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POISSON MEASURE AS A SPECTRAL MEASURE OF A FAMILY
OF COMMUTING SELFADJOINT OPERATORS, CONNECTED WITH

SOME MOMENT PROBLEM

YU. M. BEREZANSKY

To the memory of my dear daughter Natasha. She all the time stands before my eyes.

Abstract. It is proved that the Poisson measure is a spectral measure of some
family of commuting selfadjoint operators acting on a space constructed from some
generalization of the moment problem.

1. Introduction

In the years 1991–1998 in the works [2, 7, 13, 3] the authors have constructed a spectral
theory of Jacobi fields, which was a generalization of the spectral theory of one selfadjoint
operator generated by one Jacobi matrix to families of commuting selfadjoint operators.
In particular, it was shown that the Poisson measure on a definite infinite-dimensional
space can be considered as a spectral measure for some Jacobi field [4]. This result is
deeply connected with article [11], see also recent work [14].
This article also is connected with a study of a Poisson measure as a spectral measure,

but from a different position. In the theory of point probability processes, a procedure of
constructing of Poisson measure from Lebesgue-Poisson by means of a Kolmogorov-type
extension theorem, see [16], is well-known. The Lebesgue-Poisson measure is given on the
space Γ0(X) of finite configurations of points of the space X , but the Poisson measure
will be a measure on the space of infinite configurations Γ(X).
For the space of functions on Γ0(X), it is possible to define the Kondratiev-Kuna

convolution �, see [12], which is a wide generalization of the classical convolution on
sequences of numbers in the theory of classical moment problem. The convolution �
generates, as in classical power case, in a natural way, a system of commuting operators
on the Hilbert space constructed by means of a given “moment” sequence. It is found
that the Poisson measure will be a spectral measure for this family of operators for the
corresponding moment sequences on the space, which is wider than Γ(X).
It is necessary to explain what measure π on the space D′ is a Poisson measure in our

understanding. We assume that for ω ∈ D′ and finite smooth functions f on X there is a
“pairing”, 〈ω, f〉. Then our measure π is a Poisson measure if and only if for its Laplace
transform we have the identity

(1.1)
∫
D′
e〈ω,f〉dπ(ω) = exp

(∫
X

(ef(x) − 1)dσ(x)
)
,

where σ is some fixed initial (“intensity”) measure on X and f is arbitrary.
The article consists of two sections, — Section 2 and Section 3. In Section 2 we

present some results about configurations and a classical account of introducing a Poisson
measure. This Section is connected with the works [16, 1, 12, 15, 10] and, of course, with
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[9, 8, 5]. Unfortunately, I can not find books or articles that would contain needed facts
about measures and, therefore, it was necessary to write Section 2.
In Section 3 we introduce a Poisson measure as a spectral measure ρ. We explain that

in this case ρ(Γ0(X)) > 0.
Therefore, if we understand a Poisson measure as a measure π on D′ with the Laplace

transform satisfying (1.1), then it is possible that ρ = π satisfies the condition ρ(Γ0(X)) >
0 and it is natural to interpret the set Γ0(X) as a part of D′. This remark is connected
with the work [9, p. 12]. For more details, see the end of Section 3.
It is necessary to make one refinement to the article [9]. Namely, the definition of

“non-overlapping configurations γ” (formula (2.4) in [9]) was not explained. The results
of article [9] are true, using the notion of the set Γ of usual configurations (see (2.2) in
Section 2 of the present article).

2. Poisson measure. Classical account

At first we recall some definitions and notations from the article [9].
Let X be a connected C∞ non-compact Riemannian manifold. We denote by D :=

C∞fin(X) the set of all real-valued infinitely differentiable functions on X with compact
support. Denote by DC the complexification of D. We will consider D as a nuclear
topological space with the projective limit topology. Let F0(D) := C and Fn(D) := D�⊗n

C
,

n ∈ N, i. e., it is the space of all complex-valued symmetric infinitely differentiable
functions on Xn with compact supports and corresponding to the D�⊗n

C
topology (the

topology of test functions in theory of generalized functions of variables from X).
Construct the space of finite sequences

(2.1) Ffin(D) :=
∞⊕
n=0

Fn(D) � f = (f0, f1, . . . ), fn ∈ Fn(D),

i. e., sequences f , for which only a finite number of components fn are different from zero.
Convergence in this space is equivalent to uniform finiteness of sequences and coordinate-
wise convergence of every coordinate fn from the space Fn(D) in the topology mentioned
above.
Let us recall the notion of the space Γ = Γ(X) of all configurations generated by X .

It is the set of all locally finite subsets γ of X :

(2.2) Γ :=
{
γ ⊂ X

∣∣∣|γ ∩ Λ| <∞ for every compact Λ ⊂ X
}

(here | · | is the cardinality of this set). Each γ ∈ Γ consists of distinct points from X ,
and Γ consists of all different configurations γ (subsets of X).
The topology into the space Γ is introduced in the following way. Consider the space

D′ of continuous linear functionals on the space D and the weak topology in D′ (see, e.
g., [6], Chap. 1, § 1). Let γ = [x1, x2, . . . , ] ∈ Γ, x1, x2, · · · ∈ X be a certain configuration.
Denote by ωγ the corresponding generalized function from D′:

(2.3) wγ(ϕ) :=

( ∞∑
n=1

δxn

)
(ϕ) =

∞∑
n=1

δxn(ϕ) =:
∞∑
n=1

ϕ(xn) =: 〈γ, ϕ〉 (ϕ ∈ D)

(the sum in (2.3) is finite, since ϕ is a finite function and xn “tends to infinity”). Thus,
we have a one-to-one correspondence Γ � γ ←→ ωγ ∈ D′, and the weak topology in
D′ defines some topology on Γ, known as the vague topology (we use this definition,
but usually instead of the space D we use the space of finite continuous functions with
uniformly finite convergence).
Denote the set of all finite configurations ξ = [x1, . . . , xn], where x1, . . . , xn ∈ X ,

xj �= xk if j �= k, n ∈ N, by Γ0 = Γ0(X) ⊂ Γ(X) = Γ. We will understand Γ0 as a part
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of the space Γ and topologize it with the relative topology of the space Γ (in the second
part of this Section we will introduce another topologization of the space Γ0). We will
denote elements of the space Γ by γ, θ, . . . and elements of the space Γ0 by ξ, η, . . .
It is useful to do the following remarks to the notion of vague topology.
Suppose we have a given topological space T with neighborhoods u, v, . . . and some

set A ⊂ T . We introduce a topology into A, using, as a system of neighborhoods, the
intersections u∩A, v ∩A, . . . , i. e., we introduce into A the relative topology. Let A be
the closure of A in T . Then the relative topology in A completely defined by the relative
topology in A.
In our case we introduce the relative topology into A = Γ0(X), using the complete

space T = D′ ⊃ Γ0(X). As follows from (2.3), Γ0(X) is a dense set in Γ(X) = A in
topology of the space D′. As a result, the vague topology in Γ0(X) completely defines
the vague topology in Γ(X).
In other words, in definition (2.3) it is possible to take γ to be only finite configurations,

