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THE INVESTIGATION OF BOGOLIUBOV FUNCTIONALS BY
OPERATOR METHODS OF MOMENT PROBLEM

YU. M. BEREZANSKY AND V. A. TESKO

To the memory of Natasha Yevdokymova (Berezanska) borned on August 20, 1950
and tragically went away from life on June 19, 2014

Abstract. The article is devoted to a study of Bogoliubov functionals by using me-

thods of the operator spectral theory being applied to the classical power moment
problem. Some results, similar to corresponding ones for the moment problem, where
obtained for such functionals. In particular, the following question was studied:
under what conditions a sequence of nonlinear functionals is a sequence of Bogoliubov
functionals.

1. Introduction

A Bogoliubov functional was introduced by M. M. Bogoliubov [18] to define correlation
functions for statistical mechanics systems. Corresponding historical remarks and results
can be found in [32]. These functionals have many applications in statistical physics. For
applications and properties of such functional, see [28, 33, 23, 24].
The aim of this article is to consider Bogoliubov functionals from the point of view

of the classical moment problem. A more detailed account of such a connection will be
given in the first subsection of Section 7 when we have all necessary definitions.
It is well known [1, 4] that the classical moment problem is formulated in the following

way. For a given a sequence of real numbers s0, s1, . . ., what are conditions on the sequence
so that we can assert that these numbers are power moments of some probability Borel
measure σ on R, that is,

(1.1) sn =
∫

R

λndσ(λ), n ∈ N0 := {0, 1, . . .} .

The answer is classical, — the sequence (sn)∞n=0 must be nonnegative, i.e., for an
arbitrary finite sequence f = (fn)∞n=0 of complex numbers fn ∈ C, the following inequality
takes place:

(1.2)
∞∑

j,k=0

sj+kfj f̄k ≥ 0.

Bogoliubov functionals are defined as follows. Let X be some Riemannian locally
compact manifold and C∞fin(X) be the space of all real-valued infinitely differentiable
finite functions on X . The Bogoliubov functionals B(ϕ) are defined as the mapping

(1.3) C∞fin(X) � ϕ �→ B(ϕ) =
∫
Γ

∏
x∈γ

(1 + ϕ(x)) dσ(γ),
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where σ is a probability measure on the space Γ of all finite and infinite configurations
γ = [x1, x2, . . .], where xn ∈ X , xi �= xj , i �= j and “tend to infinity” on X .
We will show that representation (1.3) for B(ϕ) is an analog of representation (1.1) for

sn. The condition on B(ϕ), which gives (1.3), is similar to the nonnegativity condition
(1.2). But now, instead of the classical convolution of finite sequences f = (fn)∞n=0 of
complex numbers,

(f ∗ g)n :=
∑

i+j=n

figj =
n∑

k=0

fkgn−k,

which is connected with condition (1.2), it is necessary to take the Kondratiev–Kuna
convolution �, defined in [21, 22].
It is necessary to say that a large part of results of this article was published in [8]

and a detailed account of the results in [8] can be found in [13]. But presentation in
[8, 13] is complicated, whereas the present article gives a more clear account of these
results. Note that the main new result of this work is Theorem 6.6 on the structure
of the spectrum of the corresponding family of commuting selfadjoint operators. In the
articles [10, 8, 13], an analog of this result was proved under very restrictive conditions
on the positive functional that defines the scalar product. Note also that a starting
work in the considered direction was the article [10], the articles [35, 19] also play an
essential role. The same connection between the Bogoliubov functionals and the moment
problem has appeared in an unpublished report of Yu. M. Berezansky at the Ukrainian
Mathematical Congress (Kyiv, 2009).
The methods of this work are based on the spectral approach to the moment problem,

representations of positive definite kernels, etc., which was initiated by M. G. Krein [26,
27]. A subsequent extension of this approach, using the theory of generalized eigenvector
expansion, is given in the works [2, 25, 3, 4, 6, 9, 12, 7, 14, 15] and many others. Note
also that in this article we proposed some new approach for constructing measures on
the space Γ of configurations (Section 2).
In this article we also give a criterion for a representation of the Bogoliubov functional

C∞fin(X) � ϕ �→ B(ϕ) ∈ R as in the classical moment problem but in a form more
complicated than (1.2). It is also possible to extend such an investigation for real–valued
not necessarily smooth functions ϕ(x), x ∈ X . In order to extend the results to complex-
valued functions ϕ(x), it is necessary to use corresponding analogues of the complex
moment problem [1, 14, 15].

2. Initial spaces. The Ruelle and Kondratiev–Kuna convolutions. Lenard

transform

Let X be a connected oriented C∞ (non-compact) Riemannian manifold. We denote
by D := C∞fin(X) the set of all real-valued infinitely differentiable functions on X with
compact support. We will regard D as a nuclear topological space with the projective
limit topology (see, e.g., [16, 9] and Section below). Let F0(D) := C and Fn(D) := D�⊗n

C

for all n ∈ N. Here and below ⊗̂ denotes a symmetric tensor product (⊗ denotes the usual
tensor product), the subindex C denotes the complexification of the real space. Below we
always identify in the natural way the space D�⊗n

C
with the space of all complex-valued

symmetric infinitely differentiable functions on Xn with compact supports.
Consider the Fock-type space Ffin(D). By definition, it is the topological direct sum

of the spaces Fn(D)

Ffin(D) :=
∞⊕

n=0

Fn(D).(2.1)
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This space consists of all finite sequences (fn)∞n=0, fn ∈ Fn(D) (when we speak about
a finite sequence, we mean a sequence (fn)∞n=0 where at most finitely many entries fn

are non-zero). The convergence in this space is equivalent to the uniform finiteness and
coordinate-wise convergence. Note that the linear topological space Ffin(D) is nuclear,
being a topological direct sum of nuclear spaces (see, e. g., [9, 16]).
It will be convenient for us to interpret elements of space (2.1) as functions on a certain

set, — the set of finite configurations. Namely, an n-point configuration is, by definition,
a (non-ordered) set ξn = [x1, . . . , xn] of points x1, . . . , xn ∈ X , xk �= xj if k �= j. The set
of all such finite configurations will be denoted by Γ(n) = Γ(n)X . It is clear that

Γ(n) =
{
ξ ⊂ X

∣∣ |ξ| = n
}
,

where | · | means cardinality of the set. The topology in Γ(n) is introduced as the image
of topology in the space

X̂n :=
{
(x1, . . . , xn) ∈ Xn

∣∣ xk �= xj if k �= j
}

(X̂n inherits the topology of Xn) under the mapping

X̂n � (x1, . . . , xn) �→ [x1, . . . , xn] = ξn ∈ Γ(n).
Thus, a sequence ξ(m)

n = [x(m)
1 , . . . , x

(m)
n ] convergences to ξn = [x1, . . . , xn] as m→∞ in

the topology of Γ(n) if and only if x(m)
1 → x1, . . . , x

(m)
n → xn as m→∞.

Put Γ(0) = Γ(0)X := {∅}. Define the space of (all) finite configuration by the formula

(2.2) Γ0 :=
∞⊔

n=0

Γ(n) =
{
ξ ⊂ X

∣∣ ∃n ∈ N0 such that ξ ∈ Γ(n)
}
.

The topology in Γ0 is introduced in the following way. A sequence (ξ(m))∞m=1 ⊂ Γ0
convergences to ξ ∈ Γ0 as m → ∞ if and only if, starting with some m, all ξ(m) belong
to some Γ(n) and ξ(m) → ξ as m→∞ in Γ(n).
It is easy to understand that elements of space (2.1) can be treated as functions on

the space Γ0, i.e., one can embed Ffin(D) into the space Fun(Γ0) of all complex-valued
functions on Γ0. Namely, since f0 ∈ C and each fn, n ∈ N, is a complex-valued symmetric
function on Xn, there is a natural injective mapping

(2.3) Ffin(D) � f = (fn)∞n=0 �→ f̂(·) :=
∞∑

n=0

f̂n(·) ∈ Fun(Γ0),

where f̂0(∅) := f0 and

Γ0 � ξ �→ f̂n(ξ) :=

{
fn(x1, . . . , xn), if ξ = [x1, . . . , xn] ∈ Γ(n),
0, otherwise,

for all n ∈ N. Using the latter mapping we can interpret the vectors f = (fn)∞n=0 from
space Ffin(D) as the corresponding functions f̂(ξ) on Γ0.
Conversely, if a function Γ0 � ξ �→ F (ξ) ∈ C is such that

fn := F � Γ(n) ∈ D�⊗n
C
, fn(x1, . . . , xn) := F ([x1, . . . , xn]),

and equals zero starting with some n, then we can interpret F as a corresponding vector
(fn)∞n=0 from the space Ffin(D).
In what follows we will use such interpretations without some additional explanations.
We will often use some subspaces of Γ(n),Γ0. Namely, let Y ⊂ X be some infinite

subset of the space X , we topologize it by the relatively topology. We will apply the
above constructions of Γ(n) and Γ0 starting from Y instead of X ; we will denote then by
Γ(n)Y and ΓY,0; thus Γ

(n)
X = Γ(n), ΓX,0 = Γ0, Γ

(n)
Y ⊂ Γ(n), ΓY,0 ⊂ Γ0.
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We will need also the space Γ of infinite (including finite) configurations over X , i.e.,
the set of all locally finite subsets of X

(2.4) Γ := Γ(X) :=
{
γ ⊂ X

∣∣ |γ ∩ Λ| <∞ for every compact Λ ⊂ X
}
.

Obviously, each γ ∈ Γ consists of distinct points from X , and Γ consists of all different
non overlapping configurations γ (subsets of X). We stress that Γ0 ⊂ Γ. The topology
in Γ will be introduced later in this Section. This way of introducing the topology also
defines a topology on Γ0 (as the relative topology); this topology on Γ0 is different from
the one considered in (2.2).
We pass now to the definition of some essential convolutions on the space Fun(Γ0).

For arbitrary functions f, g ∈ Fun(Γ0) and ξ ∈ Γ0, the Ruelle convolution ∗ and the
Kondratiev–Kuna convolution � are defined by

(2.5) (f ∗ g)(ξ) =
∑

ξ′�ξ′′=ξ

f(ξ′)g(ξ′′) =
∑
ξ′⊂ξ

f(ξ′)g(ξ \ ξ′),

(2.6) (f � g)(ξ) =
∑

ξ′∪ξ′′=ξ

f(ξ′)g(ξ′′) =
∑

ξ′�ξ′′�ξ′′′=ξ

f(ξ′ ∪ ξ′′)g(ξ′′ ∪ ξ′′′).

Recall that α � β means the union of two disjoint sets α and β. All sums in (2.5) and
(2.6) are finite, the cases ξ′ = ∅ and ξ′′ = ∅ are included into (2.5) and (2.6). From
these definitions we see that the sum for � has more terms than the sum for ∗. In the
next four sections we will investigate the Kondratiev–Kuna convolution and the related
to it operators. The Ruelle convolution [34] will be considered in another article.
From (2.6) it immediately follows that if f, g ∈ Ffin(D) then f � g also belongs to

Ffin(D). Moreover, the convolution � (being a convolution on Ffin(D)) is commutative,
associative, additive and continuous with respect to both variables (see [21, 22, 28, 10,
33]). So, Ffin(D) with � is a commutative topological nuclear algebra A with the unit

Γ0 � ξ �→ e(ξ) :=

{
1, if ξ = ∅,

0, otherwise.

The convolution � is closely connected with the Lenard transformK. The correspond-
ing definitions and facts will be given below (for more details, see [29, 30, 31]).
Denote by Funbs(Γ0) the space of all functions in Fun(Γ0) which are equal to zero on

Γ0 \ ΓΛ,0 for a compact set Λ ⊂ X , i.e., such functions would have bounded support “in
the direction of space X”. Note that Funbs(Γ0) is a linear set and � transfers it into an
algebra similar to A which contains the algebra A.
The transform K is defined as a mapping that acts from Funbs(Γ0) to Fun(Γ) by the

formula

(2.7) Funbs(Γ0) � f �→ (Kf)(γ) :=
∑
ξ⊂γ

f(ξ) =: F (γ) ∈ C,

where the summation is taken over all finite subconfigurations of γ. Since the function
f in (2.7) belongs to Funbs(Γ0), the sum in (2.7) is finite for every γ ∈ Γ. Namely,
let f(ξ) = 0 for ξ ∈ Γ0 \ ΓΛ,0, where Λ ⊂ X is a compact set, i.e., f(ξ) �= 0 only
for ξ = [x1, . . . , xn], n ∈ N, where all xj belong to Λ. Then for fixed γ = [x1, x2, . . .],
according to (2.4), only finite summands in (2.7) are nonzero.
Note that (Kf)(γ) is a function of γ ∈ Γ. Different γ ∈ Γ are non overlapping if

considered as subsets of X , therefore in the sum (2.7) for every fixed γ ∈ Γ there exists
only one ξ ∈ Γ0 belonging to γ.
The transform K (the Lenard or the key transform) was introduced in the works

[21, 22, 28] based on the articles [29, 30, 31].
A connection between K-transform and �-convolution is the following.
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Proposition 2.1. For every f, g ∈ Funbs(Γ0) and γ ∈ Γ we have

(2.8) (K(f � g))(γ) = (Kf)(γ)(Kg)(γ).

As we have mentioned above, the vectors f ∈ Ffin(D) can be understood as functions
on Γ0. Of course, Ffin(D) ⊂ Funbs(Γ0) and the transform K is well defined on Ffin(D).
For f ∈ Ffin(D), (Kf)(γ) is a function of all configurations γ ∈ Γ. In particular, every

finite configuration η ∈ Γ(n) ⊂ Γ, n ∈ N, and also ∅ can be its argument.
It turns out that the function f(ξ), ξ ∈ Γ0, can be restored from these values (Kf)(η),

η ∈ Γ(n), n ∈ N0. Moreover, let Γ0 � η �→ F (η) ∈ C be a given function such that
F (η), η = [y1, . . . , yn] is a symmetric infinitely differentiable finite function of point
(y1, . . . , yn) ∈ Xn, n ∈ N; F (∅) ∈ C. We assert that one can find a function f ∈ Ffin(D)
such that, for every η ∈ Γ0, (Kf)(η) = F (η). So, the inverse transform K−1 exists in
the just explained sense. The following proposition gives the existence of such f and a
formula for it.

Proposition 2.2. For any above described function F (η) on Γ0, the following formulas
hold:

(2.9)
(K−1F )(ξ) =

∑
η⊂ξ

(−1)|ξ\η|F (η), ξ ∈ Γ0,

(K(K−1F ))(η) = F (η), η ∈ Γ0.
Thus, it is possible to find f ∈ Ffin(D) for which

(2.10) (Kf)(η) = F (η), η ∈ Γ0; f(ξ) = (K−1(Kf))(ξ), ξ ∈ Γ0.
Then inverse operator K−1 (2.9) is, in some sense, continuous: the following fact is

true.

Lemma 2.3. Let Λ ⊂ X be a compact set. Then for the function F (η) described above,
the following estimate holds:

|(K−1F )(ξ)| ≤ 2n max
η∈

n�

j=0
Γ

(j)
Λ

|F (η)|, n ∈ N0,

thus

(2.11) max
ξ∈Γ(n)

Λ

|(K−1F )(ξ)| ≤ 2n max
η∈

n�

j=0
Γ

(j)
Λ

|F (η)|, n ∈ N.

Proof. For n ∈ N, ξ ∈ Γ(n)Λ we have, according to (2.9), that

|(K−1F )(ξ)| =
∣∣∣∑

η⊂ξ

(−1)|ξ\η|F (η)
∣∣∣ ≤ max

η∈
n�

j=0
Γ

(j)
Λ

|F (η)|
∑
η⊂ξ

(−1)|ξ\η| ≤ 2n max
η∈

n�

j=0
Γ

(j)
Λ

|F (η)|.

We used that for ξ ∈ Γ(n)Λ , each configuration η ⊂ ξ = [x1, . . . , xn] (and also η = ∅)

belongs to
n⊔

j=0

Γ(j)Λ and the number of these configurations equals the number of all

subsets of the set {x1, . . . , xn}, i.e., 2n.
For n = 0 the first formula in (2.9) gives f0 = F (∅).
The second inequality from Lemma 2.3 follows from first inequality. �

Let us again look at the results of Proposition 2.2 and Lemma 2.3. We have the
sequence

(2.12) F = (F0, F1(x1), F2(x1, x2), . . . , Fm(x1, . . . , xm), 0, 0, . . .), m ∈ N0,
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where Fn is a symmetric infinite differentiable finite function of variable (x1, . . . , xn) ∈
X̂n ⊂ Xn.
The sequence (2.12), using (2.3), can be understood as a function F (ξ), where ξ ∈ Γ0

and we put F (ξ) := Fn(x1, . . . , xn) for ξ = [x1, . . . , xn]; F (∅) := F0. Using (2.12) we see
that F (ξ) = 0 for all ξ = [x1, . . . , xn] such that n > m.
Interchange ξ = [x1, . . . , xn] and η = [y1, . . . , yn] in (2.12). Apply the first formula

from (2.9) to function F (η). As a result, we get the function f(ξ) = (K−1F )(ξ), ξ ∈ Γ0.
This function f is equal to zero, when ξ = [x1, . . . , xn], n > m. Indeed, from (2.9) it
follows that η ⊂ ξ and F (η) = 0 for η = [y1, . . . , yn], n > m. If we apply the operator
K to f , we get F , i.e., the first formula in (2.10) is true. For this it is necessary to note
that in the formula (2.7) the sum is taken over ξ ∈ γ, where γ ∈ Γ are different non
overlapping configurations.
In Section 6 we will use, instead of (2.12), the finite vectors

(2.13) F = (F0, F1(x1), F2(x1, x2), . . . , Fm(x1, . . . , xm)), m ∈ N0.

We investigate now, in more details, the set Γ = Γ(X) (2.4) of all finite and infinite
configurations, i.e., the subsets of X of the form (2.4). If X is replaced with its subset
Y ⊂ X we denote the corresponding set (2.4) by Γ(Y ). It is clear that Γ(Y ) ⊂ Γ(X). If
Λ is compact than Γ(Λ) consists only of finite configurations.
Since X is a separable locally compact space, there exists a sequence of its compact

subspaces Λn, n ∈ N, for which

(2.14) Λ1 ⊂ Λ2 ⊂ . . . and X =
∞⋃

n=1

Λn.

We have the following decomposition of the space X :

(2.15)
X = Λ1 ∪ (Λ2 \ Λ1) ∪ (Λ3 \ Λ2) ∪ . . . = K1 ∪K2 ∪K3 ∪ . . . ,

Kn := Λn \ Λn−1 ⊂ Λn, n ∈ N (Λ0 := ∅),

where the sets K1, K2, K3, . . . are pairwise disjoint and have compact closures. Let
γ ∈ Γ(X) be an arbitrary configuration, i.e., some subset (2.4) of points from X . Then
representation (2.15) gives that

γ = (γ ∩ Λ1) ∪ (γ ∩ (Λ2 \ Λ1)) ∪ (γ ∩ (Λ3 \ Λ2)) ∪ . . .
= (γ ∩K1) ∪ (γ ∩K2) ∪ (γ ∩K3) ∪ . . .
= γ1 ∪ γ2 ∪ γ3 ∪ . . . , γn := γ ∩Kn, n ∈ N.

(2.16)

Note that every γ ∩ Kn is a finite configuration which belongs to Γ(Kn). Some of the
sets γ ∩Kn may be empty.
So, due to (2.16) we have, for every set γ ∈ Γ(X), that

(2.17) γ ⊂
∞⋃

n=1

Γ(Kn).

