basis \bfP in Hn
s (\ell p) the mapping

\scrF \bfP 
n : f(t1, . . . , tn) \mapsto \rightarrow f(P\lceil p\rceil , . . . , P\lceil p\rceil +n - 1)

is a topological isomorphism between H(\BbbC n) and Hn
s (\ell p) (see e.g. [1]).

To investigate dynamics of composition operators with affine mappings on spaces of
symmetric functions, we need to have affine mappings on \ell p such that the corresponding
composition operators map symmetric functions to symmetric functions. One can check
that for a symmetric function f on \ell p the function f(\cdot + y) is not symmetric for any fixed
y \in \ell p, such that y \not = 0. So, the space of symmetric functions is not invariant with respect
to the usual translation operator f(\cdot ) \mapsto \rightarrow f(\cdot + y). However, there is another, “symmetric”
translation on \ell p. For given x, y \in \ell p, x = (x1, x2, . . .) and y = (y1, y2, . . .), we set

x \bullet y := (x1, y1, x2, y2, . . .).

It is easy to check (see e.g. [14, 15]) that
(1) \| x \bullet y\| = \| x\| + \| y\| .
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(2) Fn(x \bullet y) = Fn(x) + Fn(y) for any integer n \geq \lceil p\rceil .
Also, there is a so-called multiplicative intertwining [16] of x and y, x \diamond y, as the

resulting sequence of ordering the set \{ xiyj : i, j \in \BbbN \} with one single index in some fixed
order. From [16] it is known that for arbitrary x, y \in \ell p we have

(1) x \diamond y \in \ell 1 and \| x \diamond y\| = \| x\| \cdot \| y\| .
(2) Fn(x \diamond y) = Fn(x) \cdot Fn(y) for any natural n \geq \lceil p\rceil .

Semirings, generated by operations ‘\bullet ’ and ‘\diamond ’ were studied in [13, 18, 19].
We will say that the map of the form x \mapsto \rightarrow a \diamond x \bullet y = (a \diamond x) \bullet y is a symmetric affine

operator and define the operator

\scrQ y : H
n
s (\ell p) \rightarrow Hn

s (\ell p),

\scrQ y(f)(x) := f(a \diamond x \bullet y),
where a = (a1, a2, . . .) \in \ell 1, a \not = 0. We say that \scrQ y is a symmetric affine composition
operator. Note that

Fk(a \diamond x \bullet y) = Fk(a)Fk(x) + Fk(y) (2.1)
for every k \geq \lceil p\rceil .

3. Main results

Theorem 3.1. The symmetric affine composition operator

\scrQ y : H
n
s (\ell p) \rightarrow Hn

s (\ell p),

\scrQ y : g(x) \rightarrow g(a \diamond x \bullet y)
y \in \ell p, (F\lceil p\rceil (y), . . . , Fn+\lceil p\rceil  - 1(y)) \in \BbbC n, is hereditarily hypercyclic on Hn

s (\ell p) if and only
if the following conditions hold:

(i) all F\lceil p\rceil (a) \not = 0, . . . , Fn+\lceil p\rceil  - 1(a) \not = 0;
(ii) for some \lceil p\rceil \leq k \leq n+ \lceil p\rceil  - 1, Fk(a) = 1 and Fk(y) \not = 0.

Proof. For the convince we determine a pair (A, b) as matrix A with complex entries and
fixed column vector b in \BbbC n as follows:

A =

\left(     
F\lceil p\rceil (a) \cdot \cdot \cdot 0 0

...
. . . \cdot \cdot \cdot 

...
0 \cdot \cdot \cdot Fn+\lceil p\rceil  - 2(a) 0
0 \cdot \cdot \cdot 0 Fn+\lceil p\rceil  - 1(a)

\right)     
and

b =

\left(     
b1
...

bn - 2

bn

\right)     =

\left(     
F\lceil p\rceil (y)

...
Fn+\lceil p\rceil  - 2(y)
Fn+\lceil p\rceil  - 1(y)

\right)     .

We claim that conditions (i) and (ii) of the theorem are equivalent to the property that A
is a bijective operator on \BbbC n and b is not in the range of A - I. Indeed, \mathrm{d}\mathrm{e}\mathrm{t}(A) \not = 0 if and
only if Fi+\lceil p\rceil  - 1(a) \not = 0, i = 1, . . . , n. Also, if b is not in the range of A - I, then A - I must
be non-injective, that is, Fi+\lceil p\rceil  - 1(a) = 1 for some 1 \leq i \leq n and bi = Fi+\lceil p\rceil  - 1(y) \not = 0.
According to [7], the composition operator

CAt+b(f) = f(At+ b), t = (t1, . . . , tn) \in \BbbC n

is hereditarily hypercyclic on H(\BbbC n).
Using the isomorphism \scrF \bfF 

n : f(t1, . . . , tn) \mapsto \rightarrow f(F\lceil p\rceil , . . . , F\lceil p\rceil +n - 1) from H(\BbbC n) to
Hn

s (\ell p) we can represent any g \in Hn
s (\ell p) as

g(x) = f(F\lceil p\rceil (x), . . . , F\lceil p\rceil +n - 1(x)),
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where f =
\bigl( 
\scrF \bfF 

n

\bigr)  - 1
(g). By Proposition 2.2, the affine composition operator

\scrQ y(g) = \scrF \bfF 
n

\Bigl( 
CAt+b

\Bigl( \bigl( 
\scrF \bfF 

n

\bigr)  - 1
(g)

\bigl( 
F\lceil p\rceil , . . . , F\lceil p\rceil +n - 1

\bigr) \Bigr) \Bigr) 
is hereditarily hypercyclic.