γ = ξ = [x1, . . . , xm] ∈ Γ0(X), m ∈ N. Thus, finite configurations completely define the
topology in Γ(X).
But the one-point configurations [x1], x1 ∈ X , in principle, do not define this topology

uniquely; it is defined by finite sums of δ-functions.
It is convenient to introduce the following construction, connected with space Γ0 =

Γ0(X). Denote by Γ(n) = Γ(n)X the set of all finite configurations using the space Xn,
n ∈ N; Γ(0) = Γ(0)X = ∅.
Namely, we understand, by Γ(n) for n ∈ N, a subset of the space Xn = (x1, . . . , xn) of

points that are symmetric (i. e. the point (x1, . . . , xn) does not depend on the order of
x1, . . . , xn ∈ X) and their “coordinate xj ∈ X” are different.
Then the equality of disjunct summands is obvious,

(2.4) Γ0 = Γ0(X) =
∞⊔
n=0

Γ(n) =
∞⊔
n=0

Γ(n)X .

Let us return to the definition (2.1) of the space Ffin(D). Every element of this space
is a finite vector of the following type:

(2.5) f = (f0, f1, . . . , ), fn ∈ Fn(D) = D�⊗n
C
, n ∈ N; f0 ∈ C.

Fix n ∈ N. The component fn of this vector may be understood as a smooth complex-
valued finite function of point ξ ∈ Γ(n) ⊂ Xn, which is symmetric. Conversely, such
function is always a component fn of a certain vector f (2.5). For n = 0 we can under-
stand f0 ∈ C as the value in the point ∅ of such a function.
Thus, we can understand the vector f from (2.5) as a function

(2.6) Γ0 =
∞⊔
n=0

Γ(n) � ξ 
→ f(ξ) ∈ C,

where, for every n ∈ N, the values of such a function Γ(n) � ξ 
→ f(ξ) are infinitely
differentiable finite symmetric function on Xn ⊃ Γ(n). For n = 0 we have ∅ 
→ f(∅) ∈ C.
Additionally, every function (2.6) must be finite in the “direction” n, i. e., f(ξ) = 0, where
ξ belongs to

⊔∞
n=m Γ(n) for m large enough.

In what follows, we will identify the vector f of type (2.1) with a corresponding finite
function f(ξ) on the space (2.6). Below, as a rule, the functions of type (2.6) will be
denoted by f, g, · · · : Γ0 � ξ 
→ f(ξ) ∈ C, . . .
The above account and formulas (2.1)–(2.6) are given for the space X . But we can,

instead of X , use its subset Y ⊂ X , topologized with the relative topology. Then we get
the objects Γ(Y ), Γ0(Y ), Γ(n)(Y ), n ∈ N0.
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In this article, as in [9], the Kondratiev–Kuna convolution � [12, 15] plays an essential
role.
Let us recall the corresponding definitions. Let us take vectors (2.1), (2.5) in the form

of functions on Γ0, f : Γ0 � ξ 
→ f(ξ) ∈ C; f ∈ Ffin(D). For two such functions f , g we
introduce the following convolution:

(f � g)(ξ) :=
∑

ξ′�ξ′′= ξ
f(ξ′)g(ξ′′) =

∑
ξ′�ξ′′�ξ′′′= ξ

f(ξ′ � ξ′′)g(ξ′′ � ξ′′′),(2.7)

f, g ∈ Ffin(D)
(all sums in (2.7) are finite). This convolutions turns Ffin(D) into a commutative algebra
with involution f = f(ξ) → f(ξ) = f and identity e = (1, 0, 0, . . . ); e(∅) = 1 and
e(ξ) = 0 for other ξ ∈ Γ0. We will denote this algebra by A : Ffin(D) = A.
For the algebra A it is natural to introduce the notion of a character χϕ(ξ). We will

call a character the following function:

(2.8) χϕ : Γ0 → R, ξ → χϕ(ξ) =
∏
x∈ξ

ϕ(x), ξ ∈ Γ0 \∅; χϕ(∅) = 1,

where ϕ ∈ D is given. One may easily calculate that

(2.9) (χϕ � χψ)(ξ) = χϕ+ψ+ϕψ(ξ), ξ ∈ Γ0; ϕ, ψ ∈ D.
Let us explain that, in equality (2.9), we have the additional member ϕ + ψ, since the
algebraA is an algebra with formally added identity ∅ in contrast to the ordinary discrete
group algebra.
The investigation of convolution � is deeply connected with the K-transform intro-

duced on the basis of the papers of A. Lenard by Yu. G. Kondratiev and T. Kuna in
[12].
This transform is a linear operator, acting from Ffin(D), which is understood as a

space of functions on Γ0, into complex-valued functions on Γ ⊃ Γ0,

(2.10) Ffin(D) � f 
→ (Kf)(γ) :=
∑
ξ⊂γ

f(ξ) = F (γ) ∈ C if ξ �= ∅; F (∅) = f(∅).

The sum in (2.10) is finite. We do not repeat the definitions, given in [9], of the spaces
between which the operator K acts. Such an information about the spaces under con-
sideration will be given further in this article.
Note that that K-transform has an algebraically inverse operator. Namely, it is easy

to prove that if for f ∈ Ffin(D),
(2.11) (Kf)(γ) = F (γ), γ ∈ Γ,
then

(K−1F )(ξ) =
∑
η∈ξ

(−1)|ξ\η|F (η), ξ ∈ Γ0.

The K-transform has also one remarkable property: it maps the algebra A into an
algebra of functions on Γ with ordinary multiplication, i. e.,

(2.12) (K(f � g))(γ) = (Kf)(γ)(Kg)(γ), γ ∈ Γ; f, g ∈ Ffin(D) = A.
Let us mention another property of the transform K, — it transfers the functions

f ∈ Ffin(D) into the functions (Kf)(γ), γ ∈ Γ, that are cylindrical in some sense. Such
cylindrical property explains the fact that the inverse operator K−1 acts only from a
part of values of a function F (γ) (namely, only from their values on Γ0 ⊂ Γ), see (2.11).
Let us explain this assertion. Every function f ∈ Ffin(D) has the form (2.5) and

according to (2.1) has a finite number of coordinates, different from zero. In the inter-
pretation of this function f as a function f(ξ) on the space Γ0 (2.4), this property means
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that f(ξ) depends only on ξ ∈ ⊔mn=0 Γ(n) with some m ∈ N0, i. e., we have a function

(2.13)
m⊔
n=0

Γ(n) � ξ 
→ f(ξ) ∈ C.