A use of (2.17) gives the following important lemma.

Lemma 2.4. The representations (2.14), (2.15) give that

(2.18) Γ(X) =
∞⊔

n=1

Γ(Kn),

i.e., every γ ∈ Γ(X) is a union of its parts γn (2.16) from Γ(Kn). If γ ∈ Γ(X)\Γ0, then
the disjoint union (2.18) is necessarily infinite.
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Proof. SinceKn are disjoint subsets ofX , Γ(Kn) are also disjoint sets and, in right side of
(2.17), we can write

⊔∞
n=1 Γ(Kn). An arbitrary element of

⊔∞
n=1 Γ(Kn) (i.e., some subset

of X) has the form (γ1, γ2, . . .), where γn ∈ Γ(Kn) is some finite configuration (some γn

may be empty). Points from γn ∈ Γ(Kn) are different, also different are points from
different Γ(Kn) and Γ(Km). Therefore (γ1, γ2, . . .) is some configuration γ = (γ1, γ2, . . .)
(see (2.4)).
Thus every configuration γ (2.4) from Γ(X) is some subset of

⊔∞
n=1 Γ(Kn) (see (2.17))

and, conversely, every element from
⊔∞

n=1 Γ(Kn) is some configuration from Γ(X). So,
equality (2.18) takes place.
Last assertion of Lemma is evident. �

We will construct and investigate some measures on Γ(X). We stress that these
measures will be constructed using some measure on X . This measure will be given on
a fixed copy of X .
The aim of this article is, in particular, to investigate some measures on linear func-

tionals on the space Cfin(X) of finite real-valued continuous functions X � x �→ f(x) ∈ R.
This space with uniform convergence on compact sets is a linear topological space.
Recall that uniformly finite convergence means the following: Cfin(X) � fm �→ f ∈

Cfin(X), m → ∞, where fm → f uniformly and fm(x) = 0 for x ∈ X \ Λ, where Λ is
some compact set.
Introduce the space (Cfin(X))′ =: C′fin(X) of linear continuous functionals l with weak

topology. We will investigate the finite non-negative measures on the some sub σ-algebra
of Borel σ-algebra B(C′fin(X)) of the space C′fin(X).
Let μ be a locally finite non-negative Borel measure on the space X . So, the integral

(2.19) lμ(f) :=
∫

X

f(x) dμ(x)

exists for every f ∈ Cfin(X) and it is a linear continuous functional lμ ∈ C′fin(X). Of
course, the correspondence lμ ↔ μ is one-to-one and we can identify the measure μ and
the functional lμ via the identity (2.19).
Let us interpret finite and infinite configurations as some functionals on the space

Cfin(X). For every fixed point x0 ∈ X there is the δ-function δx0 , i.e., a linear continuous
functional lμx0

generated by the atomic Borel measure μx0 ,

(2.20) lμx0
(f) =

∫
X

f(x) dμx0(x) = f(x0) =: δx0(f), f ∈ Cfin(X).

If γ ∈ Γ(X), we will interpreted γ = [x1, x2, . . .] as the continuous functional

(2.21) lγ : Cfin(X)→ C, lγ :=
∑
x∈γ

δx ∈ C′fin(X),

i.e.,

lγ(f) :=
∞∑

n=1

f(xn), f ∈ Cfin(X)

(note that the latter sum is finite). In this way, the space Γ(X) is embedded in the space
C
′
fin(X). The week topology on Γ(X) ⊂ C′fin(X) is called a vague topology on Γ(X). We

stress that for every γ = [x1, x2, . . .] all δxn ∈ C
′
fin(X).

Let us prove that the space Γ(X) belongs to B(C′fin(X)). We start with some general
facts. Let Q be some locally compact metric space of points q, p, r, . . .; ρ(p, q) be the
corresponding metric. Let Cfin(Q) be the linear space of all real-valued continuous finite
functions on Q with uniformly finite convergence, i.e., Cfin(Q) � fm → f ∈ Cfin(Q),
m → ∞, if fm → f uniformly and all fm(q) = 0 for q ∈ Q \ F , where F is some
compact set F ⊂ Q. We can introduce the weak convergence in the adjoint space
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(Cfin(Q))′ = C
′
fin(Q) of linear continuous functionals l: C

′
fin(Q) � lm �→ l ∈ C

′
fin(Q),

m→∞, if lm(f)→ l(f) for all f ∈ Cfin(Q).
In the space C

′
fin(Q) we can introduce the notion of a δ-function δq for q ∈ Q:

δq(f) := f(q), f ∈ Cfin(Q).
Lemma 2.5. Let n ∈ N and ε > 0 be fixed. Consider an arbitrary sequence (lm)m∈N,

(2.22) lm =
n∑

j=1

δ
q
(m)
j

, q
(m)
1 , . . . , q(m)

n ∈ Q, ρ(q(m)
j , q

(m)
k ) ≥ ε, if k �= j.

Let lm → l, m→∞, in the weak sense in C
′
fin(Q). Then l = 0 or

(2.23) l =
n∑

j=1

δpj ,

where p1, . . . , pn are some distinct points from Q for which ρ(pj , pk) ≥ ε if k �= j.

Proof. We will use the following simple construction. Consider the direct product of Qn

of n copies of the space Q, Qn := Q× · · · ×Q (n times), (q1, . . . , qn) is its points. Note
that sequence Qn � (q(m)

1 , . . . , q
(m)
n ), m → ∞, tends to some point (p1, . . . , pn) ∈ Qn if

and only if q(m)
j → pj in the space Q for every j ∈ {1, . . . , n}.

Let F be some compact subset of from Q, Fn ⊂ Qn its n-product. Consider the
following subspace of Fn:

(2.24) Fn
ε = Fn \

n⋃
j,k=1;j 	=k

{
(q1, . . . , qn) ∈ Fn

∣∣ ρ(qj , qk) < ε
}

with some ε > 0. Since Fn is compact in Qn, Fn
ε is also a compact.

Using (2.22) we consider a sequence of points (q(m)
1 , . . . , q

(m)
n ), m ∈ N, and assume at

first that there is a compact set F ⊂ Q for which all the points (q(m)
1 , . . . , q

(m)
n ), m ∈ N,

belong to Fn. But the last condition in (2.22) means that these points (q(m)
1 , . . . , q

(m)
n )

belong to (2.24). Since Fn
ε is compact in Qn, this sequence of points (q(m)

1 , . . . , q
(m)
n ) has

at least one accumulation point (p1, . . . , pn) ∈ Fn
ε .

It is easy to prove that such an accumulation point is unique. Indeed, let (r1, . . . , rn) ∈
Fn

ε be some other accumulation point. Consider a subsequence (m′)∞m′=1 of the sequence
(m)∞m=1 for which the points (q(m

′)
1 , . . . , q

(m′)
n ) ∈ Fn

ε tend to (r1, . . . , rn) and a similar
subsequence (m′′)∞m′′=1 of the sequence (m)

∞
m=1 for which the points (q

(m′′)
1 , . . . , q

(m′′)
n ) ∈

Fn
ε tend to (p1, . . . , pn).
The way of introducing the topology in Qn is such that above asserted convergence

are equivalent to the following convergences: for all j ∈ {1, . . . , n}

(2.25) q
(m′)
j −−−−→

m′→∞
rj , q

(m′′)
j −−−−−→

m′′→∞
pj .

All points (q(m)
1 , . . . , q

(m)
n ) belong to Fn

ε (2.24), therefore for every j, k ∈ {1, . . . , n}, j �= k,
ρ(q(m

′)
j , q

(m′)
k ) ≥ ε, ρ(q(m

′′)
j , q

(m′′)
k ) ≥ ε. This gives that ρ(rj , rk) ≥ ε and ρ(pj, pk) ≥ ε

for the above indicated j, k.
Assume that (r1, . . . , rn) �= (p1, . . . , pn) and let rj1 �= pj1 , . . . , rjh

�= pjh
be all different

points from the last two sets (clearly, h ≥ 1). Consider two open sets U ⊂ V in Q, where
U ⊃ {rj1 , . . . , rjh

}, V has compact closure and Q \ V contains all points from the set
{r1, . . . , rn; p1, . . . , pn} \ {rj1 , . . . , rjh

}.
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Consider a function f ∈ Cfin(Q) which is equal to 1 on U and to 0 on Q \ V . From
relations (2.25) we conclude that

(2.26)
lim

m′→∞
f(q(m

′)
j ) = f(rj) = δrj(f) =

{
1, if j ∈ {j1, . . . , jh},
0, otherwise ,

lim
m′′→∞

f(q(m
′′)

j ) = f(pj) = δpj (f) = 0, j ∈ {1, . . . , n}.
The relation (2.22) and (2.26) give

(2.27)

lim
m′→∞

lm′(f) = lim
m′→∞

( n∑
j=1

δ
q
(m′)
j

(f)
)
=

n∑
j=1

f(rj) = h �= 0,

lim
m′′→∞

lm′′(f) = lim
m′′→∞

( n∑
j=1

δ
q
(m′′)
j

(f)
)
=

n∑
j=1

f(pj) = 0.

By conditions of our lemma, lm → l, m→∞ in weak sense, i.e., for every f ∈ Cfin(Q)
limm→∞ lm(f) exists and is equal to l(f). Relation (2.27) is a contradiction to such
existence. So, we have proved that the accumulation point (p1, . . . , pn) is unique.
The existence of a unique accumulation point for the sequence ((q(m)

1 , . . . , q
(m)
n ))∞m=1

of points from Qn means that this point (p1, . . . , pn) is a limit in the space Qn of our
sequences. But the topology in Qn implies that q(m)

j → pj, m → ∞, in Q for every
j = 1, . . . , n.
Therefore for every f ∈ Cfin(Q), according to (2.22) and (2.23), we have

lm(f) =
( n∑

j=1

δ
q
(m)
j

)
(f) =

n∑
j=1

δ
q
(m)
j

(f) =
n∑

j=1

f(q(m)
j )

−−−−→
m→∞

n∑
j=1

f(pj) =
( n∑

j=1

δpj

)
(f) = l(f).

Thus, in the case of our first assumption, the lemma is proved. Recall that our
assumption is the following: for a given sequence (q(m)

1 , . . . , q
(m)
n ) ∈ Qn, there exists

some compact set F ⊂ Q for which all points of this sequence belong to Fn.
Consider another possible situation. So, consider the have previous sequence

(q(m)
1 , . . . , q(m)

n ) ∈ Qn

and for every compact set F ⊂ Q there exist some infinite number of points

(q(m)
1 , . . . , q(m)

n ) ∈ Qn

outside of Fn. Thus, we can choose from these points a sequence ((q(m
′)

1 , . . . , q
(m′)
n ))∞m′=1

with the following property: for every compact set F ⊂ Q all points (q(m
′)

1 , . . . , q
(m′)
n ) lie

outside of Fn ⊂ Qn starting with some index m (depending on F ). If it is impossible to
find another part of points (q(m)

1 , . . . , q
(m)
n ) which belong to some compact set Fn ⊂ Qn,

then our points (q(m)
1 , . . . , q

(m)
n ) “tend to infinity”, i.e., for every f ∈ Cfin(Q) and j ∈

{1, . . . , n} starting from some m f(q(m)
j ) = δ

q
(m)
j

(f) = 0. Therefore in this case lm → 0,
m→∞.
It is possible to have another situation: from this sequence ((q(m)

1 , . . . , q
(m)
n ))∞m=1 we

can chose two subsequences such that the first one, ((q(m
′)

1 , . . . , q
(m′)
n ))∞m′=1, has the

above mentioned property of tending to infinity (i.e., the corresponding functionals tends
to zero) and the second one, ((q(m

′′)
1 , . . . , q

(m′′)
n ))∞m′′=1, such that its points belong to

Fn ⊂ Qn, where F is some compact subset of Q. Thus, for this second subsequence we
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have the situation considering above, in the first part of the proof of lemma. Therefore,
we can assert that (q(m

′′)
1 , . . . , q

(m′′)
n ) tends to some l of form (2.23). But such l is not

equal to zero, since it is a limit of the first subsequence. Therefore, the last situation is
impossible, that is, the weak limit of (2.22) does not exist. �

Using Lemma 2.5 we can prove the following essential result.

Lemma 2.6. Let Λ ⊂ X be some compact set. Then we have that

(2.28) Γ(Λ) ∈ B(C′fin(X)).
Proof. As we have noted, every configuration from Γ(Λ) is finite. Denote

Γ(n)Λ :=
{
γ ∈ Γ(X) ∣∣ |γ| = n, γ ⊂ Λ

}
, n ∈ N; Γ(0)Λ := ∅.

It is clear that

(2.29) Γ(Λ) =
∞⊔

n=0

Γ(n)Λ .

Let n ∈ N be fixed. We will apply Lemma 2.5. Let Q = Λ, points p, q, . . . from Q we
denote by x, y, . . .; δx, δy, . . . are the corresponding δ-functions. According to (2.21), a
configuration γ = [x1, . . . , xn] ∈ Γ(n)Λ will be interpreted as a functional on Cfin(X),

(2.30) lγ =
n∑

j=1

δxj ∈ C
′
fin(X).

We will fix some sequence (εr)∞r=0 of positive numbers tending to zero, εr > 0, εr → 0,
r → ∞. Let Γ(n)εr ⊂ Γ(n)Λ be the set of all configurations γ = [x1, . . . , xn] for which
ρ(xj , xk) ≥ εr for every j, k ∈ {1, . . . , n}, j �= k. Since, in every configuration γ, all the
points x1, . . . , xn are different, we can write

(2.31) Γ(n)Λ =
∞⋃

r=1

Γ(n)εr
.

Therefore the set Γ(n)Λ will be Borel if we prove that every Γ(n)εr is a Borel set.
Consider the set Γ(n)εr ∪ {0}, where 0 denotes the zero functional from C

′
fin(X). From

Lemma 2.5 it is easy to conclude that this set is closed in the weak topology.
So, let (lm)∞m=1 be some sequence from Γ(n)εr ∪ {0} which tends, in the weak sense,

to some l ∈ C
′
fin(X). If among the functionals lm there exists an infinite subsequence

consisting of the zero functionals, then lm → 0, m→∞, since another part of functionals
has form (2.30) and according to Lemma 2.5 tends to a functional of the form (2.23) or
to zero. A functional of the form (2.30) is not equal to zero and, by the assumption, the
limit limm→∞ lm exists, therefore in this case limit functional l = 0.
The second possibility is the following: among the functionals lm we have only a finite

set of zero functionals, then according to Lemma 2.5 this sequence tends to a functional
l of the form (2.30) or to zero.
So, in every case, the limit functional l ∈ Γ(n)εr ∪ {0}, i.e., the latter set is closed in

the weak topology. Therefore Γ(n)εr is a Borel set. Then according to (2.31) Γ(n)Λ is also a
Borel set.
According (2.29) Γ(Λ) is also a Borel set. �

Remark 2.7. From the proof of Lemma 2.6 it follows that for every compact set Λ ⊂ X ,

(2.32) Γ(n)Λ ∈ B(C ′fin(X)), n ∈ N0.
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In this place of the article it is necessary to return to the definition of a configuration
and to formula (2.4), which are needed for understanding this article.
It is possible to say that if we have some configuration γ, then we have some sequence

γ = [x1, x2, . . .] of points xn from X (finite or not), which are necessarily different and
“tend to infinity”, if γ is infinite. Note that we consider a configuration as a subset γ
of points, but not as an independent object. These subsets γ are non overlapping and
every point x ∈ X belongs to some γ.
We will denote by Γ(X) the set of all possible configurations, which can be constructed

using the space X . It is clear that every “partition or stratification” of the space X into
subsets γ (“layers”) gives a complete set of configurations γ ∈ Γ(X). For example, when
we use the trivial stratification of the space X into the set of its points x, then we have
the set of all one-points configurations, X � x �→ [x], which also belongs to Γ(X).
Thus, every stratification of the space X into the layers X → Xstr gives some

Γ(Xstr) =: Γstr(X). Conversely, every “complete” set of configurations γ (i.e. every
points x ∈ X must be belongs to some γ) gives a corresponding stratification of the
space X .
So, we can say that the operations X → Xstr and Γ → Γstr are in one-to-one corres-

pondence. The full set of configurations of the space X , i.e., the set Γ(X), in our point
of view is

(2.33) Γ(X) =
⊔
str

Γstr(X) =
⊔
str

Γ(Xstr),

where
⊔
str means a disjoint union over all str.

For us it is essential to repeat equality (2.18).

Lemma 2.8. Suppose we have compact subspaces Λn ⊂ X, n ∈ N, for which (2.14)
takes place, and subspaces Kn = Λn \ Λn−1, n ∈ N (Λ0 = ∅). Then

(2.34) Γ(X) =
∞⊔

n=1

Γ(Kn),

where we understand Γ(X) to be in the form (2.33) and Γ(Kn) is also in the form (2.33)
(with X replaced with Kn).

Proof. The proof is trivial. It is necessary to use Lemma 2.4 and definition (2.33). More
precisely, we use equality (2.18) and interpret it according to formulation of Lemma 2.4.
Note that every Γ(Kn), according to (2.33), consists only of finite configurations. �

Lemma 2.9. The space Γ(X) belongs to B(C ′fin(X)).
Proof. Lemmas 2.4 and 2.8 give

(2.35) Γ(X) =
∞⊔

n=1

Γ(Kn) ⊂
∞⋃

n=1

Γ(Λn),

since Γ(Kn) ⊂ Γ(Λn).
Using Lemma 2.6 we conclude from (2.35) that the set Γ(X) also belongs to B(C ′fin(X)).

�
The σ-algebra B(C ′fin(X)) contains sufficiently many sets from Γ(X), — the set Γ(X)

itself, Γ(Λ) because of Lemma 2.6, where Λ is a compact subset of X (in particular, every
point x ∈ X). Note that Γ(Kn) = Γ(Λn) \ Γ(Λn−1), n ∈ N, also belongs to B(C ′fin(X)),
since Λn is compact. Also, Γn

Λ ∈ B(C
′
fin(X)) (see (2.32)).

The aim of this Section is to study some non-negative finite measures σ on the σ-
algebra B(C ′fin(X)). Using Lemma 2.9 we conclude that the measure σ is also defined on
Γ(X) with vague topology, i.e., on the σ-algebra B(Γ(X)) as σ-subalgebra of B(C ′fin(X)).
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More precisely, we will investigate σ as a finite measure on B(Γ(X)), i.e.,
(2.36) B(C ′fin(X)) ⊃ B(Γ(X)) � α �→ σ(α) ≥ 0.

Theorem 2.10. If the measure σ (2.36) is nontrivial on Γ(X), i.e., σ(Γ(X)) > 0, then
there exists n ∈ N and some compact set Λ ⊂ X for which

(2.37) σ(Γ(n)Λ ) > 0,

where Γ(n)Λ is a corresponding set of finite configurations (2.29).

Proof. The σ-additivity of the measure (2.36) and identities (2.18), (2.34) give

σ(Γ(X)) = σ(
∞⊔

m=1

Γ(Km)) =
∞∑

m=1

σ(Γ(Km)) > 0,

since σ(Γ(X)) > 0. Therefore there exists m0 ∈ N such that σ(Γ(Km0)) > 0. Since
Km0 ⊂ Λm0 we have Γ(Km0) ⊂ Γ(Λm0), therefore σ(Γ(Λm0)) > 0. Using the latter
inequality and (2.29) we obtain

0 < σ(Γ(Λm0)) = σ(
∞⊔

n=0

Γ(n)Λm0
) =

∞∑
n=0

σ(Γ(n)Λm0
).

