Abstract
In this paper, we study statistical convergence of
sequences in metric spaces and derive some results on
statistically Cauchy sequence and statistical
completeness. We also generalize Cantor's intersection
theorem in the statistical setting.
У цій статті ми вивчаємо статистичну збіжність
послідовностей в метричних просторах і отримуємо деякі
результати про статистичні фундаментальні послідовності і
статистичну повноту. Ми також узагальнюємо теорему Кантора
про перетин в статистичному сенсі.
Key words: Statistical convergence, Statistically Cauchy, Statistically complete.
Full Text
Article Information
Title | Some remarks on Statistical Completeness in Metric Spaces |
Source | Methods Funct. Anal. Topology, Vol. 30 (2024), no. 1-2, 64-71 |
DOI | 10.31392/MFAT-npu26_1-2.2024.06 |
Copyright | The Author(s) 2024 (CC BY-SA) |
Authors Information
Sourabh Nath
Department of Mathematics, Assam University, Silchar, 788011, Assam, India
Naba Kanta Sarma
Department of Mathematics, Assam University, Silchar, 788011, Assam, India
Citation Example
Sourabh Nath and Naba Kanta Sarma, Some remarks on Statistical Completeness in Metric Spaces, Methods Funct. Anal. Topology 30
(2024), no. 1, 64-71.
BibTex
@article {MFAT2007,
AUTHOR = {Sourabh Nath and Naba Kanta Sarma},
TITLE = {Some remarks on Statistical Completeness in Metric Spaces},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {30},
YEAR = {2024},
NUMBER = {1},
PAGES = {64-71},
ISSN = {1029-3531},
DOI = {10.31392/MFAT-npu26_1-2.2024.06},
URL = {http://mfat.imath.kiev.ua/article/?id=2007},
}