Moreover, every function Γ(n) � ξ 
→ f(ξ), n = 1, . . . ,m, is smooth and finite on Xn ⊃
Γ(n).
Thus, every value in the “point” γ of the described function (Kf)(γ) by formula (2.10)

depends only on a sum of the values f(ξ) with ξ ⊂ γ. Consider the case where the set γ
consists of infinitely many different points x ∈ X . The sum in (2.10) is finite and does
not depend on values of our function Γ0 � ξ 
→ f(ξ) ∈ C in points of γ \ ξ. So, the
function (Kf)(γ) is, in some sense, “almost cylindrical”. Almost, because it is necessary
to consider γ = [x1, x2, . . . ] ∈ Γ as a “vector with the coordinates x ∈ X”. Thus, the
function (Kf)(γ), with fixed f , depends only on a finite number of “coordinates x ∈ X”.
Let us prove the following simple fact.

Lemma 2.1. Let f ∈ Ffin(D). Then the function (Kf)(γ), γ ∈ Γ, is continuous in the
vague topology.

Proof. Consider fixed η = [x1, x2, . . . ] ∈ Γ and all ξ ∈ Γ0, for which ξ ⊂ η. We get the
following set, which is infinite, if η ∈ Γ \ Γ0:

(2.14)

[x1] , [x2] , . . . ;
[x1, x2] , [x1, x3] , . . . , [x2, x3] , [x2, x4] , . . . ;
[x1, x2, x3] , [x1, x2, x4] , . . . ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[x1, x2, . . . , xn] , . . . ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider expression (2.10). The function f belongs to Ffin(D), therefore in its repre-
sentation of the form (2.13) we have finite m ∈ N and every set

{
ξ ∈ Γ(n)} is precompact

in the topology of the space Xn, n = 1, . . . ,m.
Therefore we have, for fixed f ∈ Ffin(D) and fixed γ = [x1, x2, . . . ] ∈ Γ,

(Kf)(γ) =
∑
ξ⊂γ

f(ξ) = f(∅) +
∑
[x1]⊂γ

f([x1]) +
∑

[x1,x2]⊂γ
f([x1, x2])

+ · · ·+
∑

[x1,...,xn]⊂γ
f([x1, . . . , xn]) + . . .

(2.15)

In (2.15) every sum in the right-hand side is finite (see (2.14)). Moreover, the whole sum
is finite, since f has representation (2.13).
Let f ∈ Ffin(D) that is understood as a finite vector of form (2.1), f = (f0, f1, . . . )

with components fn ∈ Γ(n) (see (2.13)). Then it is possible to calculate, using (2.15),
the expression (Kf)([x1, . . . , xn]), n ∈ N (see [12, p. 209]). Namely, denote by ξα =
[xα1 , . . . , xαl

] ∈ Γ0, where α is the set {α1, . . . , αl} =: α of all different indexes from
{1, . . . , n}, 1 ≤ l ≤ n. Then we have the representation of (Kf)(ξ) as a finite sum,

(2.16) (Kf)([x1, . . . , xn]) =
∑

α⊂{1,...,n}
f(ξα), n ∈ N.

From (2.16) it we get a proof of the lemma. Namely, (2.16) means that (Kf)(ξ) is
continuous, when ξ = [x1, . . . , xn] varies over Xn without a diagonal x1 = · · · = xn,
since every function f(ξα) from (2.16) has such a property in the corresponding space
X l, 1 ≤ l ≤ n.
Configuration γ ∈ Γ in the function (Kf)(γ), (2.15), has the form

γ =
[
x1, . . . , xm, x

0
m+1, x

0
m+2, . . .

]
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with fixed m ∈ N and some fixed points x0m+1, x
0
m+2, . . . , tending “to infinity”. There-

fore, the mentioned continuity of (Kf)(γ) gives continuity of this function in the vague
topology. �

We need once more to turn to the space Ffin(D). This is a linear complex space with
the topology described after definition (2.1). It is useful to know that this space (with
its topology) is a projective limit of some Hilbert spaces,

(2.17) Ffin(D) = pr lim
τ∈T, p≥1

F (Hτ , p) =
⋂

τ∈T, p≥1
F (Hτ , p).

Here F (Hτ , p) is the weighted Fock space which consists of sequences f = (fn)∞n=0,
fn ∈ H �⊗

τ,C =: Fn(Hτ ) such that

(2.18) ‖f‖2F (Hτ ,p)
=

∞∑
n=0

‖f‖2Fn(Hτ )
pn <∞

with the corresponding scalar product. Here p = (pn)∞n=0, pn ≥ 1 means a number
weight, Hτ,C is the complexification of the Sobolev space W τ1

2 (X, τ2(x)dm(x)), where
τ = (τ1, τ2(x)), τ1 ∈ N0, τ2(x) ≥ 1 is a C∞ weight and m is Riemannian measure on X .
The space Ffin(D) (2.1) is a nuclear space; the embedding of the spaces F (Hτ , p) with

corresponding τ and p is of Hilbert-Schmidt type. For these notions, we refer to, e. g.,
[6].
As we have noted, the space Ffin(D) is a commutative algebra A with respect to

multiplication �, is endowed with involution “−”, and has a unit element e.
Construct the Hilbert space connected with the algebraA = Ffin(D). Namely, consider

a linear functional s ∈ A′, which is called non-negative, if
(2.19) s(f � f) ≥ 0, f ∈ A.
Any non-negative functional s �= 0 generates the following quasi-scalar product on A
(2.20) (f, g)Hs = s(f � g), f, g ∈ A.
Identifying every f ∈ A such that s(f � f) = 0 with zero, considering corresponding

classes and completing the space of these classes, we construct a Hilbert space Hs.
In this article we will consider only the case where

(2.21)
{
f ∈ A

∣∣∣s(f � f) = 0
}
= 0,

i. e., the positive (non-degenerate) case. In this case (2.20) is a scalar product on A and
the completion of A with respect to this scalar product gives our space Hs.
We finish the first part of this Section, devoted to definitions and facts, which are

necessary for following account.
The second part, devoted to the classical account of a Poisson measure, we start with

a remark that, for this purpose, it is necessary to change the topology of the space Γ,
which we have introduced above by (2.2).
Namely, we have Γ = Γ0

⋃
(Γ \ Γ0) and the topology of the part Γ0 must be another

one; the space Γ0 is represented by (2.4) as a disjoint sum of the spaces Γ(n), n ∈ N0,
each of which is a subspace of Xn ⊃ Γ(n) endowed with the relative topology; Γ(0) = ∅.
The convergence in the space Γ0 (2.4) is that of uniform finiteness and coordinate-wise
convergence for every coordinate fn of a vector f = (f0, f1, . . . ) ∈

⊔∞
n=0 Γ

(n). We will
call this topology on Γ0 an “ordinary topology”.
The topology of Γ\Γ0 is the previous vague topology, understanding it as the relative

topology on Γ \ Γ0 ⊂ Γ with the vague topology considered on Γ. Thus, we have to the
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end of this Section the representation of Γ as a union of two disjoint topological spaces

(2.22) Γ = Γ0 � (Γ \ Γ0),
where Γ0 is topologized with the stated above ordinary topology and Γ\Γ0 with the vague
topology. We will say in this case that Γ (2.22) is topologized with the ordinary-vague
topology.
Let us introduce the classical Lebesgue-Poisson measure. We start with a fixed mea-

sure σ on the σ-algebra B(X) of Borel sets from the space X with a topology given on
this space. So we have the measure

(2.23) B(X) � α 
→ σ(α) ≥ 0.