Therefore, we have σ(Γ(n)Λm0
) > 0 at least for one n ∈ N. We put Λ = Λm0 . Inequality

(2.37) is proved. �

Some simple consequence of this result is the following: if a nonnegative finite measure
σ, entering Theorem 2.10, on B(Γ(X)) is such that σ(Γ0) = 0, then σ = 0. This poses
the following question: for what measure σ Theorem 2.10 is true? For example, for a
Poisson measure π, we have π(Γ0) = 0 and the condition (2.37) cannot be fulfilled. We
explain this situation in next article.

3. Hilbert spaces and their riggings

In this section we introduce some Hilbert spaces, their riggings and family of commut-
ing operators connected with the material of Section 2. These objects are necessary for
what follows.
At first it is necessary to recall some results concerning weighted Fock spaces con-

structed similarly to (2.1) (see, e. g., [16, 9, 11]). It is known that D is the projective
limit of real Sobolev spaces Hτ =W τ1

2,Re(X, τ2(x) dm(x)), where τ = (τ1, τ2(x)), τ1 ∈ N0,
τ2(x) ≥ 1 is a C∞ weight, m is a Riemannian measure on X . The projective limit (un-
countable) is taken over the set T of all such τ . Note that for every τ ∈ T there exists
τ ′ = (τ ′1, τ ′2(x)) ∈ T , τ ′1 > τ1, ∀x ∈ X τ ′2(x) ≥ τ2(x) (we will write τ ′ > τ) such that the
embedding Hτ ′ ⊂ Hτ is quasi-nuclear, i.e., the embedding operator is of Hilbert–Schmidt
type.
Using the space Hτ we construct the corresponding weighted Fock spaces. So, let

p = (pn)∞n=0, where ∀n ∈ N0 pn > 0, is a number weight. Let F(Hτ , p) be the weighted
Fock space consisting of sequences f = (fn)∞n=0, fn ∈ H �⊗n

τ,c =: Fn(Hτ ), such that

(3.1)

‖f‖2F(Hτ ,p) =
∞∑

n=0

‖fn‖2Fn(Hτ )
pn <∞,

(f, g)F(Hτ ,p) =
∞∑

n=0

(fn, gn)Fn(Hτ )pn.

The number weight p = (pn)∞n=0 such that all pn ≥ 1 will be denoted by p ≥ 1. The
weight (p−1n )∞n=0, pn > 0, is denote by p−1.
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The space Ffin(D) (2.1), which is a base space in this article, can be understood as
the projective limit of the spaces F(Hτ , p). More exactly, we have the following result.

Proposition 3.1. The space Ffin(D) is a projective limit of the spaces F(Hτ , p), where
τ ∈ T and p ≥ 1 are arbitrary,

Ffin(D) = pr lim
τ∈T, p≥1

F(Hτ , p) =
⋂

τ∈T, p≥1
F(Hτ , p).

The proof of this result in the case X = Rd, d ∈ N, can be found in [16], Ch. 14; for
an arbitrary Riemannian manifold X , the proof is similar.
For us, the following result will be essential.

Proposition 3.2. For arbitrary F(Hτ , p) there exists F(Hτ ′ , p
′) with τ ′ ≥ τ , p′ ≥ p

such that the embedding F(Hτ ′ , p
′) ⊂ F(Hτ , p) is quasi-nuclear.

The proof of this fact can be found in [4, 9, 11].
Since Ffin(D) is a projective limit of the spaces F(Hτ , p), the following systems of

open balls,

(3.2) {f ∈ Ffin(D) | ∃τ ∈ T, p ≥ 1 : ‖f − h‖F(Hτ ,p) < ε}, h ∈ Ffin(D), ε > 0,

can be taken as a system of neighborhood of Ffin(D).
The system (3.2) implies validity of the following two proposition.

Proposition 3.3. A linear functional l on Ffin(D) is continuous if and only if there
exists a constant C1 > 0 and a space F(Hτ , p) such that

(3.3) |l(f)| ≤ C1‖f‖F(Hτ ,p), f ∈ Ffin(D).
Proposition 3.4. The convolution � has the following property: for an arbitrary space
F(Hτ , p) there exists a space F(Hτ ′ , p

′) and a constant C2 such that

(3.4) ‖f � g‖F(Hτ ,p) ≤ C2‖f‖F(Hτ′ ,p′)‖g‖F(Hτ′ ,p′)

for all f, g ∈ Ffin(D).
Note that (3.3) is equivalent to continuity of l and (3.4) is equivalent to continuity of

the product � on the space Ffin(D) (see [13]).
From Proposition 3.3 it follows that the dual space (Ffin(D))′ =: F ′fin(D) is the in-

ductive limit of the space (F(Hτ , p))′ =: F(H−τ , p
−1). So, we have the following rigging

(see, e.g., [9, 16]):

(3.5)
ind lim

τ∈T, p≥1
F(H−τ , p

−1) = (Ffin(D))′ ⊃ F(H−τ , p
−1) ⊃ F(H)

⊃ F(Hτ , p) ⊃ Ffin(D) = pr lim
τ∈T, p≥1

F(Hτ , p),

where F(H) := F(H, p) is an ordinary Fock space over H = L2Re(X, dm(x)) and p =
(1, 1, . . .).
We will usually denote the action of a vector from the negative space on a vector

from the positive space of rigging (3.5) with zero space F(H) by (· , ·)F(H) and also by
〈· , ·〉F(H) or 〈· , ·〉. The same is true for other riggings.
We will investigate positive functionals on the nuclear algebraA := Ffin(D) of complex-

valued finite functions with convolution � by means of the spectral theory of commuting
selfadjoint operators. To this end, it is necessary to introduce at first the corresponding
Hilbert space.
Introduce, in the algebra A, a natural involution A � f = f(ξ) → f̄ := f(ξ) ∈ A.

It follows from (2.6) that f̄ � ḡ = f � g for all f, g ∈ A. A continuous linear functional
s ∈ A′ := F ′fin(D) is called nonnegative if

s(f � f̄) ≥ 0, f ∈ A.
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Any nonnegative functional s generates the following quasi-scalar product on A:
(3.6) (f, g)Hs := s(f � ḡ), f, g ∈ A.
Identifying every f ∈ A such that s(f �f) = 0 with zero, considering the corresponding

classes of f ∈ A and completing the space of these classes, we construct a Hilbert space
Hs. Let {f} be the class containing f ∈ A, and let {A} be the space of all such classes.
Then {A} ⊂ Hs and {A} is dense in Hs. The topology in {A} is induced by the topology
in A, i.e., by the topology of the space A = Ffin(D).
In the space Hs we will investigate some family of Hermitian operators A(ϕ), where

ϕ ∈ D ⊂ F1(D) is a real-valued function of point ξ ∈ Γ(1) ⊂ Γ0.
Introduce at first the operation

A � f �→ ϕ � f ∈ A.
This operation is Hermitian in the quasi-scalar product (3.6)

(ϕ � f, g)Hs = s(ϕ � f � g) = s(f � (ϕ � g)) = (f, ϕ � g)Hs , f, g ∈ A.
Therefore (see, e. g., [4, 9]) this operation can be considered as acting in the set of the
corresponding classes: {A} � {f} �→ {ϕ�f} ∈ {A}. So, we have introduced a Hermitian
operator A(ϕ) defined densely in Hs:

(3.7) Dom(A(ϕ)) = {A} � {f} �→ A(ϕ){f} := {ϕ � f} ∈ {A}, f ∈ A.
Any two such operatorsA(ϕ), A(ψ) (ϕ, ψ ∈ D) commute formally: A(ϕ){A} ⊂ {A} =

Dom(A(ψ)), A(ψ){A} ⊂ {A} = Dom(A(ϕ)), and for every {f} ∈ {A}, according to
(3.7),

A(ϕ)A(ψ){f} = A(ϕ){ψ � f} = {ϕ � ψ � f} = {ψ � ϕ � f} = A(ψ)A(ϕ){f}.
Then how to check whether the set of all closures Ã(ϕ) of A(ϕ) is a family of selfadjoint
(strongly) commuting operators?
Now a sufficient condition for this fact is the following (see [9], Ch. 5, Theorem 1.15;

or [16], Ch. 13, Theorem 9.3; also [5]): there exists z ∈ C \ R such that for each ϕ, ψ ∈
D there exists a total set of vectors which are quasi-analytic for the operators A(ϕ),
A(ψ), A(ϕ) � (A(ψ)− z1){A} (Note that some another approach to selfadjointness and
commutativity of operators A(ϕ) is contained in [15], Theorem 3 and pp. 11–12. It based
is on some general theorems, cited in [15]).
Recall that for an operator A acting on a Hilbert space H, a vector f ∈ H is called

quasi-analytic if f ∈
∞⋂

n=1
Dom(An) and the class C{mn} with mn = ‖Anf‖H is quasi-

analytic, i.e.,
∞∑

n=1

‖Anf‖− 1
n

H =∞.

According to (2.5), {A} =
∞⋂

n=1
Dom((A(ϕ))n) for every ϕ ∈ D. In what follows we

demand the following condition to hold.

Condition 3.5 (of selfadjointness). There exists a linear set M ⊂ {A} such that
(1) M is invariant w. r. t. every operator A(ϕ) (ϕ ∈ D);
(2) M is total in Hs;
(3) every vector {f} ∈ M is quasi-analytic for every operator A(ϕ) (ϕ ∈ D), i. e.,

the class

(3.8) C{‖(A(ϕ))n{f}‖Hs}
is quasi-analytic.
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From 1) – 3) it follows now that (Ã(ϕ))ϕ∈D , where Ã(ϕ) denotes the closure of A(ϕ),
is a family of selfadjoint commuting operators.
Note that, due to the fact that M is invariant for A(ψ) (ψ ∈ D), we have (A(ψ) −

z1)M ⊂ M for Im z �= 0, and thus the condition (3.8) provides the conditions in the
above mentioned theorem from [9].
Note that for the functional s ∈ F ′fin(D), which is generated by some Borel measure ν

on Γ0, i.e.,

(3.9) s(f) =
∫
Γ0

f(ξ) dν(ξ) =
∞∑

n=0

∫
Γ(n)

f(ξ) dν(ξ), f ∈ Ffin(D),

it is possible to give some sufficient condition which would guaranty Condition 3.5 to
hold. Namely (see [13]), construct, for every compact Λ ⊂ X and for every k ∈ N, the
sequence

mn =
( 2k∑

�=0

(
(�+ 2n)!

�!

2n∑
j=0

ν
(
Γ(�+j)
Λ

))) 1
2

, n ∈ N0.

If the class C{mn} is quasi-analytic for every Λ and k, then Condition 3.5 is fulfilled.
The latter formula is complicated. It is possible to give a more simple sufficient estimate
which would imply that the above class C{mn} is quasi-analytic and therefore Condi-
tion 3.5 is fulfilled. This estimate is the following: for every compact set Λ ⊂ X there
exists a constant CΛ such that

(3.10) ν(Γ(n)Λ ) ≤ Cn
Λ, n ∈ N0.

We will apply the generalized eigenvectors expansion for operators Ã(ϕ). To this end
it is necessary to construct a rigging of the space Hs.
The following result takes place.

Lemma 3.6. There exists weights τ ∈ T , p ≥ 1, and a constant C > 0 such that

(3.11) |s(f � f̄)| = ‖f‖2Hs
≤ C‖f‖2F(Hτ ,p), f ∈ A = Ffin(D).

Proof. Using inequality (3.3) for l = s and (3.4) we immediately get (3.11). �

We fix now τ ∈ T , p ≥ 1 such that inequality (3.11) holds. Consider the space
F(Hτ , p) which is a completion of A = Ffin(D) with respect to the corresponding norm
(3.1). Introduce, according to Lemma 3.6, the linear subspace

(3.12) N := {f ∈ F(Hτ , p) | s(f � f̄) = 0}.
Then the space Hs can be regarded as an orthogonal complement to N in the space

F(Hτ , p) (see [9], Ch. 5, § 5),
(3.13) F(Hτ , p) = Hs ⊕N, i.e., Hs = F(Hτ , p)�N.
Namely, there is a one-to-one correspondence between the class {f} ∈ Hs and the cor-
responding vector from Hs, {f} ↔ f ⊕N . The scalar product of two classes is equal to
the scalar product of the corresponding components in Hs from (3.13) etc.
Construct a quasi-nuclear rigging of the space Hs (3.1). To do this, we construct a

rigging of type appearing in Proposition 3.2

(3.14) F(Hτ , p) ⊃ F(Hτ ′ , p
′),

where the weights τ ′, p′ are so large that the embedding (3.14) is quasi-nuclear. We fix
these weights τ ′, p′.
Applying representation (3.13) to F(Hτ ′ , p

′) from (3.14) we get

(3.15) F(Hτ ′ , p
′) = Hs,+ ⊕ (N ∩ F(Hτ ′ , p

′)),
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where
Hs,+ := Hs ∩ F(Hτ ′ , p

′).
From the quasi-nuclearity of the embedding (3.14) and (3.13), (3.15) it follows that

the embedding Hs,+ ⊂ Hs is also quasi-nuclear.
As a result, we have a rigging of the base space Hs,

(3.16) Hs ⊃ Hs,+ ⊃ {A} =: D
with a quasi-nuclear embedding Hs,+ ⊂ Hs. On the set {A} of classes, every operators
A(ϕ), ϕ ∈ D, is defined. Recall that this set {A} is topologized by means of the topology
in A = Ffin(D), therefore the restriction A(ϕ) � {A} acts continuously from D = {A}
into Hs,+.
Thus rigging (3.16) is standardly connected with our family of operators (Ā(ϕ))ϕ∈

(see [9], Ch. 3, §2; [16], Ch. 15, §2). Denoting by Hs,− the negative space corresponding
to the zero space Hs and the positive Hs,+ we get the rigging

(3.17) Hs,− ⊃ Hs ⊃ Hs,+ ⊃ D.

We can construct a generalized eigenvectors expansion for the family (Ā(ϕ))ϕ∈ using
this rigging. But we will have a certain complication, — the structure of the zero space
Hs is fairly complex. According to (3.16), it is an orthogonal complement to a sufficiently
complicated subspace N . Therefore in the case N �= 0, the use of the rigging (3.17) is
inconvenient.
At first we consider the case N = 0, the case N �= 0 will be considered in another

article.
Recall that for arbitrary rigging

(3.18) H− ⊃ H ⊃ H+

it is easy to prove the existence of bounded operators IH : H− → H+ such that

(3.19) (α, u)H = (IHα, u)H+ = (α, I−1H u)H− , α ∈ H−, u ∈ H+

(see [4], Ch. 5; [16], Ch. 14).

Lemma 3.7. Consider the riggings with equal positive spaces

(3.20) H− ⊃ H ⊃ H+, F− ⊃ F ⊃ F+ = H+.

Then a unitary operator U : F− → H− exists for which

(3.21) (Uα, u)H = (α, u)F , α ∈ F−, u ∈ F+.
Proof. It is very simple. We put U = I−1H IF , where the operators IH , IF are connected
with the riggings (3.20) by (3.18), (3.19). Then using (3.19) we get

(Uα, u)H = (I−1H IFα, u)H = (IH(I−1H IFα), u)H+

= (IFα, u)H+ = (IFα, u)F+ = (α, u)F

for all α ∈ F− and u ∈ F+ = H+. �

So, we will start now with initial weights τ = (0, 1) ∈ T , p = (1, 1, . . .), and fix the
corresponding weights τ ′, p′; we denote them by τ0, p0. In other words we consider the
ordinary Fock space F(H) constructed from the space H = L2Re(X, dm(x)). i.e,

(3.22)

F(H) =
∞⊕

n=0

Fn(H), Fn(H) := H
�⊗n,

f = (fn)∞n=0 ∈ F(H), ‖f‖2F(H) =
∞∑

n=0

‖fn‖2Fn(H) <∞.
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The corresponding part of the chain has the form

(3.23) F(H−τ0 , (p0)−1) ⊃ F(H) ⊃ F(Hτ0 , p0);

the last embedding in (3.23) is quasi-nuclear.
As we have mentioned above, we will consider the case where

(3.24) {f ∈ Ffin(D) | s(f � f̄) = 0} = 0,

i.e., a positive (non-degenerate) case. This conditions gives that the subspace N (3.12)
is equal to zero and therefore according to (3.15) we have F(Hτ0 , p0) = Hs,+. Thus our
main rigging (3.17) now has the form

(3.25) Hs,− ⊃ Hs ⊃ Hs,+ ⊃ D,

where Hs,+ = F(Hτ0 , p0).
Comparing the rigging (3.23), (3.25) with rigging (3.20) we get the following corollary

to Lemma 3.7

Corollary 3.8. In the positive case (3.24), i.e., N = 0, there exists a unitary operator
U : Hs,− → F(H−τ0 , (p0)−1) such that (3.21) holds.

This fact will be used bellow in the projection spectral theorem for the family

(Ã(ϕ))ϕ∈D
of selfadjoint commuting operators.

Remark 3.9. The positivity condition (3.24) it is not essential for developing the theory
in Sections 4–7. See the articles [10, 8, 13] and the general theory of eigenfunctions
expansion, e.g. [9] Ch. 5, Sect. 5, Subsect. 1; see also [4, 5]. But for applying this
spectral theory to Bogoliubov functionals, some changes are needed.

4. Projective spectral theorem for a family of commuting selfadjoint

operators linearly depending on a parameter

In this section we recall some general result concerning generalized eigenvector ex-
pansion which we will use below. For a detailed account of these results, see [9], Ch. 4,
Theorem 1.6, Ch. 3, Theorems 3.1 and 3.2 and also in [4], Ch. 5; [5], Ch. 2; [16], Ch.14;
[6, 7].
Let H be a separable complex Hilbert space and let A = (A(ϕ))ϕ∈Φ be a family a

selfadjoint, strongly commuting operators A(ϕ) in H, Φ be some space of parameters.
Let

(4.1) H− ⊃ H ⊃ H+ ⊃ D

be a rigging of H such that H+ is a Hilbert space topologically and quasi-nuclear em-
bedded into H, H− is the dual of H+ with respect to the zero space H, D is a linear
topological space that is topologically embedded into H+.
We suppose that operator A(ϕ) and chain (4.1) are standardly connected, i.e., D ⊂

Dom(A(ϕ)) for all ϕ ∈ Ψ and the restriction A(ϕ) � D acts from D into H+ continuously.
We will assume that the operators A(ϕ) depend linearly on ϕ . This mean that the

space Φ is real linear topological and we have the following rigging

(4.2) Φ′ ⊃ H ⊃ Φ.

Here H is some real Hilbert space, Φ is dense in H and the embedding Φ ↪→ H is
continuous; Φ′ is the dual space of Φ. We stress that the spaces in (4.2) are real, the
embedding Φ ↪→ H is not necessarily nuclear.
The main condition is the following: we assume that for every f ∈ D the mapping

(4.3) Φ � ϕ �→ A(ϕ)f ∈ H+



18 YU. M. BEREZANSKY AND V. A. TESKO

is linear and weakly continuous. Of course, the rigging (4.2) may be degenerate: it is
possible that Φ = H .
We will consider only the situation where there exists a strong cyclic vector Ω for our

family A of operators A(ϕ). Then the join spectrum of this family is simple and the
corresponding Fourier transform is a scalar-valued function.
Let us recall that a vector Ω ∈ D is called a strong cyclic vector for the family

A = (A(ϕ))ϕ∈Φ if for some ϕ1, . . . , ϕp ∈ Φ and some nonnegative integers m1, . . . ,mp

Ω ∈ Dom(Am1(ϕ1) . . . Amp(ϕp)), the vectors Am1(ϕ1) . . . Amp(ϕp)Ω belong to D and the
set of these vectors, when m1, . . . ,mp ∈ N0, p ∈ N, is total in the space H+ (and, hence,
also in H).
The corresponding projection spectral theorem is the following.