Conversely, if \scrQ y is hypercyclic on Hn
s (\ell p), then CAt+b is hypercyclic on H(\BbbC n) and

by [7], A is bijective and b is not in the range of A - I. But as we proved, it is equivalent
to conditions (i) and (ii) of the theorem. \square 

Like in [34], this result can be extended to the infinite dimensional case.

Theorem 3.2. Let a and y be vectors in \ell p such that

(i) Fn(a) \not = 0 for every n \geq \lceil p\rceil .
(ii) There is at least one number k0 \in \BbbN such that Fk0+\lceil p\rceil  - 1(a) = 1 and Fk0+\lceil p\rceil  - 1(y) \not =

0.

Then \scrQ y : g(x) \rightarrow g(a \diamond x \bullet y), g \in Hbs(\ell p) is hypercyclic on Hbs(\ell p).

Proof. Let us show that \scrQ y is topologically transitive on Hbs(\ell p). Let U and V be disjoint
open subsets in Hbs(\ell p). Since the linear space

\infty \bigcup 
n=1

Hn
s (\ell p) \subset Hbs(\ell p)

is dense in Hbs(\ell p), it has nonempty intersections with U and V. Thus, there are integers
r, j > k0 such that Hr

s (\ell p)\cap U \not = \varnothing and Hj
s (\ell p)\cap V \not = \varnothing . Let m = \mathrm{m}\mathrm{a}\mathrm{x}(r, j). Then Hm

s (\ell p)
has nonempty intersections with both U and V. Since the topology of Hn

s (\ell p) is induced
by the topology of Hbs(\ell p), the intersections Um = Hm

s (\ell p) \cap U and Vm = Hm
s (\ell p) \cap V

are open in Hbs(\ell p). By Theorem 3.1 the restriction of \scrQ y to Hm
s (\ell p) is hypercyclic and

so topologically transitive. That is, there is a number n such that \scrQ n
y (Um) \subset Vm. Thus,

\scrQ n
y (U) \subset V and so \scrQ y is topologically transitive. Hence, \scrQ y is hypercyclic. \square 

If we consider another algebraic basis \bfP = (P1, . . . , Pn) in Hn
s (\ell p), then \scrF \bfP 

n will give
us another isomorphism from H(\BbbC n) to Hn

s (\ell p). Clearly, the mapping (\scrF \bfP 
n ) - 1\scrQ y\scrF \bfP 

n is
hypercyclic on H(\BbbC n) if and only if \scrQ y is hypercyclic on Hn

s (\ell p).
Let us consider the case of symmetric analytic functions on \ell 1. There is another natural

algebraic basis in \scrP s(\ell 1), so-called the basis elementary symmetric polynomials (Gk)
\infty 
k=1,

k \in \BbbN ,

Gk(x) =
\sum 

i1<\cdot \cdot \cdot <ik

xi1 \cdot \cdot \cdot xik .

It is easy to check that Gk(x \bullet y) =
k\sum 

i=0

Gi(x)Gk - i(y), where G0 \equiv 1.

It is known (see e.g. [15, 29]) that

\infty \sum 
n=0

Gn(x) =

\infty \prod 
i=1

(1 + xi).
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Thus,
\infty \sum 

n=0

Gn(a \diamond x) =
\infty \prod 

i,j=1

(1 + ajxi)

=

\infty \prod 
i=1

(1 + a1xi)

\infty \prod 
i=1

(1 + a2xi) \cdot \cdot \cdot 
\infty \prod 
i=1

(1 + ajxi) \cdot \cdot \cdot 

=

\infty \sum 
n=0

an1Gn(x)

\infty \sum 
n=0

an2Gn(x) \cdot \cdot \cdot 
\infty \sum 

n=0

anj Gn(x) \cdot \cdot \cdot 

=

\infty \sum 
n=0

\sum 
k1+\cdot \cdot \cdot +kn=n

\sum 
j1<\cdot \cdot \cdot <jn

ak1
j1
ak2
j2

\cdot \cdot \cdot akn
jn
Gk1

(x) \cdot \cdot \cdot Gkn
(x).

So,

Gn(a \diamond x) =
\sum 

k1+\cdot \cdot \cdot +kn=n

\sum 
j1<\cdot \cdot \cdot <jn

ak1
j1
ak2
j2

\cdot \cdot \cdot akn
jn
Gk1

(x) \cdot \cdot \cdot Gkn
(x).