This measure (2.23) must be non-degenerate, i. e., σ(α) > 0 for every open set α ⊂ X
and non-atomic, i. e., for every x ∈ X σ({x}) = 0. Assume that σ(X) = +∞. We will
call this measure σ initial or an intensity measure.
We fix some n ∈ N and denote by σ(n) or σ�⊗n = σ × · · · × σ (n times) the symmetric

tensor product of the measure σ. This measure σ(n) is defined on the σ-algebra of Borel
sets B(Xn) as follows:

(2.24) B(Xn) � α(n) 
→ σ(n)(α(n)) := σ
�⊗n(α(n)) ≥ 0.

Thus, this measure σ(n) is also defined on the sets from space Γ(n) = Γ(n)X (see (2.4)),
which belong to B(Xn).
For n = 0 we put σ(0)(∅) ≥ 0.
The Lebesgue-Poisson measure dλ(ξ) on every set α ⊂ Γ0 = Γ0(X), which is Borel

with respect to the ordinary topology, i. e. α ∈ B(Γ0), is defined by the formula

B(Γ0) = B(Γ0(X)) � α 
→ λ(α) = σ(0)(∅) +
1
1!
σ(1)(α(1)) +

1
2!
σ(2)(α(2))

+ · · ·+ 1
n!
σ(n)(α(n)) + . . . ,

(2.25)

where α(n) = α ∩ Γ(n).
Thus, if we have a function Γ0 � ξ 
→ f(ξ) ∈ C, which is integrable with respect to

dλ(ξ), then

(2.26)
∫
Γ0

f(ξ)dλ(ξ) = f(∅)σ(0)(∅) +
∞∑
n=1

1
n!

∫
Γ(n)

f(x1, . . . , xn)dσ(n)(x1, . . . , xn).

In what follows, we set σ(0)(∅) = 1 in (2.25), (2.26). From (2.25), (2.26) it is easy to
conclude that λ(Γ0(Y )) = eσ(Y ), where Y ⊂ X is a compact subset of X .
After having introduced the Lebesgue-Poisson measure, it is possible to introduce a

Poisson measure on the space Γ = Γ(X). This measure is given on the σ-algebra of Borel
sets B(Γ(X)) in the ordinary-vague topology.
Recall that this topology on Γ(X) is the weak topology in D′, where D = C∞fin(X)

with the standard topology in theory of generalized functions on X . The space Γ(X)
is included into D′ by Γ(X) � γ = [x1, x2, . . . ] 
→

∑∞
n=1 δxn , where δx denotes the

δ-function at the point x ∈ X (see (2.3)).
Denote by Bc(X) the sets from B(X) with compact closures, where B(X) is the σ-

algebra of Borel sets in the topology of X . Let Y ∈ Bc(X) be such fixed set. Consider
the set of configurations Γ(Y ). By definition (2.2) this set Γ(Y ) consists only of finite
configurations γ, since closure Y in X is compact.
We introduce the vague topology in Γ(Y ) replacing the space X with Y , i. e., this

topology is the weak topology in the space D′Y , where DY = C∞fin(Y ).
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It is possible to prove, that this topology is as type of topology in the space (2.4), i. e.,

(2.27) Γ(Y ) =
∞⊔
n=0

Γ(n)Y = Γ0(Y ),

where Γ(n)Y is the set of all configurations of type [x1, . . . , xn], where xj ∈ Y , 1 ≤ j ≤ n.
In (2.27) we have a disjoint sum of Γ(n)Y with the ordinary topology in each Γ(n)Y . Such a
result follows from the Lemma 2.5 and its proof can be found in [9].
Thus, it is reasonable to write in (2.27), instead of Γ(Y ), the symbol Γ0(Y ); Y ∈

Bc(X).
Note that every function f ∈ C∞fin(Y ) ca be extended by zero to a function on C∞fin(X).

So, we have some system of topologies on X , depending on Y ∈ Bc(X) (but in this
system the set X \ Y is considered as one point of the space).
Introduce the “projection” pY of a “point” from Γ(X) to a “point” from Γ0(Y ),

(2.28) Γ(X) ⊃ Γ0(Y ), Γ(X) � γ 
→ pY γ = γY := γ
⋂
Y ∈ Γ0(Y );

evidently, if Γ0(Y1) ⊃ Γ0(Y2), Y2 ⊂ Y1, Y1, Y2 ∈ Bc(X), then Γ0(Y1) � γ 
→ pY2,Y1 =
γY2 := γ ∩ Y2 ∈ Γ0(Y2); pY = pYX .
Denote by p−1Y γ, γ ∈ Γ0(X), and by p−1Y2,Y1

γ, γ ∈ Γ0(Y1) the full preimage of pY and
pY2;Y1 , defined by (2.28). It is evident that

Γ0(Y ) � γ 
→ p−1Y γ = θ ∈ Γ(X) such that θY = γ;

Γ0(Y2) � γ 
→ p−1Y2,Y1
γ = θ ∈ Γ0(Y1) such that θY2 = γ.

(2.29)

We will apply the operators A of type pY , pY2,Y1 , p
−1
Y , p−1Y2,Y1

from (2.28) and (2.29)
to different sets of configurations γ ∈ α. Of course, such an application Aα means that
Aα := {Aγ , γ ∈ α}, i. e., the application is pointwise.
Consider an arbitrary Γ0(Y ), where Y ∈ Bc(X) with the corresponding ordinary

topology in Γ0(Y ) and the σ-algebra of Borel sets B(Γ0(Y )) in this topology. We have
B(Γ0(Y )) ⊂ B(Γ(X)), B(Γ0(Y2)) ⊂ B(Γ0(Y1)) and the relations (2.29) can be rewritten
as follows:

B(Γ0(Y )) � α 
→ β ∈ B(Γ(X)) such that p−1Y β =: βY = α;

B(Γ0(Y2)) � α 
→ β ∈ B(Γ0(Y1)) such that p−1Y2,Y1
β =: βY2 = α.