Theorem 4.1. Let A = (A(ϕ))ϕ∈Φ be a family of strongly commuting selfadjoint op-
erators A(ϕ) in the space H and all of the above mentioned conditions are fulfilled (the
existence of rigging (4.1), standardly connected with each A(ϕ), linearity condition (4.3),
and existence of a strong cyclic vector Ω).

Then, on the space Φ′, with the topology of weak convergence, there exists a nonnegative
finite Borel measure ρ (a spectral measure) such that for ρ-almost every λ ∈ Φ′ there is
a generalized joint eigenvector ξ(λ) ∈ H− (ξ(λ) �= 0), i.e.,

(4.4) (ξ(λ), A(ϕ)f)H = (λ, ϕ)H(ξ(λ), f)H, ϕ ∈ Φ, λ ∈ Φ′, f ∈ D.
The corresponding Fourier transform

(4.5) H ⊃ H+ � f �→ (If)(λ) := f̂(λ) := (ξ(λ), f)H ∈ L2(Φ′, dρ(λ))
is an isometric operator acting from the space H into L2(Φ′, dρ(λ)). The extension of
I by continuity is a unitary operator between these spaces. The image of any operator
A(ϕ) under I is the operator of multiplication by (λ, ϕ)H in the space L2(Φ′, dρ(λ)).

We will use this theorem in the next section. So, the rigging used is the rigging (3.25)
(with condition (3.24), i.e. N = 0). The family A of operators consists of operators Ā(ϕ)
(3.7) in the space Hs, where ϕ ∈ Φ = D. The space H is equal to L2Re(X, dm(x)).

5. Spectral representation

We will apply now the general facts from Section 4 to our situation. At first we prove
some lemmas. We consider the following linear operators A(ϕ) defined on the algebra A:
(5.1) A � f �→ A(ϕ)f = ϕ � f ∈ A,
where ϕ is a real-valued function in D ⊂ F1(D) ⊂ A (using (5.1), and the operator A(ϕ)
has been constructed in Section 3, see (3.7)).
Note that it is sufficient to define A(ϕ) by (5.1) on f that are equal to ψ⊗n, where ψ

is an arbitrary complex-valued function from DC := C∞fin,C(X) and n ∈ N0 is arbitrary.
This follows from density of linear combinations of such ψ⊗n in the space A = Ffin(D).
Lemma 5.1. For the operators (5.1), the following representation takes place:

(5.2) A(ϕ) = A+(ϕ) +A0(ϕ), ϕ ∈ D,
where A+(ϕ) and A0(ϕ) are the creation and neutral operators, i.e.,

A+(ϕ)ψ⊗n = (n+ 1)ϕ⊗̂ψ⊗n, A0(ϕ)ψ⊗n = n(ϕψ)⊗̂ψ⊗(n−1), n ∈ N0.

Here ψ ∈ Dc and thus ψ⊗n ∈ D�⊗n
c = Fn(D), (ϕψ)(x) := ϕ(x)ψ(x), ψ⊗(−1) := 0.
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Proof. Consider at first the main case where n ∈ N in (5.2). According to Section 2 we
will regard the function ϕ as the real-valued function ϕ(ξ) = ϕ([x1]) on Γ(1) ⊂ Γ0 and
f(x1, . . . , xn) = ψ⊗n(x1, . . . , xn) = ψ(x1) · · ·ψ(xn) as the function f(ξ) = f([x1, . . . , xn])
on Γ(n) ⊂ Γ0. According to (5.2) and (2.6) we have that ∀ξ = [x1, . . . , xn]

(5.3)
(A(ϕ)f)(ξ) = (ϕ � f)(ξ) = (f � ϕ)(ξ) = (f � ϕ)([x1, . . . , xn])

=
∑

ξ′∪ξ′′=ξ

f(ξ′)ϕ(ξ′′) =
∑

ξ′�ξ′′�ξ′′′=ξ

f(ξ′ ∪ ξ′′)ϕ(ξ′′ ∪ ξ′′′).

Since ϕ is a function on Γ(1), i.e., it depends on configuration [x] of order 1; ξ′′ and
ξ′′′ in (5.3) can only be either ∅ or [x]. Since f depends on [x1, . . . , xn], the variable ξ in
(5.3) can be from Γ(n) or Γ(n+1) only. Therefore, ξ′′ can be either [x] or ∅, respectively,
and then, as it is easy to calculate, the last sum in (5.3) is equal to n(ϕψ)⊗̂ψ⊗(n−1)
in the first case and to (n + 1)ϕ⊗̂ψ⊗n in the second one. As a result, we have proved
representation (5.3) for n ∈ N.
In the case n = 0 the above calculation gives that the last term is equal to zero. �

Formulas (5.2) show that the operator A(ϕ) is an operator-valued matrix operation
in the Fock space F(H) (3.22).
Namely, at first we note that in every space Fn(H) = H �⊗n from (3.22), the set of

functions ψ⊗n, where ψ ∈ C∞fin,C(X) are arbitrary, is total. Therefore the operators
A+(ϕ), A0(ϕ), for every fixed ϕ ∈ D, can be extended by linearity and continuity from
ψ⊗n to fn ∈ Fn(H). Formulas (5.2) show that the resulting operators are continuous
in the sense of the norm of the spaces Fn(H). As a result, we have constructed the
continuous operators: ∀n ∈ N0, ∀ϕ ∈ D

(5.4)
Fn(H) � fn �→ an(ϕ)fn := (n+ 1)ϕ⊗̂fn ∈ Fn+1(H),

Fn(H) � fn �→ bn(ϕ)fn ∈ Fn(H).

Note that, for fn = ψ⊗n, formula (5.4) has form (5.2). The operators an(ϕ), bn(ϕ) (5.4)
are bounded, bn(ϕ) is selfadjoint.
Now we can say that the operator A(ϕ) from (5.2) in the Fock space F(H) has the

form of an operator Jacobi matrix: ∀ϕ ∈ D

(5.5) A(ϕ) = A+(ϕ) +A0(ϕ) =

⎛⎜⎜⎜⎝
b0(ϕ) 0 0 0 . . .
a0(ϕ) b1(ϕ) 0 0 . . .
0 a1(ϕ) b2(ϕ) 0 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎠ ,

where the matrix A+(ϕ) consists of an(ϕ) and A0(ϕ) of bn(ϕ).
Note that this matrix generates, in the Fock space F(H), a corresponding operator.

At first it is defined on finite sequences f = (fn)∞n=0 from F(H), and after this, it is
necessary to take its closure. A connection between this operator and the operator Ã(ϕ)
on the space Hs we will be considered later.
Let us again consider the operator Ā(ϕ), ϕ ∈ D = Ψ, (3.7) acting on the space Hs

from the rigging (3.25). We will assume that the condition (3.24) (i.e., N = 0) is fulfilled.
Using the elements of matrix A(ϕ) (5.5), we can rewrite the action of this operator in

the following form (see (5.4)): ∀ϕ ∈ D and ∀f = (fn)∞n=0 ∈ Ffin(D)

(5.6)
(A(ϕ)f)n = an−1(ϕ)fn−1 + bn(ϕ)fn = nϕ⊗̂fn−1 + bn(ϕ)fn, n ∈ N,

(A(ϕ)f)0 = b0(ϕ)f0.

Lemma 5.2. The vector Ω = (1, 0, 0, . . .) ∈ D ⊂ Hs,+ is a strong cyclic vector for the
family (Ā(ϕ))ϕ∈D.
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Proof. In our case the positive space from rigging (3.25) is the space Hs,+ = F(τ0, p0).
Using the formula (5.6)) we conclude that, for m1, . . . ,mp ∈ N0, p ∈ N, the vectors
Am1(ϕ1) . . . Amp(ϕp)Ω belong to Ffin(D). More exactly, we have

(5.7) Am1(ϕ1) . . . Amp(ϕp)Ω ∈
m1+···+mp⊕

n=0

Fn(H), ϕ1, . . . , ϕp ∈ D, m1, . . . ,mp ∈ N0.

Let us stress that in (5.7) every ϕk is an arbitrary function from D.
A vector Ω is a strong cyclic vector for the family (Ā(ϕ))ϕ∈D if the set (5.7) is total

in the space F(τ0, p0). From the form of the scalar product in the space F(τ0, p0) it is
easy to conclude that from the totality of the set (5.7) in

⊕m1+···+mp

n=0 Fn(H) it follows
its totality in the space F(τ0, p0).
Therefore it is sufficient to prove the totality of (5.7) in the space

⊕m1+···+mp

n=0 Fn(H).
Using the commutativity of the operators A(ϕ), ϕ ∈ D we can rewrite the relation

(5.7) in the following form: for arbitrary m ∈ N the set

(5.8) {Am1(ϕ1) . . . Amp(ϕp)Ω |ϕ1, . . . , ϕp ∈ D} ⊂
m⊕

n=0

Fn(H) =: Fm.

It is necessary to prove that ∀m ∈ N the set (5.7) is total in Fm.
For the proof at first we note that the formulas (5.5), (5.6) give

(5.9) an−1(ϕ) . . . a0(ϕ)1 = ((A+(ϕ))nΩ)n ∈ Fn(H), ϕ ∈ D, n ∈ N0.

From (5.6) we conclude that the expression in (5.9) is equal to n!ϕ⊗n with arbitrary
ϕ ∈ D and therefore the set (5.9) is total in the space Fn(H) for every n ∈ N0.
From this totality for n = 0, . . . ,m we conclude that the set

(5.10) {A+(ϕ1) . . . A+(ϕm)Ω |ϕ1, . . . , ϕm ∈ D} ⊂ Fm

is total in Fm, m ∈ N.
To prove totality of (5.8) in Fm (and, consequently, to prove the lemma) it is necessary

to conclude, from the totality of the set (5.10) in Fm for every m ∈ N, that the set (5.8)
is total. Note that we can rewrite (5.8) in a similar form but with the matrices A(ϕ)
instead of the operators A(ϕ). Then it is necessary to prove that for all m ∈ N the set

(5.11) {A(ϕ1) . . . A(ϕm)Ω |ϕ1, . . . , ϕm ∈ D} ⊂ Fm

is total in Fm.
We will prove this fact by induction. Let the totality of (5.11) in Fm be true for every

m = 1, . . . , k and we will prove that it is true for m = k + 1.
Let f be a vector from Fk+1 and ε > 0. Since set (5.10) is total for m = k +

1, we have that there is a vector g, which is a linear combination of the vectors Ω,
A+(ϕ(1)1 )Ω, . . . , A+(ϕ(k+1)k+1 ) . . . A+(ϕ(k+1)1 )Ω with some ϕ(k+1)k+1 , . . . , ϕ

(k+1)
1 from D such

that ‖f − g‖Fk+1 < ε.
By using the equality A+(ϕ) = A(ϕ)−A0(ϕ) (see (5.5)) we construct a corresponding

to g vector h by replacing, in its representation, the matrices A+(ϕ) by A(ϕ). Then we
can write that g = h+ r, where h is a linear combination of Ω,

A+(ϕ(1)1 )Ω, . . . , A+(ϕ(k+1)k+1 ) . . . A+(ϕ(k+1)1 )Ω

and r is constructed as h but using the matrices A0(ϕ) instead of A(ϕ). From the way
the matrices A0(ϕ) act on the Fock space F(H) (see (5.5)) we conclude that vector r
belongs to Fk.
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By the inductive hypothesis, the vector r can be approximated by a linear combination
of vectors from (5.11)) for m = k: ‖r − s‖Fk

< ε. As a result,

‖f − (h+ s)‖Fk+1 ≤ ‖f − (h+ r)‖Fk+1 + ‖r − s‖Fk+1

= ‖f − (h+ r)‖Fk+1 + ‖r − s‖Fk
< 2ε

and h+ s is a linear combination vectors (5.11) for m = k + 1.
From the totality of the set (5.10) in the case m = 1 and the identity

A(ϕ)Ω = A(ϕ)(1, 0, 0, . . .) = (b0(ϕ)1, a0(ϕ)1, 0, 0, . . .)

it follows that our assumptions is true for k = 1. Therefore (5.11) is total for every
k ∈ N. �

We now pass to the spectral representation for our family of selfadjoint commuting
operators (Ā(ϕ))ϕ∈D acting on the space Hs from rigging (3.25). Condition 3.5 and the
positivity assumption (3.24) will be assumed in Section 5.
We will apply now the result of Section 4, in particular, Theorem 4.1 to our family

of operators A = (Ā(ϕ))ϕ∈D. Now the role of rigging (4.1) is played by rigging (3.25)
which is standardly connected with our operators (3.7); the space D is now equal to
Ffin(D) (see (3.16) and condition (3.24)). The space Φ is equal to D, the “eigenvalue”
λ ∈ Φ′ = D′ will be denoted by ω ∈ D′; H = L2(X, dm(x)). Now equality (4.4) for the
generalized eigenvector ξ(ω) ∈ Hs,− has the form

(5.12) (ξ(ω), A(ϕ)f)Hs = 〈ω, ϕ〉(ξ(ω), f)Hs , ϕ ∈ D, ω ∈ D′, f ∈ D = Ffin(D);
〈ω, ϕ〉 = 〈ϕ, ω〉 := (ω, ϕ)H = (ω, ϕ)L2(X,dm(x)).

For us it is convenient to pass from the generalized eigenvector ξ(ω) to its “polynomial”
form P (ω) ∈ F(H−τ0 , (p0)−1), where the latter space is the negative space from rigging
(3.23) (compare with [7]). So, using Lemma 3.7 and Corollary 3.8 we can assert that
there is a unitary operator U : Hs,− → F(H−τ0 , (p0)−1) for which we have equality of
type (3.21),

(5.13) (Uξ(ω), f)F(H) = (ξ(ω), f)Hs , f ∈ D = Ffin(D)
(note that now, in equality (3.21), rigging (3.20) are equal to (3.5) and (3.23), respec-
tively).
We put, for all ω ∈ D′,

(5.14) Uξ(ω) =: P (ω) ∈ F(H−τ0 , (p0)−1), i.e., P (ω) = (Pn(ω))∞n=0,

in particular, for all n ∈ N0,

Pn(ω) ∈ (D�⊗n)′.

Equalities (5.12) and (5.13) give

(5.15) (P (ω), A(ϕ)f)F(H) = 〈ω, ϕ〉(P (ω), f)F(H), ϕ ∈ D, ω ∈ D′, f ∈ Ffin(D).
The functions D′ � ω �→ Pn(ω) ∈ (D�⊗n)′, n ∈ N0, are similar to polynomials of the

first kind. Using these “polynomials” we can write the Fourier transform (4.5) in our
case in the form

(5.16) (If)(ω)f̂(ω) = (f, P (ω))F(H) =
∞∑

n=0

(fn, Pn(ω))Fn(H)

for all ω ∈ D′ and all f = (fn)∞n=0 ∈ Ffin(D).
So, due to the projective spectral theorem (Theorem 4.1) and (5.16) we can claim the

following (main in this Section) result.
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Theorem 5.3. Let Condition 3.5 and assumption (3.24) for the family (Ã(ϕ))ϕ∈D be
fulfilled. Then this family generates a Fourier transform I given by

(5.17)

Ffin(D) � f = (fn)∞n=0 �→ (If)(ω) =: f̂(ω) = (f, P (ω))F(H)

=
∞∑

n=0

(fn, Pn(ω))Fn(H) ∈ L2(D′, dρ(ω)).

Here ρ is the spectral measure of the family being a probability Borel measure on the space
D′ with weak topology. The closure Ĩ by continuity of the operator I is a unitary operator
between the spaces Hs and L2(D′, dρ(ω)), it turns each operator Ã(ϕ) into the operator
of multiplication by the function 〈ω, ϕ〉.
Proof. It follows from Theorem 4.1 and the considerations given above. �

Note that this Theorem is also true in the degenerate case (i.e., if (3.24) is not valid).
See [10, 8, 13].

6. A study of the Fourier transform and spectral measure.

Main technical results

In this section we prove that the space D′ in representation (5.17) can be replaced
with the space Γ (2.4) of all infinite configuration, and the Fourier transform I coincides
with the Lenard transform K. This result is actually the main theorem of the article.
We will assume that assumption (3.24) is fulfilled.
At first we will investigate in more details the “polynomials” Pn(ω) introduced in

(5.14)–(5.16). Return to the operator Jacobi matrices A(ϕ), (5.5), acting in the Fock
space F(H), their elements act by (5.4). We have an(ϕ) : Fn(H) → Fn+1(H) and
bn(ϕ) : Fn(H)→ Fn(H) (it is selfadjoint) are real creation and neutral operators defined
in accordance with (5.4); ∗ and + are used respectively for the adjoint operator in F(H)
and for the adjoint operator w. r. t. the zero space of the corresponding chain. It is
known that the annihilation operator a∗n(ϕ) : Fn+1(H)→ Fn(H) acts as follows:

(6.1) a∗n(ϕ)ψ
⊗(n+1) = (n+ 1)(ϕ, ψ)Hψ⊗n.

From (5.5), (5.6), (6.1) and (5.15) we get

(6.2)

∀ϕ ∈ D, ∀f ∈ Ffin(D)

(P (ω), A(ϕ)f)F(H) =
∞∑

n=0

(Pn(ω), an−1(ϕ)fn−1 + bn(ϕ)fn)Fn(H)

=
∞∑

n=0

((a∗n(ϕ))
+Pn+1(ω) + (bn(ϕ))+Pn(ω), fn)Fn(H)

= 〈ω, ϕ〉 (P (ω), f)F(H) =
∞∑

n=0

(〈ω, ϕ〉Pn(ω), fn)Fn(H).

Here + denotes the conjugation w. r. t. the chain

D′ ⊃ H−τ0 ⊃ L2(X, dm(x)) ⊃ Hτ0 ⊃ D.
Since f in (6.2) is arbitrary, we get the following recurrence relation for Pn(ω):

(6.3)
∀ϕ ∈ D, ∀ω ∈ D′, ∀n ∈ N0

(a∗n(ϕ))
+Pn+1(ω) = 〈ω, ϕ〉Pn(ω)− (bn(ϕ))+Pn(ω), P0(ω) = 1.

The equality (6.3) can be regarded as a recurrence formula for the calculating Pn(ω).
But it is possible to write (6.3) in another more simple form.
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Namely, since Pn(ω) ∈ (D�⊗n)′ and thus it is symmetric and real, in order to find
Pn(ω), it is sufficient to know (Pn(ω), ϕ⊗n)F(H) for every ϕ ∈ D. Let us apply (6.2) for
f = (fn)∞n=0, where fn = ϕ⊗n and every other fm = 0. Then (6.2) turns into

(6.4)
(Pn+1(ω), an(ϕ)ϕ⊗n)Fn+1(H) + (Pn(ω), bn(ϕ)ϕ⊗n)Fn(H)

= 〈ω, ϕ〉 (Pn(ω), ϕ⊗n)Fn(H).

