Open Access

Some remarks on Statistical Completeness in Metric Spaces


Abstract

In this paper, we study statistical convergence of sequences in metric spaces and derive some results on statistically Cauchy sequence and statistical completeness. We also generalize Cantor's intersection theorem in the statistical setting.

У цій статті ми вивчаємо статистичну збіжність послідовностей в метричних просторах і отримуємо деякі результати про статистичні фундаментальні послідовності і статистичну повноту. Ми також узагальнюємо теорему Кантора про перетин в статистичному сенсі.

Key words: Statistical convergence, Statistically Cauchy, Statistically complete.


Full Text






Article Information

TitleSome remarks on Statistical Completeness in Metric Spaces
SourceMethods Funct. Anal. Topology, Vol. 30 (2024), no. 1-2, 64-71
DOI10.31392/MFAT-npu26_1-2.2024.06
CopyrightThe Author(s) 2024 (CC BY-SA)

Authors Information

Sourabh Nath
Department of Mathematics, Assam University, Silchar, 788011, Assam, India

Naba Kanta Sarma
Department of Mathematics, Assam University, Silchar, 788011, Assam, India


Export article

Save to Mendeley



Citation Example

Sourabh Nath and Naba Kanta Sarma, Some remarks on Statistical Completeness in Metric Spaces, Methods Funct. Anal. Topology 30 (2024), no. 1, 64-71.


BibTex

@article {MFAT2007,
    AUTHOR = {Sourabh Nath and Naba Kanta Sarma},
     TITLE = {Some remarks on Statistical Completeness in Metric Spaces},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {30},
      YEAR = {2024},
    NUMBER = {1},
     PAGES = {64-71},
      ISSN = {1029-3531},
       DOI = {10.31392/MFAT-npu26_1-2.2024.06},
       URL = {http://mfat.imath.kiev.ua/article/?id=2007},
}


References

Coming Soon.

All Issues