(2.30)

We can construct, due to (2.28), (2.29), (2.30), a projective limit prlimY Γ0(Y ) of such
spaces with the corresponding σ-algebras B(Γ0(Y )) (see, e. g. [16, 10]).
Now we will define a projective limit on Γ(X) of probability measures on Γ0(Y ),

where Y ∈ Bc(X) are arbitrary. Such a family of measures μY is defined on the σ-
algebra B(Γ0(Y )); the measure μY must be a probability measure, i. e., μY (Γ0(Y )) = 1,
Y ∈ Bc(X). Their projective limit, μX , is a measure on B(Γ(X)) and must also be a
probability, μX(Γ(X)) = 1.
This family of measures μY is supposed to be consistent in the following sense, see

(2.30):

(2.31) μY2(α) = μY1(p−1Y2,Y1
α), α ∈ B(Γ0(Y2)) ⊂ B(Γ0(Y1))

for every Y2 ⊂ Y1; Y1, Y2 ∈ Bc(X); i. e., μY2(βY2) = μY1(β), β ∈ B(Γ0(Y1)).
For the limit measure μX in the projective limit, we must also have the following

property:

(2.32) μY (α) = μX(p−1Y α), α ∈ B(Γ(Y )) ⊂ B(Γ(X)),
Y ⊂ X ; Y ∈ Bc(X) (see (2.30)); i. e., μY (βY ) = μX(β), β ∈ B(Γ(X)).
The question is whether there exists such a projective limit of measures. The answer

is given by the corresponding version of a Kolmogorov-type theorem (see [16, 1, 10, 15]).
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Theorem 2.2. Suppose that there exists a consistent family of probability measures μY ,
Y ∈ Bc(X), on the σ-algebras B(Γ0(Y )), i. e., (2.31) is satisfied.

Then there exists a unique probability measure μX on B(Γ(X)) such that for every
Y ∈ Bc(X) we have (2.32).

After these general results about the projective limit of the spaces Γ(Y ) endowed
with corresponding Borel σ-algebras B(Γ0(Y )), Y ∈ Bc(X), we can introduce a Poisson
measure with the a use of the Lebesgue-Poisson measure.

Theorem 2.3. Consider Y ∈ Bc(X), and the probability measures

(2.33) πY (α) = e−σ(Y )λ(α), α ∈ B(Γ0(Y )),
on the σ-algebra B(Γ0(Y )), where dλ(ξ) is Lebesgue-Poisson measure (2.25) on Γ0(Y )
with the initial measure σ (2.23) given on B(X).

Using the above mentioned Theorem 2.2 we can conclude that, on B(Γ(X)), there
exists a unique probability measure π, for which

πY (α) = π(p−1Y α), α ∈ B(Γ(Y )), Y ∈ Bc(X);
i. e. πY (βY ) = π(β), β ∈ B(Γ(X)),(2.34)

where the projection pY is given by (2.28), (2.29), (2.30). Such a measure is called a
Poisson measure.

Proof. Using (2.25) we conclude that, in our situation, λ(Γ0(Y )) = eσ(Y ), therefore the
measure (2.33) is a probability measure, πY (Γ0(Y )) = 1.
The condition (2.31) is also fulfilled. It is necessary to prove that the measure μY of

the form μY = πY , where πY is given by (2.33), satisfies equality (2.31). We have

μY2(α) = e−σ(Y2)λ(α), α ∈ B(Γ0(Y2)) ⊂ B(Γ0(Y1)),

μY1(p−1Y2,Y1
α) = e−σ(Y1)λ(p−1Y2,Y1

α) = e−σ(Y1)λ(β).

Here β ∈ B(Γ0(Y1)) is such that α = βY2 = pY2,Y1β.
Thus, it is necessary to prove that

(2.35) e−σ(Y1)λ(β) = e−σ(Y2)λ(βY2), β ∈ B(Γ0(Y1)), Y2 ⊂ Y1 ⊂ X.

The measure σ on X is given by (2.23) and is non-degenerate and non-atomic. The
proof of (2.35) in the case of the Lebesgue measure σ on X = Rd is given in [10]. The
general situation is considered in [16, 1]. �

Consider some properties of the Poisson measure, which will be needed in the sequel.

Lemma 2.4. The Poisson measure is positive on open sets from Γ(X) in the vague
topology.

Proof. Let β be an open set in vague topology from Γ(X). It is necessary to prove that
π(β) > 0. If β ⊂ Γ(X) is an open set, then it is easy to prove that, for every Y ⊂ X , the
set α := βY = p−1Y β is also open in the vague topology, considered on the space Γ(Y ).
In particular, this is true if Y ∈ Bc(X). But using (2.27) we know that the vague

topology on Γ(Y ) = Γ0(Y ) is the ordinary topology. Thus, the set α is open in the
ordinary topology on Γ0(Y ). Using the formula (2.34) we assert that it is necessary to
prove that πY (α) > 0, or, using (2.33), that λ(α) > 0. But this follows from (2.25). �

Let us mention some simple properties of the Poisson and Lebesgue-Poisson measures
introduced by Theorem 2.3 and by definition (2.25).
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The Lebesgue-Poisson measure λ is defined on sets α ⊂ Γ(X) which are Borel in the
vague topology, α ∈ B(Γ(X)). Let

(2.36) X =
∞⋃
n=1

Yn, Y1 ⊂ Y2 ⊂ . . . , Yn ∈ Bc(X).

Then

(2.37) Γ0(X) =
∞⋃
n=1

Γ0(Yn), Γ0(Y1) ⊂ Γ0(Y2) ⊂ . . . , Γ0(Yn) ∈ B(Γ(X)).

Using (2.37) for every α ∈ B(Γ(X)) we get

(2.38) α =
∞⋃
n=1

αn, where αn = α
⋂

Γ0(Yn) ∈ B(Γ(X)); α1 ⊂ α2 ⊂ . . .

Absolute additivity of the Poisson measure π, with a use of (2.38) and (2.33), gives

(2.39) π(α) = lim
n→∞π(αn) = lim

n→∞ e
−σ(Yn)λ(αn).

Lemma 2.5. The Poisson measure π of the set of all finite configurations is equal to
zero, π(Γ0(X)) = 0.

Proof. Let Λ ⊂ X be some compact subset of X and Γ(Λ) a corresponding subset of
Γ(X), Γ(X) ⊃ Γ(Λ). All configurations from Γ(Λ) are finite, therefore we can write (see
(2.4))

(2.40) Γ(Λ) = Γ0(Λ) =
∞⊔
m=1

Γ(m)Λ .

From (2.36) it follows that Λ ⊂ Yn0 for some n0 ∈ N. Therefore, Γ0(Λ) ⊂ Γ0(Yn0) ⊂
Γ0(Yn0+1) ⊂ . . . Take α = Γ0(Λ) ∈ B(Γ(X)) in (2.38). Then, in this case, αn0 = αn0+1 =
αn0+2 = . . . and (2.39) gives

π(Γ0(Λ)) = π(α) = lim
n→∞ e−σ(Yn)λ(αn) = λ(αn0) lim

n→∞ e
−σ(Yn) = 0,

since (2.36) takes place, and σ(Yn)→ +∞.
Therefore, π(Γ0(Λ)) = 0 for every Λ ⊂ X , i. e. π(Γ0(X)) = 0. �

We will also prove two known facts about the measures under consideration.

Theorem 2.6. The Laplace transform of the Poisson measure π(α), α ∈ B(Γ(X)) is
given by

(2.41)
∫
Γ(X)

e〈γ,f〉dπ(γ) = exp
(∫

X

(ef(x) − 1)dσ(x)
)
, f ∈ D.