Taking into account the formulas (5.4), (5.2) for an(ϕ) and bn(ϕ) we rewrite (6.4) as
follows:

(6.5)

∀ϕ ∈ D, ∀n ∈ N0

(Pn+1(ω), ϕ⊗(n+1))Fn+1(H)

=
1

n+ 1

(
(Pn(ω)⊗ ω, ϕ⊗(n+1))Fn+1(H) − (Pn(ω), nϕ2 ⊗ ϕ⊗(n−1))Fn(H)

)
,

P0(ω) = 1.

As a result, we have the recurrence formula (6.5) for calculating Pn(ω). We see that
P1(ω) = ω, Pn(ω) is a “polynomial” of order n with real coefficient but in its expression
it is necessary to write ϕ⊗m instead of the ordinary power of variable.
For calculation of polynomials Pn(ω) there is also a formula other than (6.5). It is

connected with an expansion of some function into a power series. Let us formulate the
corresponding result, its complete full proof can be found in the paper [13], Theorem 4.1.
For any ω ∈ D′ consider the function

e〈ω,log(1+ϕ)〉,

where ϕ ∈ D and ∀x ∈ X ϕ(x) > −1. It is analytic w. r. t. ϕ in a neighborhood U(0)
of 0 from Dc, and thus it can be decomposed into a series w. r. t. tensor powers ϕ⊗n. It
is claimed that the coefficients of this decomposition are just Pn(ω), i. e.,

(6.6) e〈ω, log(1+ϕ)〉 =
∞∑

n=0

(Pn(ω), ϕ⊗n)Fn(H).

After result (6.5) for Pn(ω) we can pass to investigation of the spectral measure ρ of
our family (A(ϕ))ϕ∈D′ .
At first we will consider the set Γ(X), (2.4), of finite and infinite configurations overX

into D′. From the results of Section 2 we will use only the initial definitions (2.2), (2.3)
and (2.4). Let γ = [x1, x2, . . .] be some infinite configuration, i.e., the points xj ∈ X are
distinct and, for every compact set Λ ⊂ X , only a finite number of these points belongs
to Λ. Recall that for every n ∈ N the finite configuration ξ = [x1, . . . , xn] belongs to Γ,
i.e., Γ(n) ⊂ Γ.
We will identify γ with a σ-finite Borel measure on X of the kind

μγ :=
∑
x∈γ

μx,

where μx is a unit measure concentrated at the point x. From the other side, each
measure μγ generates a linear continuous functionals ωγ over the space D,

(6.7) D � ϕ �→ ωγ(ϕ) =
∫

X

ϕ(x) dμγ(x) =
∑
x∈γ

ϕ(x) ∈ R.

Because of finiteness of ϕ and condition (2.4), the mapping (6.7) is indeed a linear
continuous functional over D, i. e., ωγ ∈ D′. We have

(6.8) ωγ :=
∑
x∈γ

δx, γ ∈ Γ,
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where δx ∈ D′ denotes the δ-function concentrated at the point x ∈ X . This series is
convergent in the weak topology in D′ since the functions ϕ ∈ D are finite (moreover,
each sum 〈ωγ , ϕ〉 is finite).
We will identify γ ∈ Γ and ωγ ∈ D′ and, as a rule, use the same notations for them,

γ = ωγ . Therefore, we can rewrite, for example, in the weak topology on D′,

(6.9) D′ ⊃ Γ � γ = [x1, x2, . . .] =
∞∑

n=0

[xn].

So, identifying γ with ωγ we get the inclusion Γ(X) ⊂ D′. We will endow Γ(X) with
the relative topology generated by the weak topology of the space D′.
Consider the results of Section 2 connected with vague topology and topologization

of Γ = Γ(X) with week topology in D′, regarding Γ as some part of D′.
We start with an almost obvious fact.

Proposition 6.1. The vague topology on Γ(X) is the same as the week topology on
Γ(X) ⊂ D′.

Proof. Let γ(m) = [x(m)
1 , x

(m)
2 , . . .] ∈ Γ, m ∈ N, converge to γ = [x1, x2, . . .] ∈ Γ with

respect to the vague topology. This means that for every f ∈ Cfin(X) we have

(6.10)
∞∑

j=1

f(x(m)
j )→

∞∑
j=1

f(xj) as m→∞.

But this is the same as (6.10) being valid for every f ∈ D. �

We will consider the spectral measure of the family (5.1) of commuting selfadjoint
operators A(ϕ), ϕ ∈ D. This spectral measure is a Borel measure on D′ equipped
with weak convergence. This measure on sets from Γ(X) ⊂ D′ is given according to
Propositions 6.1 on the σ-algebra B(Γ(X)), i.e., we can use for our spectral measure the
results of Section 2, in particular, Theorem 2.10.
The polynomials Pn(ω) can be calculated in a simple way in the case ω = γ ∈ Γ ⊂ D′.

Lemma 6.2. The following formula holds:

(6.11) ∀γ ∈ Γ ⊂ D′, ∀n ∈ N Pn(γ) =
∑

ξ⊂γ, |ξ|=n

⊗̂x∈ξδx, P0(γ) = 1.

Proof. For n = 1 the formula (6.11) is obvious (recall that P1(γ) = γ). Let us suppose
that it is true for n ∈ N and prove it for n+ 1. According to (6.5) we have for all ϕ ∈ D
that

(Pn+1(γ), ϕ⊗(n+1))Fn+1(H)

=
1

n+ 1

(
(Pn(γ)⊗̂γ, ϕ⊗(n+1))Fn+1(H) − (Pn(γ), nϕ2⊗̂ϕ⊗(n−1))Fn(H)

)
=

1
n+ 1

(
(Pn(γ), ϕ⊗n)Fn(H) 〈γ, ϕ〉 − (Pn(γ), nϕ2⊗̂ϕ⊗(n−1))Fn(H)

)
=

1
n+ 1

(( ∑
ξ⊂γ, |ξ|=n

⊗̂x∈ξδx, ϕ
⊗n

)
Fn(H)

〈γ, ϕ〉

−
( ∑

ξ⊂γ, |ξ|=n

⊗̂x∈ξδx, nϕ
2⊗̂ϕ⊗(n−1)

)
Fn(H)

)
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=
1

n+ 1

(( ∑
ξ⊂γ, |ξ|=n

(∏
x∈ξ

ϕ(x)
))(∑

x∈γ

ϕ(x)
)

−
∑

ξ⊂γ, |ξ|=n

(∑
y∈ξ

(
ϕ2(y)

∏
x∈ξ\{y}

ϕ(x)
)))

=
1

n+ 1

∑
ξ⊂γ, |ξ|=n

(( ∏
x∈ξ

ϕ(x)
)(∑

x∈γ

ϕ(x)
)
−

∑
y∈ξ

(
ϕ2(y)

∏
x∈ξ\{y}

ϕ(x)
))

=
1

n+ 1

∑
ξ⊂γ, |ξ|=n

(∑
y∈γ

(
ϕ(y)

∏
x∈ξ

ϕ(x)
)
−

∑
y∈ξ

(
ϕ(y)

∏
x∈ξ

ϕ(x)
))

=
1

n+ 1

∑
ξ⊂γ, |ξ|=n

( ∑
y∈γ\ξ

(
ϕ(y)

∏
x∈ξ

ϕ(x)
))

=
∑

ξ⊂γ, |ξ|=n+1

(∏
x∈ξ

ϕ(x)
)

=
( ∑

ξ⊂γ, |ξ|=n+1

⊗̂x∈ξδx, ϕ⊗(n+1)
)
Fn+1(H)

.

Since here ϕ ∈ D is arbitrary, we conclude that (6.11) is true for n+ 1, and the lemma
is proved by induction. �
The following fact is important: we can calculate the Fourier transform (If)(ω) in the

point ω = γ ∈ Γ using the simple formula (2.7).

Lemma 6.3. For the Fourier transform (If)(ω), f ∈ Ffin(D) (see (5.17)) in the point
ω = γ ∈ Γ ⊂ D′, the following identity holds:

(6.12) (If)(γ) = (Kf)(γ), γ ∈ Γ.
Proof. This proposition is a simple consequence of Lemma 6.2. Indeed, let f = (fn)∞n=0 ∈
Ffin(D). According to (5.17), (6.11), and (2.7), we have

(If)(γ) =
∞∑

n=0

(fn, Pn(γ))Fn(H) = f0 +
∞∑

n=1

(
fn,

∑
ξ⊂γ, |ξ|=n

⊗̂x∈ξδx

)
Fn(H)

= f(∅) +
∑

ξ⊂γ, |ξ|>0
f(ξ) = (Kf)(γ).

�
Note that the relative topology on Γ0 ⊂ Γ is not the same as the topology on Γ0,

introduced on page 3.
Let us introduce an important essential notion of a (generalized) character. Namely,

let a function ϕ ∈ D be given. We construct the following function:

(6.13) χϕ : Γ0 → R, ξ �→ χϕ(ξ) :=

{
1, if ξ = ∅,∏

x∈ξ ϕ(x), otherwise.

This function will be called a character1, generated by ϕ. Of course, χϕ ∈ Funbs(Γ0),
and therefore, the transform K (2.7) is defined on χϕ.
Note that it is easy to calculate the action of the transform K on χϕ(ξ). Namely, for

all ϕ ∈ D, we have
(6.14) (Kχϕ)(γ) =

(
K

∏
x∈ξ

ϕ(x)
)
(γ) =

∏
x∈γ

(1 + ϕ(x)), γ ∈ Γ.

1Such a name makes sense: this follows from an article about the Ruelle convolution, which is under
preparation, and from [20, 17]. Usually, the functions (6.13) are called Lebesgue–Poisson exponents.
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For every fixed γ this product is finite (see, e.g., [28, 33, 22, 23]).
Introduce a C-linear space of finite linear combinations of ϕ⊗n,

(6.15) Flin(D) := span
{
ϕ⊗n |ϕ ∈ D, n ∈ N0

}
.

The topology in the space Ffin(D) is such that the space Flin(D) is dense in Ffin(D) (see
Lemma 6.5 below) and, therefore, it is dense in every space F(Hτ , p) (3.1) and Hs. Note
that according (6.13), for all ϕ ∈ D and ξ = [x1, . . . , xn] ∈ Γ(n) ⊂ Γ, we have

χϕ(ξ) =
∏
x∈ξ

ϕ(x) = ϕ(x1) . . . ϕ(xn) = ϕ⊗n(x1, . . . , xn).

Let us introduce the notion of a subcharacter. By definition, for given ϕ ∈ D, the
function χϕ,sub : Γ0 → R is a subcharacter if χϕ,sub(ξ) is equal to some character χϕ(ξ)
for ξ ∈ ⊔k

n=0 Γ
(n) and equal to zero for ξ ∈ ⊔∞

n=k+1 Γ
(n); here k ∈ N0 depends on χϕ,sub.

Thus, χϕ,sub ∈ Ffin(D). We will also denote such subcharacters by χϕ,sub;k; χϕ,sub;0 = e.
In terms of sequences, we can write

(6.16) χϕ,sub;k = (1, ϕ, ϕ⊗2, . . . , ϕ⊗k, 0, 0, . . .), ϕ ∈ D, k ∈ N0.

Using this notation, for the space Flin(D) we can also write
(6.17) Flin(D) := span

{
χϕ,sub |ϕ ∈ D

}
.

We will consider the question about density of the linear space Flin(D) in the space
Ffin(D). To this end, we introduce a linear topological space Cfin(Γ0). It consists of
complex-valued functions Γ0 =

⊔∞
n=0 Γ

(n) � ξ �→ f(ξ) ∈ C such that f � Γ(n) = 0 for all
n > k (k depends on f) and f � Γ(n) is finite and continuous on X̂n ⊂ Xn for all n ≤ k.
We endow Cfin(Γ0) with uniform finite topology, Cfin(Γ0) � f (m)(ξ)→ f(ξ) ∈ Cfin(Γ0) if
and only if f (m) are uniformly finite with respect to n (i.e., there exists k ∈ N such that
f
(m)
n = 0 if n > k and f (m)

n uniformly converge to f (m) as m→∞ on Xn ⊃ Γ(n)).
It is clear that, if above we will use functions Γ0 � ξ �→ f(ξ) ∈ C such that f � Γ(n) ∈

C∞fin(Γ0) and demand, in the definition of the topology, uniform convergence of f (m)
n to

f (m) all corresponding derivatives, we get, as a result, the space Ffin(D).
Let us now look at the question about density.

Lemma 6.4. The linear space Flin(D) is dense in the space Cfin(Γ0).

Proof. Let us fix some compact Λ ⊂ X and k ∈ N0, and consider the space

QΛ,k =
k⊔

n=0

Λ(n), Λ(0) = ∅,

with the topology of the space (2.2) (i.e., QΛ,k � ξ(m) = [x(m)
1 , . . . , x

(m)
k ]→ [x1, . . . , xk] ∈

QΛ,k, m→∞, if and only if x(m)
n → xn, m→∞, in the space X). In this topology QΛ,k

is compact.
Let f ∈ Flin(D), we will consider its restriction f � QΛ,k to the space QΛ,k. It is

easy to see that a linear span of such restrictions forms an algebra F(QΛ,k) of functions
with respect the ordinary addition and multiplication. This follows from (6.17) and the
following important remark: the ordinary product of two arbitrary subcharacters is also
a subcharacter ,

χϕ,sub(ξ)χψ,sub(ξ) = χϕψ,sub(ξ), ϕ, ψ ∈ D.
This algebra F(QΛ,k) contains all constants and, for arbitrary distinct points ξ′, ξ′′ ∈

QΛ,k, we can find a subcharacter χϕ,sub for which χϕ,sub(ξ′) �= χϕ,sub(ξ′′) (taking a
corresponding function ϕ). According to the Stone theorem (see, e.g., [20]) we can assert
that F(QΛ,k) is dense in the space C(QΛ,k) of continuous complex-valued functions on
QΛ,k with uniform metric.



THE INVESTIGATION OF BOGOLIUBOV FUNCTIONALS . . . 27

From this fact it follows that Flin(D) is dense in the space Cfin(Γ0) with respect to its
topology; indeed, it is necessary to take into account that every function f ∈ Cfin(Γ0)
is equal to zero on the set Γ0 \ QΛ,k with a corresponding compact set Λ ⊂ X and
k ∈ N0. �

Lemma 6.5. The linear space Flin(D) is dense in the space Ffin(D).
Proof. Denote by ∂ the first derivative of the function X � x �→ ϕ(x) ∈ C with respect to
some given coordinate on X . We will construct, using (6.13), subcharacters χϕ,sub and
χ∂ϕ,sub using the functions ϕ ∈ D = C∞fin(X) and their derivatives ∂ϕ. For a function
f(ξ), we will denote by ∂f , where ξ = [x1, . . . , xn], its derivative with respect to a given
coordinate in every points xj .
By repeating the proof of Lemma 6.4 we can see that the algebraF∂(QΛ,k) constructed

as the algebra F(QΛ,k), but using the functions ϕ and their derivatives ∂ϕ, is dense in
the space C∂(QΛ,k).
The latter space, by definition, is a space of all functions in C(QΛ,k) which have

continuous derivatives ∂f and are equipped with the norm

(6.18) ‖f‖∂ := max
ξ∈QΛ,k

(|f(ξ)|+ |∂f(ξ)|).

Using the derivatives ∂ with respect to all coordinates in X and taking the norm,
which is equal to sum of norms (6.18), we can conclude that Flin(D) is dense in the space
Ffin(D) in sense of space C1

fin(Γ0) (endowed with the uniform norm with respect to all
first derivatives). Extending this procedure for the derivatives of the second, third, etc
orders, we finish proving our lemma. �

Now by means of Theorem 2.10 and Lemmas 6.3, 6.2 and 6.5 we can prove the following
important form of the spectral Theorem 5.3.
Note at first that it is possible to say about the measure ρ of these sets Γ and D′ \ Γ

since the spectral measure is defined on the Borel sets from D′ with weak topology and
we have proved that the set Γ is Borel (Lemma 2.9).

Theorem 6.6. Let for a family of operators (Ã(ϕ))ϕ∈D Condition 3.5 is fulfilled and
the functional s is positive. Assume also that the corresponding spectral measure ρ of the
set Γ is positive,

(6.19) ρ(Γ) > 0.

Then the role of the space D′ in Theorem 5.3 is played by the space Γ ⊂ D′ with the
topology inducted by the weak topology in D′. The space Γ is of full spectral measure ρ
(i.e., ρ(D′ \ Γ) = 0) and the corresponding Fourier transform (5.17) is

(6.20)

Ffin(D) � f = (fn)∞n=0 �→ f̂(γ) = (If)(γ) = (Kf)(γ) = (f, P (γ))F(H)

=
∞∑

n=0

(fn, Pn(γ))Fn(H) ∈ L2(Γ, dρ(γ)),

∀γ ∈ Γ ⊂ D′; ∀n ∈ N Pn(γ) =
∑

ξ⊂γ, |ξ|=n

⊗̂x∈ξδx, P0(γ) = 1.

The function (6.20) is continuous with respect to the weak topology on Γ ⊂ D′.
The closure Ĩ of the operator I by continuity is a unitary operator of Hs onto

L2(Γ, dρ(γ)) = L2(D′, dρ(ω)).
Proof. It is necessary to prove that the measure ρ of the set D′ \ Γ is equal to zero. We
assume the contrary. So, we let ρ(D′ \ Γ) > 0 and arrive to a contradiction.
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By assumption (6.19) of the theorem, the spectral measure ρ of Γ is also positive.
From the identity D′ = Γ ∪ (D′ \ Γ) we conclude that
(6.21) L2(D′, dρ(ω)) = L2(Γ, dρ(ω))

⊕
L2(D′ \ Γ, dρ(ω)) =: L21

⊕
L22.

Since ρ(Γ) > 0, ρ(D′ \ Γ) > 0, both subspaces L21 and L22 are not zero spaces. We, as
usual, in For an orthogonal sum of Hilbert spaces H1 ⊕ H2 = H , we, as usual, denote
the vectors f1 ∈ H1 (f2 ∈ H2) by (f1, 0) ∈ H ((0, f2) ∈ H).
Consider the Fourier transform I (5.17) and apply it to a subcharacter χϕ,sub ∈

Ffin(D), where ϕ ∈ D and the number k = m ∈ N0 are the same as in the definition of a
subcharacter (see (6.16)). We will use, in our proof, only subcharacters χϕ,sub for some
fixed m ∈ N0.
Since χϕ,sub ∈ Ffin(D), the function Iχϕ,sub belongs to Ran (I) ⊂ L2(D′, dρ(ω)) and,

according to Lemma 6.3, we have

(6.22) (Iχϕ,sub)(ω) =

{
(Kχϕ,sub)(γ), if ω = γ ∈ Γ,
F (ω), if ω ∈ D′ \ Γ,

where F (ω) is some function from L2(D′ \ Γ, dρ(ω)) ⊂ L2(D′, dρ(ω)).
Applying expansion (6.21) to the function (6.22) we get, for ρ-almost all ω ∈ D′, that

(6.23) (Iχϕ,sub)(ω) = F1(ω) + F2(ω), F1 ∈ L21, F2 ∈ L22,
where the function F1(γ) is equal to (Kχϕ,sub)(γ) for ρ-almost all ω = γ ∈ Γ and zero
for ω ∈ D′ \Γ; the function F2(ω) is equal to zero for ω = γ ∈ Γ and F (ω) for ω ∈ D′ \Γ.
Applying the operator Ĩ−1 to the left-hand side of equality (6.23) gives

(6.24) Ĩ−1Iχϕ,sub = Ĩ−1Ĩχϕ,sub = χϕ,sub.