Taking into account that

Gkj (x \bullet y) =
kj\sum 
i=0

Gi(x)Gkj - i(y),

we can write

Gn(a \diamond x \bullet y) =
n\sum 

i=0

Gi(a \diamond x)Gn - i(y)

=

n\sum 
i=0

Gn - i(y)
\sum 

k1+\cdot \cdot \cdot +ki=i

\sum 
j1<\cdot \cdot \cdot <jn

ak1
j1
ak2
j2

\cdot \cdot \cdot aki
ji
Gk1(x) \cdot \cdot \cdot Gki(x).

(3.2)

In particular, for example, we will have

G1(a \diamond x \bullet y) = G1(x)

\infty \sum 
j=1

aj +G1(y);

G2(a \diamond x \bullet y) = G2(a \diamond x) +G1(a \diamond x \bullet y)G1(y) +G2(y)

=
\sum 

k1+k2=2

\sum 
j1<j2

ak1
j1
ak2
j2
Gk1

(x)Gk2
(x) +G1(a \diamond x)G1(y) +G2(y)

= 2G2(x)

\infty \sum 
j=1

a2j +
\bigl( 
G1(x)

\bigr) 2 \sum 
j1<j2

aj1aj2 +G1(x)G1(y)

\infty \sum 
j=1

aj +G2(y).

For every f(t1, . . . , tn) \in H(\BbbC n),

\scrQ y\scrF \bfG 
n f(t1, . . . , tn) = \scrQ yf(G1(x), . . . , Gn(x)) = f(G1(a \diamond x \bullet y), . . . , Gn(a \diamond x \bullet y)).

Let Gk(y) = ck and c0 = 1. To find
\bigl( 
\scrF \bfG 

n

\bigr) ( - 1)\scrQ y\scrF \bfG 
n f(t1, . . . , tn) substitute (3.2) into the

formula for \scrQ y\scrF \bfG 
n f(t1, . . . , tn) and apply

\bigl( 
\scrF \bfG 

n

\bigr) ( - 1) taking G(x) \rightsquigarrow tn and G(y) \rightsquigarrow cn.
Thus, we have\bigl( 

\scrF \bfG 
n

\bigr) ( - 1)\scrQ y\scrF \bfG 
n f(t1, . . . , tn)

= f
\Bigl( 
t1

\infty \sum 
j=1

aj + c1, . . . ,

n\sum 
i=0

cn - i

\sum 
k1+\cdot \cdot \cdot +ki=i

\sum 
j1<\cdot \cdot \cdot <jn

ak1
j1
ak2
j2

\cdot \cdot \cdot aki
ji
tk1

\cdot \cdot \cdot tki

\Bigr) 
.

(3.3)
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As we observed,
\bigl( 
\scrF \bfG 

n

\bigr) ( - 1)\scrQ y\scrF \bfG 
n is hypercyclic if and only if \scrQ y is hypercyclic. Recall

that the bases \bfF and \bfG are connected by the Newton recurrent formulas,
F1 = G1;

Fn = G1Fn - 1  - G2Fn - 2 + \cdot \cdot \cdot + ( - 1)nGn - 1F1 + ( - 1)n+1nGn n > 1.

Therefore, we have the following result.

Theorem 3.3. Let numbers a1, . . . , an and c1, . . . , cn be such that a1, . . . , an and b1, . . . , bn
satisfy conditions of Theorem 3.1 for the case p = 1, where b1 = c1 and

bk = c1bk - 1  - c2bk - 2 + \cdot \cdot \cdot + ( - 1)kck - 1b1 + ( - 1)k+1kck

for 1 < k \leq n. Then the composition operator (3.3) is hereditarily hypercyclic on H(\BbbC n).

Proof. Let y = (y1, . . . , yn) be a vector in \BbbC n such that F1(y) = b1, . . . , Fn(y) = bn.
Note that such a vector always exists and is unique up to permutations of coordinates.
Moreover, from the construction of b1, . . . , bn and the Newton’s formulas, we have G1(y) =
c1, . . . , Gn(y) = cn. By Theorem 3.1, the operator \scrQ y is hereditarily hypercyclic. Thus,
the composition operator (3.3) is hypercyclic as well. \square 

Let us compute (3.3) in H(\BbbC 2).

Example 3.4. Making routine computations in (3.3) for n = 2, y = (y1, y2), and
a = (a1, a2) we can see that\bigl( 
\scrF \bfG 

2

\bigr) ( - 1)\scrQ y\scrF \bfG 
2 f(t1, t2) = f((a1 + a2)t1 + c1, t

2
1a1a2 +2t2(a

2
1 + a22) + c1t1(a1 + a2) + c2).

Let a1 = 2, a2 =  - 1, y1 = 1, y2 = 2. Then F1(a) = 1, F2(a) = 5, b1 = F1(y) = 3,
b2 = F2(y) = 5. By Theorem 3.1, \scrQ y is hypercyclic on H2

s (\ell 1) and so, for c1 = G1(y) = 3
and c2 = G2(y) = 5, the operator\bigl( 

\scrF \bfG 
2

\bigr) ( - 1)\scrQ y\scrF \bfG 
2 : f(t1, t2) \mapsto \rightarrow f(t1 + 3, - 2t21 + 10t2 + 3t1 + 5)

is hereditarily hypercyclic on H(\BbbC 2).
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