Proof. For fixed f ∈ D we can find a set Y ∈ Bc(X) such that f(x) = 0, x ∈ X \ Y .
Using (2.34), (2.33), (2.24) and (2.26) we can write∫

Γ(X)

e〈γ,f〉dπ(γ) =
∫
Γ(Y )

e〈γ,f〉dπY (γ) = e−σ(Y )
∫
Γ(Y )

e〈γ,f〉dρ(γ)

= e−σ(Y )
∞∑
n=0

1
n!

∫
Y n

e
�n

j=1 f(xj)dσ(n)(x1, . . . , xn)

= e−σ(Y )
∞∑
n=0

1
n!

(∫
Y

ef(x)dσ(x)
)
= exp

(∫
X

(ef(x) − 1)dσ(x)
)
. �
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It is usual to say that, if for some measure ρ, it is possible to define its Laplace
transform, and for this transform equality (2.41) it follows, that this measure ρ is a
Poisson measure.
At last, we will need the following equality that is a special case of Theorem 4.1 from

[12, Example 4.1] (see also [15]).

Proposition 2.7. The following relation between the Lebesgue-Poisson measure dλ(ξ)
and Poisson measure dπ(γ) holds true:

(2.42)
∫
Γ0(X)

f(ξ)dλ(ξ) =
∫
Γ(X)

(Kf)(γ)dπ(γ), f ∈ Ffin(D).

3. Poisson measure as a spectral measure of some family of commutating

selfadjoint operators

In the first part of Section 2 we had a Hilbert space Hs which was constructed in the
following way.
We have introduced a commutative algebra A, whose elements are vectors from the

space Ffin(D) (see (2.1), (2.5), (2.6)) and a composition � defined by (2.7).
On the space A = Ffin(D), we consider a linear functional s ∈ A′, s �= 0, which is

non-negative in the sense of (2.19). We consider now only the case when s is positive,
i. e., condition (2.21) is fulfilled. Construct the Hilbert space Hs that is a completion of
A with respect to the scalar product (2.20).
For this space Hs in the article [9], we considered a family (A(ϕ))ϕ∈D of unbounded

(in general) operators defined by

(3.1) Hs ⊃ Ffin(D) = A � f 
→ A(ϕ)f = ϕ � f ∈ A,
where ϕ is a function from D (i. e., a real-valued function from F1(D) = D). The closure
Ã(ϕ) of operator (3.1) is well-defined in the space Hs and is Hermitian.
Such operators A(ϕ), ϕ ∈ D, were investigated in the article [9] (and earlier in [5, 8])

even in the general case, when the requirement of positivity (2.21) was omitted, and the
Hilbert space Hs consisted of classes of vectors from A.
Under some conditions every operator A(ϕ), ϕ ∈ D, is essentially selfadjoint and their

set forms a set of commutative selfadjoint operators acting on the spaceHs. In the article
[9] (and in [5, 8]) the spectral representation for this family (Ã(ϕ))ϕ∈D was considered
and some applications of this theory were given.
In this article, we will consider only the case where the functional s ∈ A′ has the form

of an integral. Namely, let s be given by the integral

(3.2) s(f) =
∫
Γ0

f(ξ)dν(ξ) =
∞∑
n=0

∫
Γ(n)

f(ξ)dν(ξ), f ∈ A = Ffin(D),

where dν(ξ) is some finite measure on the σ-algebra of Borel sets in ordinary topology Γ0,
given by (2.22). For f ∈ Ffin(D) the vectors (2.5) are finite and every function f � Γ(n)
is a finite smooth function, therefore, the integral (3.2) always exists.
In the articles [5, 8, 9] the following essential fact was proved: if the measure dν(ξ) in

the representation (3.2) is such, that for every compact Λ ⊂ X there exists a constant
CΛ > 0 such that

(3.3) ν(Γ(n)Λ ) ≤ CnΛ, n ∈ N0,

then the closures Ã(ϕ) of the operators A(ϕ) on the space Hs make a family (Ã(ϕ))ϕ∈D
of commuting selfadjoint operators (this result is true even when the condition (2.21) is
not fulfilled). Let us explain that Γ(n)Λ denotes the space Γ(n)X from (2.4) if we replace X
with Λ ⊂ X .
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Let us pass to a study of the case of a Poisson measure. Recall that a non-atomic
initial measure B(X) � α 
→ σ(α) ≥ 0 is given on Borel sets of the space X . Using this
measure by rule (2.25) we construct the corresponding Lebesgue-Poisson measure λ(ξ)
on the σ-algebra of Borel sets B(Γ0) with respect to the ordinary topology on Γ0.
Theorem 3.1. The functional s of the form (3.2), where dν(ξ) = dλ(ξ) is a Lebesgue-
Poisson measure on Γ0, is positive, i. e., condition (2.21) is fulfilled.

The condition (3.3) for such a functional is also fulfilled.

Proof. Let f ∈ A = Ffin(D) and s(f � f) = 0. Then it is necessary to prove that f = 0.
Denote g = f � f ∈ Ffin(D). Using (2.12) we conclude that

(3.4) (Kg)(γ) = (K(f � f))(γ) = (Kf)(γ)(Kf)(γ) = |(Kf)(γ)|2 , γ ∈ Γ.

We apply Proposition 2.7 and the corresponding equality (2.42) to a vector g ∈
Ffin(D). We get, using (3.2) with the measure dλ(ξ) and (3.4) that

s(f � f) = s(g) =
∫
Γ0

g(ξ)dλ(ξ) =
∫
Γ

(Kg)(γ)dπ(γ)

=
∫
Γ

|(Kf)(γ)|2 dπ(γ) =
∫
Γ\Γ0

|(Kf)(γ)|2 dπ(γ).
(3.5)

Here λ(ξ) is the Lebesgue-Poisson measure on the Borel σ-algebra of the space Γ0 with
the ordinary topology and dπ(γ) is a Poisson measure on the Borel σ-algebra of the
space Γ topologized by the ordinary-vague topology (see (2.22)). Since π(Γ0) = 0, we
have (3.5).
Let f ∈ Ffin(D) be such that s(f � f) = 0. Then we conclude from (3.5) that

(3.6) (Kf)(γ) = 0

for almost all γ ∈ Γ \ Γ0 with respect to a Poisson measure on Γ \ Γ0. According
to Lemma 2.1, the function (Kf)(γ), γ ∈ Γ, is continuous with respect to the vague
topology. On other hand, the Poisson measure is positive on open sets from Γ in the
vague topology (Lemma 2.4). Therefore the equality (3.6) means that (Kf)(γ) is equal
to zero for every γ ∈ Γ \ Γ0. But the transform K has an algebraically inverse operator
K−1 (see 2.11), hence f = 0.
Pass to the second part of the Theorem. The Lebesgue-Poisson measure on the space

Γ0 is defined by the series (see (2.25))

(3.7) B(Γ0) � α 
→
∞∑
n=0

1
n!
σ(n)(α(n)) = λ(α),

where B(Γ0) is the σ-algebra of Borel sets in the ordinary topology Γ0 and σ(n)(α(n))
are values of the symmetric tensor product m�⊗n of the measure m on X on the set
α(n) := α ∩ Γ(n), n ∈ N0 (see (2.4)).
For the bounded function Γ0 � ξ 
→ f(ξ) ∈ C, measurable with respect to B(Γ0), we

have (see (2.26)) that∫
Γ0

f(ξ)dλ(ξ) =
∞∑
n=0

1
n!