Let us calculate the result of applying the operator Ĩ−1 to the right-hand side of equal-
ity. These calculations will be considerably more difficult. We first recall the discussion
in pages 4–5. Denote by Ffin,m(D), m ∈ N0, the subspace of the space Ffin(D) that
consists of vectors f ∈ Ffin(D) of the form f = (f0, . . . , fm, 0, 0, . . .). Then the transform
(Kf)(γ) = F (γ) (2.7) is indeed a function of the finite configurations γ = η ∈ ⊔m

n=0 Γ
(n).

As F , we can take an arbitrary vector-valued function

F (η) = (F0, F1(y1), . . . , Fm(y1, . . . , ym)),

where F0 ∈ C and Fn(y1, . . . , yn) are arbitrary symmetric infinitely differentiable finite
functions of points (y1, . . . , yn) ∈ X̂n ⊂ Xn. See (2.12), (2.13).
The inverse operator K−1 on such functions F exists and satisfies the inequality (see

(2.11))

(6.25) max
ξ∈Γm

Λ

|(K−1F )(ξ)| ≤ 2m max
η∈�m

n=0 Γ
(n)
Λ

|F (η)|, m ∈ N.

If we take F to be any infinitely differentiable finite symmetric function F (η), then
K−1F belongs to Ffin,m(D).
Condition (6.19) can be rewritten in another form, using finite configurations. Namely,

consider the sets

(6.26) Γ(m,Λ) :=
m⊔

n=0

Γ(n)Λ ⊂ ΓΛ,0 ⊂ Γ, m ∈ N0, Λ ⊂ X is compact.

We now apply Theorem 2.10, where the general measure is replaced with our spectral
measure ρ. Such a replacement is correct. To see this it is necessary to apply Propo-
sition 6.1. So, by this theorem we have inequality (2.37). One can see that there exist
m0 ∈ N and a compact set Λ0 ⊂ X such that

(6.27) ρ(Γ(m,Λ)) > 0, m ≥ m0, Λ ⊃ Λ0.
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Let us introduce the following subsets of space Ffin(D). Let m ∈ N and a compact
subspace Λ ⊂ X be fixed. Then

(6.28) Ffin;m,Λ(D) := {f = (fn)∞n=0 ∈ Ffin(D) | sup fn ⊂ Λn, n ≤ m ; fn = 0, n > m}.
If f ∈ Ffin;m,Λ(D) then its K-transform has the form (2.12), (2.13), where the functions
Fn(x1, . . . , xn) have supports Λn for n ≤ m and Fn = 0 for n > m. This fact follows
directly from definition (2.7); recall that configurations in (2.7) are non overlapping
subsets of X .
Let f ∈ Ffin;m,Λ(D). Then (Kf)(γ) is a function of γ = η ∈ ⊔m

n=0 Γ
(n)
Λ = Γ(m,Λ),

for another γ ∈ Γ it is equal to zero. But (Kf)(γ) is equal to (If)(γ) (Lemma 6.3) and
Ran Ĩ = L2(D′, dρ(ω)), therefore If ∈ L2(Γ(m,Λ), dρ(ω)), and we can write
(6.29) Kf ∈ L2(Γ(m,Λ), dρ(ω)), f ∈ Ffin;m,Λ(D).
In particularly, every subcharacter χϕ,sub;m belongs to Ffin;m,Λ(D), therefore the inclu-

sion (6.29) is true also for χϕ,sub;m, where Λ is the support of ϕ. We fix the corresponding
m ∈ N and a compact set Λ satisfying the condition (6.27).
Similarly to (6.21) we construct the orthogonal decomposition

L2(D′, dρ(ω)) = L2(Γ(m,Λ), dρ(ω))
⊕

L2(D′ \ Γ(m,Λ), dρ(ω))
=: L21;m,Λ

⊕
L22;m,Λ.

(6.30)

The idea of the remaining part of the proof of theorem consists in the following: we
consider some new Hilbert space H ⊃ Ffin(D) (H ⊂ Hs, ‖ · ‖H = ‖ · ‖Hs) and construct
some isometrical operator U which acts fromH into the given space L21;m,Λ. We construct
it by using the transform K. Since the function (Kχϕ,sub)(γ) belongs to L21;m,Λ, one can
prove that U−1 from this function belongs to the space H and coincides with χϕ,sub. The
construction of U is such that U−1 = Ĩ−1 on (Kχϕ,sub)(γ), therefore Ĩ−1F1 = χϕ,sub.

Lemma 6.7. The function (6.20) is continuous with respect to the weak topology in
Γ ⊂ D′.
Proof. From (6.20) and (6.11) we see that it is sufficient to prove the following fact: for
every n ∈ N and fixed ϕ ∈ D, the function

(6.31)

Γ � γ �→ (ϕ⊗n, Pn(γ))Fn(H) = (ϕ⊗n,
∑

ξ⊂γ, |ξ|=n

⊗̂x∈ξδx)Fn(H)

=
∑

ξ⊂γ, |ξ|=n

(∏
x∈ξ

ϕ(x)
)
∈ R

is continuous.
It is necessary to consider the configurations γ, for which |γ| = n. Therefore, it is

necessary to prove that the following function is continuous with respect to the weak
topology:

Γ ⊃ Γ(n) � γ = [y1, . . . , yn] �→
∑
|ξ|=n

(∏
x∈ξ

ϕ(x)
)
=

n∑
k=1

ϕ(y1) . . . ϕ(yn) ∈ R.

Its continuity is evidently, since the weak convergence γm = [ym
1 , . . . , y

m
n ] → γ =

[y1, . . . , yn] means that ψ(ym
k )→ ψ(y) for every function ψ ∈ D and k = 1, . . . , n. �

Lemma 6.8. Let H be a normed space (possibly, not complete) and L, M be Banach
spaces. Suppose we have an isometric operator U : H → L (i.e., ‖Uf‖L = ‖f‖H, f ∈ H)
and a bounded operator A :M → H such that if for some ϕ ∈M ‖Aϕ‖H = 0, then ϕ = 0.
Then for U there exists a bounded inverse operator U−1 : L→ H.
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Proof. We will denote elements of these spaces by H = {f, g, . . .}, L = {F,G, . . .} and
M = {ϕ, ψ, . . .}. Consider the operator B = UA : M → L. The operator B is bounded
and algebraically invertible: if for some ϕ ∈ M Bϕ = UAϕ = 0, than we have: 0 =
‖Bϕ‖L = ‖UAϕ‖L = ‖Aϕ‖H (U is isometric), therefore ϕ = 0.
OperatorB acts between complete spacesM and L, therefore using the Banach inverse

operator theorem (see, e.g., [16]) we can assert that an inverse bounded operator B−1 :
L → M exists. Consider the bounded operator AB−1 : L → H , it is an inverse to U ,
since algebraically AB−1 = AA−1U−1 = U−1. �

We continue with the proof of our theorem.
We will apply Lemma 6.8, at the beginning, with the following spaces (see (6.28),

(6.30)):
(6.32)

H = Ffin;m,Λ(D) ⊂ Hs, L = L21;m,Λ = L2(Γ(m,Λ), dρ(ω)), M = Csym(
m⊔

n=1

Λn).

The space H with the norm ‖ · ‖H = ‖ · ‖Hs is not complete. Note that m ∈ N and the
compact set Λ ⊂ X are such that the condition (6.27) is fulfilled: M is a complete space
of continuous complex-valued functions on the compact set

⊔m
n=1 Λ

n with the usual norm
for the space C. These functions must be symmetric on Λn for every n = 2, . . . ,m.
Construct the isometrical operator U : H = Ffin;m,Λ(D) → L = L21;m,Λ from Lem-

ma 6.8. We put

(6.33) Ffin;m,Λ(D) = H � f �→ (Kf)(γ) =: (Uf)(γ)

and consider this function on γ ∈ Γ(m,Λ) ⊂ Γ. According to Lemma 6.3 and (6.12),
(6.29), (6.30) we have for every f ∈ H = Ffin;m,Λ(D)
(6.34) Γ(m,Λ) � γ �→ (Uf)(γ) = (Kf)(γ) = (If)(γ) = (Ĩf)(γ) ∈ L21;m,Λ.

Of course, the operator U : H → L21;m,Λ constructed above is isometric since the norm
in H is ‖ · ‖Hs and the operator Ĩ is unitary between the spaces Hs and L2(D′, dρ(ω)).
Construct the bounded operator

(6.35) A :M = Csym(
m⊔

n=1

Λn)→ H = Ffin;m,Λ(D)

(in fact, in (6.32) we will use some closed subspace M0 of the space M).
Consider once more the vector f ∈ Ffin;m,Λ(D) and the restriction of the function

Γ � γ �→ F (γ) = (Kf)(γ) on the set Γ(m,Λ) ⊂ Γ. It is easy to show from (2.7) that
this restriction is a continuous function on the compact set

⊔m
n=1 Λ

n, symmetric on Λn

for every n = 2, . . . ,m. They make a linear set, and the closure of this set with respect
to the norm ‖ · ‖M will be denoted by M0.
Using (6.34), (6.29) we have for f ∈ Ffin;m,Λ(D)

Γ(m,Λ) � γ �→ F (γ) = (Kf)(γ) ∈ L21;m,Λ,

‖f‖Hs = ‖Kf‖L2
1;m,Λ

.

Since the function F (γ) is continuous on the compact set
⊔m

n=1 Λ
n, and ρ(D′) = 1, we

get

(6.36) ‖Kf‖M = max
η∈�m

n=1 Λ
n
|(Kf)(η)| ≥ ‖Kf‖L2

1;m,Λ
= ‖f‖Hs .

Using existence of the operator K−1 and Lemma 2.3 we conclude from (6.36) that

(6.37) ‖K−1F‖Hs ≤ ‖F‖M , F = Kf, f ∈ Ffin;m,Λ(D).
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We are ready to introduce the operator A (6.35). We put

(6.38) AF := K−1F, F (η) = (Kf)(η), f ∈ Ffin;m,Λ(D), η ∈
m⊔

n=1

Λn.

From (6.37) we have

‖AF‖Hs ≤ ‖F‖M , F = Kf, f ∈ Ffin;m,Λ(D).
Using the restriction mentioned above, this inequality can be rewritten as

(6.39) ‖AF‖H ≤ ‖F‖M0, F = Kf, f ∈ Ffin;m,Λ(D).
Here ‖ · ‖H = ‖ · ‖Hs , ‖ · ‖M0 = ‖ · ‖M .
So, it is necessary to apply Lemma 6.8, where the spaces (6.32) are such that

(6.40) H = Ffin;m,Λ(D) ⊂ Hs, L = L21;m,Λ, M0 ⊂M = Csym(
m⊔

n=1

Λn),

and the operators are: U : H → L (6.33), A : M0 → H (6.38). This proves that U is
isometric, see (6.31). A necessary condition on A is the following: if for F ∈M0 we have
‖Af‖H = 0, then F = 0. This follows from (6.38) and existence of the inverse operator
A−1, i.e. K and (6.36).
Thus, by Lemma 6.8 the inverse bounded operator U−1 : L21;m,Λ → H = Ffin;m,Λ(D)

exists. It is clear that U−1 = Ĩ−1 on L21;m,Λ. This property follows from (6.34).
Thus, we will continue our proof starting from formulas (6.30). We have proved that

if conditions (6.27) are fulfilled then the action of the operator Ĩ−1 on L21;m,Λ is equal to
the action of the operator U−1, i.e., the set Ĩ−1L21;m,Λ is equal to H = Ffin;m,Λ(D). In
other words,

(6.41) Ĩ−1L21;m,Λ ⊃ H = Ffin;m,Λ(D), ĨFfin;m,Λ(D) = ĨH ⊂ L21;m,Λ.

Due to the latter it is easy to finish the proof of our theorem.
So we take such m ∈ N and a compact set Λ for which the inequality (6.27) is fulfilled.

Consider the subcharacter χϕ,sub;m (6.16) and ϕ ∈ D, for which ϕ(x) = 0, x ∈ X \ Λ,
i.e., for every ϕ ∈ D.
The inclusion Ĩf ⊂ L21;m,Λ, where f ∈ Ffin;m,Λ(D), means that the Fourier transform

(Ĩf)(ω), ω ∈ D′, belongs to subspace L21;m,Λ of the space L2(D′, dρ(ω)), i.e., (Ĩf)(ω) for
ρ-almost all ω ∈ D′ \ Γ(m,Λ) is equal to zero. But we can take f to be our χϕ,sub;m.
Therefore we can assert that the Fourier transform (6.20) (Ĩχϕ,sub;m)(ω) of the subchar-
acter χϕ,sub;m is equal to zero for ω ∈ D′ \Γ(m,Λ) ⊃ D′ \Γ. So, the function F2(ω) from
equality (6.23) is equal to zero for ρ-almost all ω ∈ D′ in our case m ≥ m0 and ϕ ∈ D.
The case m = 0, 1, . . . ,m0 − 1 follows from the case which has been proved, since

χϕ,sub;m ∈ Ffin;m0,Λ0(D). Now we also can assert that F2 = 0.
Thus, using (6.23) and the construction of the function F2 we can conclude: for every

ϕ ∈ D and m ∈ N0, the function (Iχϕ,sub)(ω) is equal to (Kχϕ,sub)(γ) for ω = γ ∈ Γ
and equal to zero for ρ-almost all ω ∈ D′ \ Γ.
After this result we can easily get a contradiction. Namely, according to Lemma 6.5

and (6.15), for every vector f ∈ Hs there exists a sequence (f (k))∞k=1 of finite linear
combinations f (k) of subcharacters χϕ,sub, which tends to f in the space Hs. Since
Ĩ : Hs → L2(D′, dρ(ω)) is a unitary operator, we can write: Ĩf = limk→∞ Ĩf (k) in the
space L2(D′, dρ(ω)) and, therefore, P2Ĩf = limk→∞ P2Ĩf

(k), where P2 is a projection in
the space (6.21) onto its subspace L22. But for every k ∈ N (P2f (k))(ω) = 0 for ρ-almost
all ω ∈ D′ \ Γ since this is true for every P2Ĩχϕ,sub.
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As a result, (Ĩf)(ω) = 0 for ρ-almost all ω ∈ D′ \ Γ, i.e., Ĩf ∈ L21. Here f is an
arbitrary vector from Hs, therefore the last inclusion is impossible since Ĩ is a unitary
operator between Hs and L2(D′, dρ(ω)) and L22 �= 0.
Other assertions of the theorem easily follow from Theorem 5.3 and Lemma 6.2. �

Let us give some simple remarks concerning the fulfilment of condition (6.19) ρ(Γ) > 0.
At first we assert that

(6.42) s(f) =
∫
D′
(Ĩf)(ω)dρ(ω), f ∈ Hs.

For the proof of (6.42) we note that from Theorem 5.3 if follows the Parseval equality:

(6.43) (f, g)Hs =
∫
D′
(Ĩf)(ω)(Ĩg)(ω)dρ(ω), f, g ∈ Hs.

Let g(ξ) = e(ξ), ξ ∈ Γ0 (e is the unit of algebraA) in (6.43). Then (Ĩg)(ω) = 1, ω ∈ D′
and from (3.6) we get equality (6.42).
Now we will give some conclusions from equality (6.6) and Theorem 5.3. Let ϕ ∈ D,

ϕ(x) > −1, x ∈ X , belong to some neighborhood U(0) of 0 in the space D. If this U(0)
is small enough then we have expansion (6.6) which we can write in the form

(6.44)

e〈ω, log(1+ϕ)〉 =
∞∑

n=0

(Pn(ω), ϕ⊗n)Fn(H)

= lim
m→∞

m∑
n=0

(Pn(ω), ϕ⊗n)Fn(H)

= lim
m→∞ I

(
(1, ϕ, . . . , ϕ⊗m, 0, 0, . . .)

)
(ω)

for any ω ∈ D′ and ϕ ∈ U(0).
From (6.42) and (6.44), for ϕ ∈ U(0), we can conclude that

(6.45)

∫
D′
e〈ω, log(1+ϕ)〉dρ(ω) = lim

m→∞

∫
D′
I
(
(1, ϕ, . . . , ϕ⊗m, 0, 0, . . .)

)
(ω)dρ(ω)

= lim
m→∞ s((1, ϕ, . . . , ϕ⊗m, 0, 0, . . .)).

We give now a simple sufficient condition on the functional s which guarantee (6.19).
This condition is necessary in the situation where a “separate” γ0 ∈ Γ exists with positive
measure ρ, i.e. ρ(γ0) > 0.

Theorem 6.9. The condition ρ(Γ) > 0 is fulfilled if the following is satisfied.
Assume that there are a point x0 ∈ X and its neighborhood U(x0) such that: firstly,

(6.46) lim
m→∞ s((1, ϕ, . . . , ϕ

⊗m, 0, 0, . . .)) = ε > 0

for arbitrary ϕ ∈ D which is equal to zero on X \U(x0) and in some neighborhood of x0,
entering into U(x0); ε in (6.46) is independent of ϕ. And secondly, there exists some
ϕ = ϕ0 ∈ D, which is equal to zero on X \ U(x0) but ϕ0(x) = ε1 �= 0 for all x in some
neighborhood of x0, for which limit (6.46) is different from ε.

Proof. At first we note that according to (5.12) and Theorem 5.3 every δ-function δx,
x ∈ X , belongs to the set on which the spectral measure of our family of operators
(Ã(ϕ))ϕ∈D is defined. We have ρ(δx) ≥ 0, x ∈ X . The equality (6.8) gives
(6.47) ρ(γ) =

∑
x∈γ

ρ(δx), γ ∈ Γ.

Therefore, if for some x0 ∈ X the measure ρ(δx0) > 0, then ρ([x0, x2, x3, . . .]) > 0 and
ρ(Γ) > 0, since [x0, x2, x3, . . .] ∈ Γ.
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Assume now that for some point x0 the conditions (6.46) (first and second situation:
1) and 2)) are fulfilled. Then we prove that ρ(δx0) > 0 and our theorem will be proved.
So, in the case 1) the functions log(1+ϕ(x)) ∈ D and equal to zero on X \U(x0) and

on some neighborhood V (x0) ⊂ U(x0) of x0; in other points it is arbitrary. The integral

(6.48)
∫
D′
e〈ω, log(1+ϕ)〉dρ(ω) = ε

from (6.45) is constant only in the case where ρ, on the set of all generalized functions ω
with supports in U(x0) \ x0, is equal to zero.
But if in (6.46) we take ϕ = ϕ0 then this integral is not equal to ε (case 2)). Such a

situation is possible only in the case where the spectral measure ρ, on the set D′(x0) of
generalized functions ω ∈ D′ the support of which is equal to one point x0, is not equal
to zero.
But every generalized function, the support of which is equal to one point x0, is equal

to a finite linear combination of δx0 and its derivatives (see, e.g. [36], Ch. 1, § 2). It
is easy to see that the set D′(x0) in our case necessarily equals to the δ-function δx0 .
Namely, for every derivative Dαδx0 we have 〈Dαδx0 , ϕ0〉 = 0, since ϕ0 is some constant in
the neighborhood of x0. Therefore ρ(D′(x0)\δx0) must be equal to zero and then integral
(6.46) is also equal to ε, but its value must be different from ε. Thus D′(x0) = cδx0 with
some constant c �= 0. The spectral measure ρ on cδx0 must be positive, since otherwise,
integral (6.46) for ϕ = ϕ0 must be equal to ε. �

Note that this theorem deals only with fulfillment of the condition ρ(Γ) > 0.
Consider two examples of functional s generated by the measure ν on Γ0, see (3.9).

Now the measure ν must be Borel and σ-finite, i.e., finite on every compact subset from
Γ(n), n ∈ N0.
1. If for every compact Λ ⊂ X the following condition is fulfilled:

(6.49)
∞∑

n=0

2nν(Γ(n)Λ ) <∞,

then the results of Theorem 6.6 are true and ρ(Γ) > 0. This statement follows from
articles [10, 8, 13].
2. Let τ be some Borel probability measure on X . Consider the functional s of type

(3.9), where ∀n ∈ N ν � Γ(n) = τ⊗n; ν(Γ(0)) = 1. Now the functional s has the form

(6.50) s(f) =
∞∑

n=0

∫
Γ(n)

f(ξ)d(τ⊗n)(ξ), f ∈ Ffin(D).

For f = (ϕ⊗n)∞n=0, where ϕ ∈ D, |ϕ(x)| < 1, x ∈ X , from (6.50) we get

(6.51)
lim

m→∞ s((1, ϕ, . . . , ϕ
⊗m, 0, 0, . . .)) =

∞∑
n=0

(∫
X

ϕ(x)dτ(x)
)n

=
(
1−

∫
X

ϕ(x)dτ(x)
)−1

.

Identity (6.51) permits to formulate the conditions 1), 2) from Theorem 6.9 in the
terms of the measure τ .

7. The one-dimensional case

The theory developed in the previous sections has a more simple and clear form in the
case of a single selfadjoint operator A(ϕ) = A; then an analogue of D′ from Theorem 5.3
is R (it is convenient to denote the corresponding points of R by λ instead of ω).
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So, we have tree sets: the space X which consists of one point x (i.e., X = {x}),
numbers ϕ ∈ R (every such number ϕ can be understood as the function ϕ(x) := ϕ,
x ∈ X) and the set of numbers ξ ∈ N0.
Then the role of the Fock space Ffin(D) is played by the space lfin of all finite sequences

f = (f0, . . . , fn, 0, 0, . . .) of complex numbers fn ∈ C with coordinate-wise convergence.
The positive functional s is a functional on lfin.
It is clear that now we consider only one point configurations, therefore we should

regard the multiple configurations, i.e., Γ(n) to be zero-dimensional and equal to {n};
therefore Γ0 = N0. The space Γ of “infinite configurations” is also equal to N0. Of course,
this is a not complete analogy, since we can only construct multiple configurations.
The subcharacters (6.16) are equal to

(7.1) χϕ,sub;k = (1, ϕ, ϕ2, . . . , ϕk, 0, 0, . . .), ϕ ∈ R, k ∈ N0.

It is easy to show that their linear spans (with different ϕ) are dense in the space lfin (an
analog to Lemma 6.5).
Let us look at the analog of the Kondratiev–Kuna convolution �.
Consider the so-called Newton (binomial) polynomials

(7.2) R � λ �→ (λ)n :=

{
1, if n = 0,
λ(λ − 1) · · · (λ− n+ 1), if n ∈ N.

The generating function of (λ)n has the form

(1 + ϕ)λ = eλ log(1+ϕ) =
∞∑

n=0

ϕn

n!
(λ)n, ϕ > −1.

For all n ∈ N0 we set

(7.3) Pn(λ) :=
1
n!
(λ)n.

It is clear that the family (Pn)∞n=0 is a basis in the space C[λ] of all complex-valued
polynomials F : R → C, and the mapping

(7.4) I : lfin → C[λ], f = (fn)∞n=0 �→ (If)(λ) :=
∞∑

n=0

fnPn(λ)

is a bijection between lfin and C[λ]. Note that the inverse mapping I−1 exists. This
mapping is an analog of the Fourier transform in Theorem 6.6.
The restriction of the function If to N0 gives the mapping (an analog of the K-

transform)
(7.5)

K : lfin → C
∞, f = (fk)∞k=0 �→ (Kf)(n) := (If)(n) =

n∑
k=0

fk
n!

k!(n− k)! , n ∈ N0.

An analog of Lemma 6.3 is the evident identity

(7.6) (If)(n) = (Kf)(n), n ∈ N0, f ∈ lfin.
Define an analog of �-convolution on the space lfin by setting

(7.7) f � g := I−1(If · Ig), f, g ∈ lfin.
From the definition it immediately follows that the vector f �g = ((f �g)k)∞k=0 is uniquely
defined by the identity

(7.8) (If)(λ)(Ig)(λ) =
∞∑

n=0

fnPn(λ)
∞∑

n=0

gnPn(λ) =
∞∑

n=0

(f � g)nPn(λ), λ ∈ R.
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It follows from [35], Theorem 3.2, that

(f � g)n =
∑

i+j+k=n

1
i!k!j!

fi+jgj+k

for all f = (fn)∞n=0, g = (gn)∞n=0 ∈ lfin and n ∈ N0.
It is convenient now to pass to the corresponding generalized moment problem.
A sequence s = (sn)∞n=0 of complex numbers sn ∈ C we will called a a generalized

moment sequences if there exists a non-negative Borel measure σ on R such that

(7.9) sn =
∫

R

Pn(λ) dσ(λ) =
1
n!

∫
R

(λ)ndσ(λ), n ∈ N0.

A solution of this problem is given by the following theorem.

Theorem 7.1. A sequence s = (sn)∞n=0 is a moment one if and only if s is �-positive
(more exactly, non-negative), that is,

(7.10) s(f � f̄) =
∞∑

n=0

sn(f � f̄)n ≥ 0, f ∈ lfin.

A method of proving this result is similar to the considerations of [7], [35] and is
based on the theory of a generalized eigenfunction expansion. In the case of the classical
moment problem this method was first proposed in [4], Ch. 8. This method is a simplest
variant of arguments which we have used in the proof of Theorem 5.3.

Proof. The necessity of condition (7.10) is trivial. Indeed, using (7.8) we get

s(f � f̄) =
∞∑

n=0

sn(f � f̄)n =
∫

R

∞∑
n=0

sn(f � f̄)nPn(λ)dσ(λ)

=
∫

R

(If)(λ)(If̄ )(λ)dσ(λ) =
∫

R

|(If)(λ)|2dσ(λ) ≥ 0, f ∈ lfin.

For the proof of the sufficiency of condition (7.10), we will apply the theory of ge-
neralized eigenfunction expansion to a certain self-adjoint operator connected to our
moment problem.
Let a sequence s = (sn)∞n=0 ∈ C∞ be a positive, that is (7.10) holds. Using this

sequence and the convolution � we construct, in a standard way, a Hilbert space Hs.
Namely, we define Hs to be the Hilbert space associated with the quasiscalar product

(7.11) (f, g)Hs := s(f � ḡ), f, g ∈ lfin.
For the construction of Hs, firstly it is necessary to pass from lfin to the factor space
l̃fin := lfin/{f ∈ lfin | (f, f)Hs = 0} and then to take the completion of l̃fin. For simplicity
we will suppose that l̃fin ≡ lfin, i.e., (f, f)Hs = 0 if and only if f = 0.
Using (7.7) and (7.4) we define the operator

(7.12) J : lfin → lfin, Jf := I−1JI = δ1 � f, f ∈ lfin,
where δ1 = (0, 1, 0, 0, . . .), I is defined by formula (7.4) and J is the operator of multipli-
cation by λ in the space C[λ], i.e.,

(JF )(λ) := P1(λ)F (λ) = λF (λ), F ∈ C[λ].

The operator J : lfin → lfin is Hermitian in the Hilbert space Hs

(Jf, g)Hs = s(δ1 � f � ḡ) = s(f � δ1 � g) = (f, Jg)Hs , f, g ∈ lfin,
and, moreover, it is real (i.e., Jf = Jf̄) with respect to the involution

(7.13) lfin � f = (fn)∞n=0 �→ f̄ := (f̄n)∞n=0 ∈ lfin,
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where f̄n denotes the complex conjugation. Therefore, by a theorem of von Neumann J
has self-adjoint extensions.
Denote by A a certain self-adjoint extension of J on Hs. We will apply the projection

spectral theorem to this operator. Consider the rigging

(7.14) (l2(p))′Hs
⊃ Hs ⊃ l2(p) ⊃ lfin,

where (l2(p))′Hs
is the negative space with respect to the positive space l2(p) and the zero

space Hs. The space lfin is provided with uniform finite coordinate-wise convergence, i.e.,
the sequence {f (j), j ∈ N} ⊂ lfin converges to f ∈ lfin if and only if there exists N ∈ N

such that f (j)n = 0 for all n > N, j ∈ N and f (j)n → fn as j →∞ for all n ∈ N0.
It follows, for example, from [7] that there exists a weight p = (pn)∞n=0, pn ≥ 1, such

that the embedding l2(p) ↪→ Hs is well-defined and quasinuclear. In what follows we
fix a weight p = (pn)∞n=0, pn ≥ 1, with such a property. It is clear that the operator
A is standardly connected with chain (7.14). Let us show that the vector Ω = δ0 =
(1, 0, 0, . . .) ∈ lfin is a strong cyclic vector for A.
To this end, it suffices to show that span{AnΩ | n ∈ N0} = lfin. But this is evidently

true, since I : lfin → C[λ] is a bijection, span{λn | n ∈ N0} = C[λ] and by (7.12)

AnΩ = Jnδ0 = I−1(λn), n ∈ N0.

So, the operator A satisfies all assumptions of the projection spectral theorem. Let
ρ be the corresponding spectral measure of A and ξ(λ) ∈ (l2(p))′Hs

be the generalized
eigenvector of A with an eigenvalue λ ∈ R, i.e.,

(7.15) 〈ξ(λ), Af〉Hs = λ〈ξ(λ), f〉Hs , f ∈ lfin.
Then the mapping

(7.16) Hs ⊃ lfin � f �→ (IAf)(·) := 〈f, ξ(·)〉Hτ ∈ L2(R, dρ(λ))
is isometric.
To prove (7.9), it suffices to check that

(7.17) (IAf)(λ) = (If)(λ) =
∞∑

n=0

fnPn(λ), f ∈ lfin,

for ρ-almost all λ ∈ R.
Indeed, suppose that (7.17) takes place. Since IA is an isometric mapping, we have

(f, g)Hs =
∫

R

(IAf)(λ)(IAg)(λ) dρ(λ)

=
∫

R

(If)(λ)(Ig)(λ) dρ(λ), f, g ∈ lfin.
(7.18)

Therefore, taking into account the identities

sn = s(δn) = s(δn � δ0) = (δn, δ0)Hs ,

(Iδn)(λ) = Pn(λ), δn := (0, . . . , 0︸ ︷︷ ︸
n times

, 1, 0, 0, . . .),

we get

sn = (δn, δ0)Hs =
∫

R

Pn(λ) dρ(λ), n ∈ N0,

i.e., representation (7.9) with measure σ = ρ.
Let us check (7.17). According to Lemma 3.7, there exists a uniquely determined

unitary operator U : (l2(p))′Hs
→ l2(p−1) such that

〈Uη, g〉l2 = 〈η, g〉Hs , η ∈ (l2(p))′Hs
, g ∈ l2(p).



THE INVESTIGATION OF BOGOLIUBOV FUNCTIONALS . . . 37

Therefore, it suffices to show that the generalized eigenvector ξ(λ) has the property

(Uξ)(λ) = P (λ) := (Pn(λ))∞n=0, λ ∈ R,

or, equivalently,

〈P (λ), Af〉l2 = λ〈P (λ), f〉l2 , λ ∈ R, f ∈ lfin.
But the latter equality takes place, since, on the one hand,

λ〈P (λ), f〉l2 = λ
∞∑

n=0

fnPn(λ) = λ · (If)(λ).

On the other hand, using (7.8) and taking into account that Af = δ1 � f we get

〈P (λ), Af〉l2 = 〈P (λ), δ1 � f〉l2 =
∞∑

n=0

(δ1 � f)nPn(λ)

= (Iδ1)(λ) · (If)(λ) = λ · (IP f)(λ).
Thus, Theorem 7.1 is proved. �

Remark 7.2. It can be showed that the polynomials (λ)n obey the recurrence relation

λ(λ)n = (λ)n+1 + n(λ)n.

Therefore the polynomials Pn(λ) (see (7.3)) obey the recurrence relation

λPn(λ) = (n+ 1)Pn+1(λ) + nPn(λ).

Hence the operator J : lfin → lfin, Jf := δ1 � f , has the following matrix representation:

J =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0 . . .
1 1 0 0 0 . . .
0 2 2 0 0 . . .
0 0 3 3 0 . . .
· · · · · . . .

⎞⎟⎟⎟⎟⎠ .

Remark 7.3. It is easy to give an example of a sequence (sn)∞n=0 that admits represen-
tation (7.10) with a measure σ such that σ(N0) > 0 and σ(R \ N0) > 0.
For example, let σ := μπ+μg, where μπ and μg be a Poisson and a Gaussian measures

on R, respectively. Recall that for any Borel set α ⊂ R

μπ(α) :=
1
e

∑
n∈N0

1
n!
κα(n)

(κα is the indicator function of a set α) and

μg(α) :=
1√
2π

∫
α

e−x2/2dx.

It easy to see that σ(N0) > 0, σ(R \ N0) > 0 and

sn :=
∫

R

Pn(λ) dσ(λ) =
1
n!

∫
R

(λ)ndσ(λ) <∞, n ∈ N0.

Let us now examine Theorem 6.6. Recall that in the one-dimensional case, the set
Γ = N0 and D′ = R. Therefore Remark 7.3 allows to proceed as follows. In representation
(7.9) of moments sn we have the spectral measure ρ = σ from Theorem 7.1 which, for
the one-dimensional case, is in fact the measure ρ from Theorem 6.6. Therefore the
conditions ρ(N0) > 0 and ρ(R \ N0) > 0 are impossible: according to Theorem 6.6 the
condition (6.19) gives that the set Γ = N0 is the set of full spectral measure.
But actually, there is no contradiction; in this case the space X consists only of one

point, and, therefore, infinite configurations do not exist. Therefore we must have the
results only of type of Theorem 6.6.
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The place in the proof of Theorem 6.6, which can not be overcame, as far as Theo-
rem 7.1 is concerned, is the following. The subcharacter χϕ,sub now has the form (7.1),
therefore an analog of the set Γ(m,Λ), (6.26), is {0, . . . ,m}. An analog of the oper-
ator K is (7.5), it has an inverse, K−1, on the space lfin. This inverse operator can
not be interpreted as the inverse operator Ĩ−1 : L2(R, dρ(λ)) → Hs, since inequality
(6.25) in our situation is absent. Thus, we cannot prove an analog of Theorem 6.6 in the
one-dimensional case.

8. Bogoliubov functionals and their representation

We will now introduce Bogoliubov functionals. For their introduction and investiga-
tion, it is useful to present some point of view on the classical moment problem. We will
use convenient for us notations.

8.1. Introduction. We have, as in Section 7, tree sets: the space X , which consists of
a single point x, points ϕ ∈ R (every such a number ϕ can be understood as the function
ϕ(x) := ϕ, x ∈ X) and a set of numbers ξ ∈ N0 (it more convenient for us to write ξ
instead of n). Consider the function that enters the moment representation

(8.1) R× N0 � (ϕ, ξ) �→ ϕξ =: χϕ(ξ).

The main question in the classical moment problem is to find conditions so that the
sequence of numbers N0 � ξ �→ sξ =: s(ξ) ∈ R can be represent in the form

(8.2) s(ξ) =
∫

R

ϕξdσ(ϕ) =
∫

R

χϕ(ξ) dσ(ϕ), ξ ∈ N0,

where σ is a Borel measure on space R.
For obtaining an answer, we need to introduce, on the sequences of numbers N0 �

ξ �→ f(ξ) ∈ C, the convolution

(8.3) (f ∗ g)(ξ) :=
∑

ξ′+ξ′′=ξ

f(ξ′)g(ξ′′), ξ ∈ N0.

The classical fact is the following: the representation (8.2) takes place if and only if
s(ξ) generates, on finite sequences f(ξ), the functional s(f) :=

∑∞
ξ=0 s(ξ)f(ξ), which is

non-negative with respect to ∗, i.e.,
(8.4) s(f ∗ f̄) =

∑
ξ∈N0

s(ξ)(f ∗ f̄)(ξ) ≥ 0

for arbitrary such f .
Here, it is fundamental that functions (8.1) possess the following property with respect

to the convolution ∗: ∀ϕ ∈ R

(8.5) (χϕ ∗ χϕ)(ξ) = (ξ + 1)χϕ(ξ), ξ ∈ N0.

Note that it is easy to rewrite condition (8.4) in the following form: for an arbitrary
finite sequence (fn)∞n=0, fn ∈ C, we have

∞∑
j,k=0

s(j + k)fj f̄k ≥ 0.

Note that representation (8.2) can be obtained from the projection spectral theorem
for a single selfadjoint operator (the shift operator connected with (8.3)) acting on the
Hilbert space constructed by means of convolution (8.3) and positive functional (8.4)
(see, e.g., [7, 1, 4]).
The introduction of Bogoliubov functionals and the obtaining for them a representa-

tion of type (8.4) is similar but considerably more difficult. The main essential difference
is the absence of a semigroup structure and that, instead of a single operator, we need to
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consider now a family of commuting selfadjoint operators indexed by real-valued func-
tions ϕ ∈ C∞fin(X) = D.
So, we now the simple sets X = {x}, R � ϕ, N0 � ξ have to be replaced with the

following four sets (see (2.2), (2.4)):

X � x, C∞fin(X) = D � ϕ, Γ0 � ξ; Γ � γ.
Instead of functions (8.1), we have now the functions (see (6.13))

(8.6) D × Γ � (ϕ, γ) �→ (Kχϕ)(γ) ∈ R, χϕ(ξ) =
∏
x∈ξ

ϕ(x), χϕ(∅) = 1,

where the operator K is defined by (2.7), (6.14).
The Bogoliubov functional is some nonlinear functional D � ϕ �→ B(ϕ) ∈ R admitting

a representation of type (8.2)

(8.7) B(ϕ) =
∫
Γ

(Kχϕ)(γ)dσ(γ), ϕ ∈ D,
where σ is some Borel measure on the space Γ.
It is easy to see that representation (8.7) is, in some sense, similar to (8.2). Namely,

functions (8.1) are of the “character” type (8.5) but, in moment problem, we consider
the product ϕξ = (ϕ(x))ξ , x ∈ X = {x}, only in one fixed point x (thus we have a
situation of “multiple configuration” type, see [29, 30, 31, 10, 8, 13]). In representation
(8.2) we integrate the characters ϕξ on “functions” ϕ. In representation (8.7) we have
invertible operator K (instead of the unit operator in (8.2)) that maps functions on Γ0
onto functions on Γ and integrate over “points” γ. Thus the presence of K changes the
representation of type (8.2).
The condition on the function B(ϕ), which gives representation (8.7), can be obtained

similarly to the classical moment problem.
Now, instead of the classical convolution (8.3), it is necessary to use Kondratiev–Kuna

convolution � on the functions Γ0 � ξ �→ f(ξ) ∈ C (see (2.6)),

(8.8) (f � g)(ξ) =
∑

ξ′∪ξ′′=ξ

f(ξ′)g(ξ′′), ξ ∈ Γ0.