∫
Γ(n)

fn(x1, . . . , xn)dσ(n)(x1, . . . , xn),

fn(x1, . . . , xn) = f(ξ) � Γ(n).
(3.8)
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Let Λ ⊂ X be an arbitrary compact set. Then, similarly to (2.4), (3.8), we have for a
bounded measurable function f(ξ), ξ ∈ Γ0(Λ), that

Γ0(Λ) =
∞⊔
n=0

Γ(n)Λ ,

∫
Γ0(Λ)

|f(ξ)|dλ(ξ) =
∞∑
n=0

1
n!

∫
Γ

(n)
Λ

|fn(x1, . . . , xn)|dσ(n)(x1, . . . , xn).
(3.9)

In particular, for f(ξ) = 1, ξ ∈ Γ0(Λ), we have

(3.10)
∞∑
n=0

1
n!
λ(Γ(n)Λ ) = λ(Γ0(Λ)) <∞.

From (3.10) and (2.25) we easily conclude that there exists a certain constant CΛ > 0
such that for every n ∈ N0, λ(Γ

(n)
Λ ) < CnΛ. Thus, the estimate (3.3) is proved. �

For us it is necessary to repeat some main results of the spectral theory for a family
(Ã(ϕ))ϕ∈D of commuting selfadjoint operators on the space Hs, see [9, Theorem 5.3,
Condition 3.5] and estimate (3.10).

Proposition 3.2. Let the conditions (2.21) and (3.3) for the functional s of the form
(3.2) be fulfilled. Then the operators Ã(ϕ) of the family (Ã(ϕ))ϕ∈D are selfadjoint in the
space Hs and commuting. This family generates a Fourier transform I of the following
form:

Ffin(D) � f = (fn)∞n=0 
→ (If)(ω) =: f̂(ω) = (f, P (ω))F(H)

=
∞∑
n=0

(fn, Pn(ω))Fn(H) ∈ L2(D′, dρ(ω)).
(3.11)

Here ρ is the spectral measure of the family, being a probability Borel measure on the
space D′ of generalized functions ω with weak topology, i. e., on the σ-algebra B(D′).
The closure Ĩ by continuity of the operator I is a unitary operator between the spaces Hs
and L2(D′, dρ(ω)). It maps each operator Ã(ϕ) into an operator of multiplication by the
function 〈ω, ϕ〉.

In (3.11), P (ω) = (Pn(ω))∞n=0, where the functions D′ � ω 
→ Pn(ω) ∈
(
D�⊗n

)′
,

n ∈ N0, are similar to polynomials of the first kind in the classical moment problem;
P0(ω) = 1, ω ∈ D′. They satisfy the following equality:
(3.12) (P (ω), A(ϕ)f)F(H) = 〈ω, ϕ〉 (P (ω), f)F(H), ϕ ∈ D, ω ∈ D′, f ∈ Ffin(D).
Here F(H) is the usual symmetric Fock space, constructed from the space

H = L2(X, dm(x)),

i. e.,

F(H) =
∞⊕
n=0

Fn(H).

The equality (3.12) means that P (ω) is a joint generalized eigenvector for the family
(Ã(ϕ))ϕ∈D of the operators Ã(ϕ) with the eigenvalue 〈ω, ϕ〉.
Note that, to prove Proposition 3.2, i. e., Theorem 5.3 from [9], it is necessary to

construct some quasi-nuclear rigging of the space Hs. This rigging is constructed by
means of spaces (2.18), for details see in [9, 8, 5] and the book [6].
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Let us pass to some results from [9, 8], that are more deeply connected with a Poisson
measure as the spectral measure. At first, we will give some results that are stated in
the article [8, Theorem 4.1] (see also [9, Section 6]).

Proposition 3.3. For any ω ∈ D′, consider the function

(3.13) e〈ω,log(1+ϕ)〉,

where ϕ ∈ D and ϕ(x) > −1, x ∈ X. This function can be decomposed into a series in
tensor powers ϕ⊗n in the following way:

(3.14) e〈ω,log(1+ϕ)〉 =
∞∑
n=0

(
ϕ⊗n, Pn(ω)

)
Fn(H)

,

where the coefficients of this decomposition are just Pn(ω) from (3.12).

Let ψ ∈ D be arbitrary. Then the function eψ(x) − 1 belongs to D and its values are
greater than −1. Therefore, we can take this function to be ϕ(x) in the expression (3.13).
Thus, it is possible to write, for ψ ∈ D,

(3.15) X � x 
→ ϕ(x) = eψ(x) − 1 ∈ D; ϕ(x) > −1, x ∈ X ; ψ ∈ D is arbitrary.

Using this change (3.15) of the function ϕ to ψ, we can rewrite the equality (3.14) in
the form

(3.16) e〈ω,ψ〉 =
∞∑
n=0

((
eψ − 1

)⊗n
, Pn(ω)

)
Fn(H)

, ψ ∈ D, ω ∈ D′.

Let ϕ ∈ D be arbitrary. Recall that we have introduced the notion of a character
χϕ, ϕ ∈ D, by means of the identity (2.8). This definition is of type (2.6), i. e., we are
given some function on Γ0. But such a function can be given as a sequence of type (2.5),
instead of (2.6). So, we have the following definition of the character χϕ:

χϕ(ξ) =
∏
x∈ξ

ϕ(x), ξ ∈ Γ0 \∅; χϕ(∅) = 1.

(1, ϕ,ϕ⊗2, . . . , ϕ⊗n, . . . ); ϕ ∈ D.
(3.17)

Therefore, the right-hand side of the equality (3.14) can be understood as the right-
hand side of the equality (3.11) with fn = ϕ⊗n. Thus, if we prove that, in the case of
the Hilbert space Hs (constructed from the functional s of the form (3.2) with Lebesgue-
Poisson measure dν(ξ) = dλ(ξ)) the vector (3.17) χϕ belongs to the space Hs, then it is
possible to understand (3.11) as the Fourier transform Ĩ of a vector χϕ ∈ Hs. We will
prove this actually simple fact.

Lemma 3.4. Let a functional s have the form (3.7) with the Lebesgue-Poisson measure
dν(ξ) = dλ(ξ). Then an arbitrary character χϕ, ϕ ∈ D, belongs to the space Hs.