Formally, (8.8) is similar to (8.3) but, instead of the simple semigroup N0 in (8.3), we
have the complicated space Γ0 in (8.8) (without a group operation).
To understand the way of solving the problem of representation (8.7), it is convenient

to pass at first, from representation (8.2) for the moment problem, to some a little more
general problem. Namely, if we have (8.2) then we can write, for an arbitrary finite
sequence f = (f(ξ))ξ∈N0 , the representation

(8.9) s(f) :=
∞∑

ξ=0

s(ξ)f(ξ) =
∫

R

Pf (ϕ) dσ(ϕ), Pf (ϕ) =
∞∑

ξ=0

f(ξ)ϕξ.

Of course, for the moment problem representations (8.2) and (8.9) are tautological.
But for Bogoliubov functionals the connection between (8.7) and an analog of (8.9) is
not so trivial.
So, similarly to the moment problem, we introduce at first, on finite “sequences”

f=(f(ξ))ξ∈Γ0 (i.e., on functions Γ0 � ξ �→ f(ξ) ∈ C), a positive functional of type (8.4)

f �→ s(f), s(f � f̄) ≥ 0.

Then we will prove (see Subsection 7.2) that there is a representation of type (8.9) for
such a functional s. It has the form

(8.10) s(f) =
∫
Γ

(Kf)(γ) dσ(γ) =
∫
Γ

Pf (γ) dσ(γ), Pf (γ) := (Kf)(γ).
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The pair (8.10), (8.7) and the pair (8.9), (8.2) are similar. The connection in the last
pair is trivial, but the connection between (8.10) and (8.7) is more complicated: it is
necessary to find s(f) using the knowledge of the “moments” B(ϕ), where ϕ ∈ D, and
conversely. In the next subsection we will find at first representation (8.10).

8.2. Exact calculation. By definition, the Bogoliubov functional (corresponding to a
measure σ) is nonlinear function

(8.11) C∞fin(X) = D � ϕ �→ B(ϕ) :=
∫
Γ

∏
x∈γ

(1 + ϕ(x)) dσ(γ) ∈ R,

where σ is a probability Borel measure on the space Γ (with the topology of weak con-
vergence in D′, see (6.8) and (6.7)).
For us it is essential to rewrite definition (8.11) in a form connected to the one given

in the previous section.
We have introduced the notion of a character χϕ by formula (6.13); characters satisfy

equality (6.14). Therefore definition (8.11) can be rewritten as

(8.12) D � ϕ �→ B(ϕ) =
∫
Γ

(Kχϕ)(γ) dσ(γ) ∈ R.

It is important to note the following. The knowledge of the function ϕ(x), x ∈ X ,
from D and the corresponding character χϕ, ϕ ∈ D, is equivalent: if we known ϕ then,
according to (6.13), we known χϕ. Conversely, if we known Γ0 � ξ �→ χϕ then we known
χϕ([x1]) = ϕ(x1), x1 ∈ X . As a result, instead of Bogoliubov functional (8.11), (8.12)
we can investigate the mapping

(8.13) χϕ �→ b(χϕ) :=
∫
Γ

(Kχϕ)(γ) dσ(γ) = B(ϕ) ∈ R, ϕ ∈ D.
Investigations of them are equivalent.
To study (8.12), (8.13), we will use the results of Section 6, in particular, the Theo-

rem 6.6. We assume that the measure σ in (8.11) is the spectral measure ρ of our family
operators (Ā(ϕ))ϕ∈D. Condition 3.5 and assumption (3.24) of positivity are assumed to
be fulfilled.
We follow the proof of some results of type (6.42). So, the Fourier transform I (6.20)

(after taking the closure) is a unitary operator between Hs and L2(Γ, dρ(γ)). Therefore
we have the corresponding Parseval equality:

(8.14)
s(f � ḡ) = (f, g)Hs = (If, Ig)L2(Γ,dρ(γ)) = (Kf,Kg)L2(Γ,dρ(γ))

=
∫
Γ

(Kf)(γ)(Kg)(γ) dρ(γ), f, g ∈ A = Ffin(D).

Put g = e in (8.14), where e is the unity of algebra A, i.e., e(ξ) = 1 if ξ = ∅ and
e(ξ) = 0 if ξ �= ∅ (or e = (1, 0, 0, . . .)). According to (6.20) we get

(8.15) (Ke)(γ) = (e, P (γ))F(H) =
∞∑

n=0

(en, Pn(γ))Fn(H) = P0(γ) = 1, γ ∈ Γ.

Formulas (8.15) and (8.14) give the essential equality, an expression for the functional
s in terms of the spectral measure and the K-transform,

(8.16) s(f) =
∫
Γ

(Kf)(γ) dρ(γ), f ∈ Ffin(D).

For the vector f (i.e., the function of ξ ∈ Γ0) in (8.16), we can take the subcharacter
χϕ,sub. Then (8.16) and (8.13) give

(8.17) s(χϕ,sub) =
∫
Γ

(Kχϕ,sub)(γ) dρ(γ), ϕ ∈ D.
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Note that integral (8.17) is similar to representation (8.13) of the Bogoliubov functional
B(ϕ). In connection with this, consider the subcharacter of the following form:

(8.18) Ffin(D) � χϕ,sub = (1, ϕ, . . . , ϕ⊗m, 0, 0, . . .) =: χϕ,sub;m, ϕ ∈ D, m ∈ N0.

For each γ ∈ Γ we have (see (6.14) and [21, 22]) that

(8.19) (Kχϕ)(γ) = lim
m→∞(Kχϕ,sub;m)(γ).

Let the measure σ in (8.13) be equal to our spectral measure ρ. Then under some
additional conditions from (8.18), it follows that

(8.20)
∫
Γ

(Kχϕ)(γ)dρ(γ) = lim
m→∞

∫
Γ

(Kχϕ,sub;m)(γ) dρ(γ), ϕ ∈ D,

and representation (8.17) for χϕ,sub gives representation (8.13) for the Bogoliubov func-
tional B(ϕ).
Now it is convenient to introduce the notion of Bogoliubov subfunctional. Namely, we

will say that a nonlinear functional Bsub : D → R is Bogoliubov subfunctional if it has
the form

(8.21) Bsub(ϕ) :=
∫
Γ

(Kχϕ,sub)(γ) dσ(γ), ϕ ∈ D,

with some probability measure σ.
We can formulate now the following general result.

Theorem 8.1. Consider the space Ffin(D), the Kondratiev–Kuna convolution � and a
linear continuous functional s on Ffin(D) which is positive with respect to �,

s(f � f̄) > 0, f ∈ Ffin(D), f �= 0.

Using s, we introduce a Hilbert space Hs, starting with the scalar product (f, g)Hs =
s(f � ḡ), f, g ∈ Ffin(D). Let (A(ϕ))ϕ∈D be a family of commuting Hermitian operators
A(ϕ)f = ϕ � f , f ∈ Ffin(D), in the space Hs.

We assume that Condition 3.5 is fulfilled and, therefore, their closures Ã(ϕ) form a
family of commuting selfadjoint operators in Hs. We assume also that condition (6.19)
of Theorem 6.6 is satisfied, and therefore the corresponding Fourier transform has form
(6.20).

As a result we have the representation

(8.22) s(χϕ,sub) =
∫
Γ

(Kχϕ,sub)(γ) dρ(γ) = Bsub(ϕ), ϕ ∈ D,

where χϕ,sub(ξ), ξ ∈ N0, is a subcharacter connected with (6.13), K the Lenard transform,
ρ a spectral measure of the family (Ã(ϕ))ϕ∈D, and Bsub(ϕ) the corresponding Bogoliubov
subfunctional.

Additionally assume that ∀ϕ ∈ D the character χϕ belongs to the space Hs as a limit
of χϕ,sub;m in Hs (8.18) for m → ∞. Then the Bogoliubov functional corresponding to
measure ρ has the representation

(8.23) B(ϕ) =
∫
Γ

(Kχϕ)(γ) dρ(γ) = lim
m→∞Bsub;m(ϕ), ϕ ∈ D,

where the subfunctionals Bsub;m(ϕ) are given by (8.21) with χϕ,sub;m as the integrand.

Proof. All statements of this theorem, save for equality (8.23), follow directly from the
results of Section 6. Consider equality (8.23).
It is only necessary to explain why, in our case, we can pass to limit in (8.20). In

our case, Kχϕ,sub;m = Ĩχϕ,sub;m and Ĩ : Hs → L2(Γ, dρ(ω)) is a unitary operator. Since
χϕ,sub;m → χϕ in Hs by assumption, taking the limit in (8.19) can be carried out in the
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space L2(Γ, dρ(ω)). The spectral measure ρ is finite, therefore we can assert that (8.20)
takes place. �

It is useful to give some example of situation, when formula (8.23) takes place.
1. Assume that the functional s of type (3.10) satisfies, instead of condition (6.49),

the following stronger condition: for every compact Λ ⊂ X and every CΛ > 0 we have

(8.24)
∞∑

n=0

Cn
Λν(Γ

(n)
Λ ) <∞.

Then (8.23) takes place. This statement easily follows from estimates of type (6.50),
(6.51).
2. Note that the Lebesgue-Poisson measure ν on Γ0 satisfies condition (8.23).
We will pass now to another main result of this Section. Let us firstly explain, using

the language of the classical moment problem, the situation which we have now.
We developed some spectral theory and prove that integrals (8.2) are moments of a

spectral measure. But the main result of the moment problem is: under what condition
on a given sequence (s(n))∞n=0 the representation (8.2) takes place. This measure σ
depends, of course, on the values s(n).
Now we have a similar characterization problem for Bogoliubov functionals: under

what conditions on a given nonlinear functional D � ϕ �→ B(ϕ) ∈ R we can present it in
the form (8.12) with some measure σ? This measure σ depends on the scalar product in
Hs, i.e., on the functional s (the convolution � is fixed). In what way we can find s from
given B(ϕ)?
We will investigate this problem but, at first, it is necessary to understand in what

way we can construct the corresponding Bogoliubov subfunctional Bsub;m(ϕ) from given
B(ϕ), since the former functional is an analog of moments s(n).
It is easy to prove the following statement.

Lemma 8.2. Let conditions of Theorem 6.6 be fulfilled and χϕ ∈ Hs for all ϕ ∈ D.
Then, for the Bogoliubov functional and a corresponding spectral measure ρ, we have

(8.25) B(ϕ) =
∞∑

n=0

∫
Γ

(
Pn(γ), ϕ⊗n

)
Fn(H)

dρ(γ), ϕ ∈ D, ϕ(x) > −1, x ∈ X.

Proof. Using Theorem 8.1 (equality (8.23)), Lemma 6.5, and 6.4 we get

B(ϕ) =
∫
Γ

(Kχϕ)(γ) dρ(γ) = lim
m→∞Bsub,m(ϕ)

= lim
m→∞

∫
Γ

(K(1, ϕ, . . . , ϕ⊗m, 0, 0, . . .))(γ) dρ(γ)

= lim
m→∞

∫
Γ

m∑
n=0

(
Pn(γ), ϕ⊗n

)
Fn(H)

dρ(γ) =
∞∑

n=0

∫
Γ

(
Pn(γ), ϕ⊗n

)
Fn(H)

dρ(γ).

�

Similarly, for Bogoliubov subfunctional, we have

(8.26) Bsub,m(ϕ) =
m∑

n=0

∫
Γ

(
Pn(γ), ϕ⊗n

)
Fn(H)

dρ(γ), ϕ ∈ D.

Let ϕ ∈ D be fixed. Consider the function X � x �→ tϕ(x) ∈ R, where t ∈ (−ε, ε),
ε > 0 is sufficiently small and fixed. Then this function satisfies the conditions for which
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the representations (8.25) takes place. Therefore we have

(8.27)

B(t, ϕ) :=B(tϕ) =
∞∑

n=0

∫
Γ

(
Pn(γ), (tϕ)⊗n

)
Fn(H)

dρ(γ)

=
∞∑

n=0

tn
∫
Γ

(
Pn(γ), ϕ⊗n

)
Fn(H)

dρ(γ), ϕ ∈ D.

Assume that the function (−ε, ε) � t �→ B(tϕ) ∈ R is infinitely differentiable, then
using series (8.27) we get

Dk
tB(t, ϕ) =

∞∑
n=k

k!tn−k

∫
Γ

(
Pn(γ), ϕ⊗n

)
Fn(H)

dρ(γ), k ∈ N0.

Therefore for all ϕ ∈ D we have

(8.28) (Dk
tB(t, ϕ))(0, ϕ) = k!

∫
Γ

(
Pk(γ), ϕ⊗k

)
Fk(H)

dρ(γ), k ∈ N0.

From (8.26) and (8.28) we conclude that

(8.29) Bsub,m(ϕ) =
m∑

n=0

1
n!
(Dk

tB(t, ϕ))(0, ϕ), ϕ ∈ D, m ∈ N0.

We have proved the following result.

Theorem 8.3. Let conditions of Theorem 6.6 be fulfilled and χϕ ∈ Hs for all ϕ ∈ D.
Consider the Bogoliubov functional B(ϕ), ϕ ∈ D corresponding to a spectral measure ρ.
Assume that, for every fixed ϕ ∈ D and some ε > 0, the function (−ε, ε) � t �→ B(tϕ) ∈ R

is infinitely differentiable. Then Bogoliubov subfunctionals Bsub,m(ϕ) are reconstructed
by formula (8.29).

Consider some additional properties of Bogoliubov functional and subfunctional con-
nected with functional positivity. As above, we consider these objects constructed from
a spectral measure ρ using Theorem 8.1.
In Theorem 8.1 we have assumed that the every character χϕ, ϕ ∈ D, belongs to the

space Hs since they are limits of χϕ,sub,m in Hs (8.18) as m→∞. We will assume now
that the set of all characters χϕ, ϕ ∈ D, is total in Hs.
The definitions (8.12), (8.21) and relation (8.16) give the following expressions for the

functional s on characters and subcharacters:

(8.30) s(χϕ) = B(ϕ), s(χϕ,sub;m) = Bsub;m(ϕ), ϕ ∈ D, m ∈ N0.

Below we will use (8.30) and the following result.

Lemma 8.4. For arbitrary ϕ, ψ ∈ D the following formula takes place:

(8.31) (χϕ � χψ)(ξ) = χϕ+ψ+ϕψ(ξ), ξ ∈ Γ0.
Proof. Apply the operator K to the left-hand side of (8.31) and use (2.8) and(6.14) to
get

(8.32)

(K(χϕ � χψ))(γ) = (Kχϕ)(γ)(Kχψ)(γ) =
( ∏

x∈γ

(1 + ϕ(x))
)( ∏

x∈γ

(1 + ψ(x))
)

=
∏
x∈γ

(1 + ϕ(x) + ψ(x) + ϕ(x)ψ(x)), γ ∈ Γ.

Application of K to the right-hand side of (8.31) and equality (6.14) gives

(8.33) (Kχϕ+ψ+ϕψ)(γ) =
∏
x∈γ

(1 + ϕ(x) + ψ(x) + ϕ(x)ψ(x)), γ ∈ Γ.
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Identities (8.32), (8.33) and invertibility of the operator K (see Proposition 2.2) gives
(8.31). �
Note that equality (8.31) is well-known, see e.g. [28], [33, p. 127].
Consider an arbitrary finite sequence (cj)∞j=0 of complex numbers and a sequence

(ϕj)∞j=0, ϕj ∈ D. The vectors f =
∑∞

j=0 cjχϕj belong to Hs and their set is dense in Hs.
Positivity of the functional s gives

(8.34) s(f � f̄) =
∞∑

j,k=0

cj c̄ks(χϕj � χϕk
) > 0, f �= 0.

Note also that using the limiting procedure from (8.16) we get

(8.35) s(f) =
∫
Γ

(Ĩf)(γ)dρ(γ), f ∈ Hs.

Using (8.34) and (8.31) we obtain

(8.36) s(f � f̄) =
∞∑

j,k=0

cj c̄ks(χϕj � χϕk
) =

∞∑
j,k=0

cj c̄ks(χϕj+ϕk+ϕjϕk
) > 0, f �= 0.

This equality can be rewritten in terms of Bogoliubov functionals. Namely, using
(8.35), the fact that the operators Ī and K coincide on the characters, and (8.12) we can
write

(8.37)
∞∑

j,k=0

cj c̄kB(ϕj + ϕk + ϕjϕk) = s(f � f̄) ≥ 0

for arbitrary f =
∑∞

j=0 cjχϕj �= 0, where (cj)∞j=0 is a finite sequence of complex numbers
and ϕj ∈ D.
So, the Bogoliubov functionals B(ϕ), ϕ ∈ D, satisfy the following condition of positiv-

ity: for an arbitrary finite sequence (cj)∞j=0, cj ∈ C, and a sequence (ϕj)∞j=0, ϕj ∈ D, we
have inequality (8.37).
A similar construction can be repeated for Bogoliubov subfunctionals: it is necessary

replace χϕ with χϕ,sub in (8.34) and (8.36) and use formula (8.17) instead of (8.35). But
now an inequality of type (8.37) does not hold, since the formula of type (8.31) has a
more complicated form.
We can now give the following conclusion from the results connected with Theorem 8.3

and positivity.

Lemma 8.5. Consider the situation of Theorem 8.1 in the case where, instead of a
formula for the functional s, we only know the Bogoliubov functional B(ϕ), ϕ ∈ D. We
assume that the conditions of totality of the set of characters in Hs and positivity (8.37)
are fulfilled.

Then we can find Bogoliubov subfunctionals Bsub(ϕ), ϕ ∈ D, by formula (8.29) and
calculate the functional s on linear combinations of characters and subcharacters by for-
mula (8.30).

We can formulate now the following result.

Theorem 8.6. Let D � ϕ �→ B(ϕ) ∈ R be continuous nonlinear functional such that
(1) For every ϕ ∈ D the function R � t �→ B(t, ϕ) := B(tϕ) ∈ R is infinitely

differentiable;
(2) The functional

s : Flin → R+, s(ϕ⊗n) :=
1
n!
(Dn

t B(t, ϕ))(0, ϕ), ϕ ∈ D, n ∈ N0,

is positive, i.e., s(f � f̄) > 0, f �= 0.
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Construct the corresponding space Hs. Additionally we will assume that s satisfies the
following three following properties:

(3) The corresponding operators A(ϕ) satisfy Condition 3.5;
(4) Every character χϕ, ϕ ∈ D, belongs to Hs, i.e., the sequence (χϕ,sub;n)∞n=0 is

fundamental in the space Hs;
(5) The spectral measure ρ of the family (Ã(ϕ))ϕ∈D is positive on Γ: ρ(Γ) > 0.

Then B(ϕ) is a Bogoliubov functional corresponding to the spectral measure ρ.

Proof. Using given objects, including the functional s, according to the results of Sec-
tions 2–6 we construct a family of selfadjoint commuting operators (Ã(ϕ))ϕ∈D, acting on
the space Hs. Using Theorem 8.3 we can conclude that the corresponding Bogoliubov
subfunctionals and functionals exist and, for them, we have the representations (8.22)
and (8.23). Lemma 8.5 shows that for the found subfunctionals we get the formulas such
as (8.22), i.e., an a priori given functional B(ϕ) is equal to the constructed Bogoliubov
functional. �

It is necessary to make some remarks to this theorem.

Remark 8.7. As a result, we have introduced Bogoliubov functionals, using their prop-
erties, as moments in the classical moment problem. In particular, we have imposed on
them the positivity condition in the form (8.37). But it seams that, unlike the moment
theory, fulfillment of only inequality (8.37) is not sufficient for positivity of the functional
s and, therefore, for a complete characterization of Bogoliubov functionals.

Remark 8.8. It remains a problem to give a more constructive form of the above condi-
tions 3) – 5), to formulate them in terms of B(ϕ) (similar to the moment problem).
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