Proof. Using the equality (2.9) for the character (3.17) we get

(3.18) (χϕ � χϕ)(ξ) = χ2ϕ+ϕ2(ξ), ξ ∈ Γ0; 2ϕ(x) + ϕ2(x) =: θ(x), x ∈ X, θ ∈ D.
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Denote by Λ ⊂ X the compact set, for which θ(x) = 0, x ∈ X \ Λ. Then similarly to
(3.9) we have with some c ∈ (0,∞) that

q(χϕ) :=
∫
Γ0

|χθ(ξ)|dλ(ξ) =
∫
Γ0(Λ)

|χθ(ξ)|dλ(ξ)

=
∞∑
n=0

1
n!

∫
Γ

(n)
Λ

|θ(x1), . . . , θ(xn))|dσ(n)(x1, . . . , xn)

=
∞∑
n=0

1
n!

(∫
Λ

|θ(x)|dσ(x)
)n

< c <∞.

(3.19)

Introduce the notion of a subcharacter, χϕ,sub;k(ξ), k ∈ N0: instead of (3.17) we put:

(3.20) χϕ,sub;k(ξ) = (1, ϕ, ϕ⊗2, . . . , ϕ⊗k, 0, 0, . . . ) ∈ Ffin(D), k ∈ N0.

For subcharacters, the formula (3.19) q(χϕ,sub;k) has the form (3.19), but the summation
is carried out up to k. Of course,

(3.21) lim
k→∞

q(χϕ,sub;k) = q(χϕ), q(χϕ,sub;k) ≤ q(χϕ,sub;k+1) ≤ c.

We have, for ϕ ∈ D (see (3.18)), that

‖χϕ‖2Hs
= s(χϕ � χϕ) =

∫
Γ0

(χϕ � χϕ)dλ(ξ)

=
∫
Γ0

χθ(ξ)dλ(ξ) ≤
∫
Γ0

|χθ(ξ)|dλ(ξ) = q(χϕ)
(3.22)

and a similar identity for χϕ,sub;k(ξ). From (3.21), (3.22) we conclude that, in the space
Hs, limk→∞ χϕ,sub;k = χϕ. But χϕ,sub;k ∈ Ffin(D), therefore, χϕ ∈ Hs. �

Let us repeat that we will apply Proposition 3.3, the main result of the spectral theory
developed in [9, 8, 5, 6]. The corresponding functional s has the form

(3.23) s(f) =
∫
Γ0

f(ξ)dλ(ξ), f ∈ A = Ffin(D),

where dλ(ξ) is the Lebesgue-Poisson measure on Γ0.
Consider the series (3.11) (see also (3.15)),

∞∑
n=0

((eψ − 1)⊗n, Pn(ω))Fn(H) =
∞∑
n=0

(ϕ⊗n, Pn(ω))Fn(H), ψ ∈ D, ω ∈ D′;

ϕ(x) = eψ(x) − 1 ∈ D, ϕ(x) > −1, x ∈ X.
(3.24)

As follows from Lemma 3.4, χϕ ∈ Hs and, therefore, the series (3.24) can be regarded
as the Fourier transform (3.11) (Ĩχϕ)(ω) of the function e〈ω,ψ〉 with a fixed ω ∈ D′, see
(3.16).
Consider the spectral measure dρ(ω), ω ∈ D′ of the family (Ã(ϕ))ϕ∈D of the operators

Ã(ϕ), which is defined on the σ-algebra B(D′) of Borel sets in the weak topology. Using
(3.24) we can write

0 ≤ e〈ω,ψ〉 =
∞∑
n=0

(ϕ⊗n, Pn(ω))Fn(H) = (Ĩχϕ)(ω), ψ ∈ D, ω ∈ D′;

ϕ(x) = eψ(x) − 1, x ∈ X.
(3.25)

Integrate the equality (3.25) with respect to ω ∈ D′ in measure dρ(ω). We get

(3.26)
∫
D′
e〈ω,ψ〉dρ(ω) =

∫
D′
(Ĩχϕ)(ω)dρ(ω) ϕ ∈ D.
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Formally, such an integral can be equal to +∞: we integrate a non-negative measurable
function (3.25) with respect to a positive finite measure. But we now prove that the
integral (3.26) is equal to s(χϕ) ∈ (0,+∞).
It is easy to prove the following general fact.

Lemma 3.5. Let the conditions (2.19) and positivity (2.21) be fulfilled for the functional
s(f), f ∈ A = Ffin(D). Therefore it is possible to introduce the space Hs. Then the
functional s is continuous with respect to the norm of space Hs and it is possible to
extend it to the whole space Hs.
Proof. Using the Cauchy-Bunyakovski inequality, for f, g ∈ A, we can write
(3.27) |s(f � g)|2 = |(f, g)Hs |2 ≤ ‖f‖Hs‖g‖Hs .

Let g = e, where e is the unit element of the algebra A. Then from (3.27) we have

|s(f)|2 = |s(f � e)|2 ≤ ‖f‖Hs‖e‖Hs ≤ C‖f‖Hs , C = ‖e‖Hs. �

Lemma 3.6. The following equality is true:

(3.28) s(f) =
∫
D′
(Ĩf)(ω)dρ(ω), f ∈ Hs.

Proof. Using the Proposition 3.3 we can assert that the operator Ĩ is a unitary operator
between the spaces Hs and L2(D′, dρ(ω)). Thus

(3.29) (f, g)Hs =
∫
D′
(Ĩf)(ω)(Ĩg)(ω)dρ(ω), f, g ∈ Hs.

Let g = e in (3.29), i. e., e = (1, 0, 0, . . . ) or, in the form of a function on Γ0 � ξ, e(ξ) = 1
if ξ = ∅ and 0 for other ξ. We then have, instead of (3.29), that

(3.30) (f, e)Hs =
∫
D′
(Ĩf)(ω)dρ(ω), f ∈ Hs.

If f ∈ Ffin(D), then (f, e)Hs = s(f � e) = s(f). But using Lemma 3.5 we can assert
that the functional s is continuous also on the space Hs ⊃ Ffin(D). Thus we can write
(f, e)Hs = s(f) also for f ∈ Hs. Then the equality (3.30) gives (3.28). �

Let us return to the equality (3.26). Since ∀ϕ ∈ D, the character χϕ ∈ Hs (Lem-
ma 3.4), according to Lemma 3.6 we have the following essential equality:

(3.31)
∫
D′
e〈ω,ψ〉dρ(ω) =

∫
D′
(Ĩχϕ)(ω)dρ(ω) = s(χϕ), ϕ ∈ D.

Theorem 3.7. Consider the family (Ã(ϕ))ϕ∈D of commuting selfadjoint operators Ã(ϕ)
of the form (3.1) on the space Hs. This space is constructed using the functional s of
the form (2.20) and (3.23), where dλ(ξ) is a Lebesgue-Poisson measure. These operators
Ã(ϕ) are indeed selfadjoint and commuting.

The corresponding spectral representation has the form (3.11), where P (ω) is defined
by the equation (3.12). The spectral measure dρ(ω) is a non-negative measure on the
space D′ and is given on sets of the Borel σ-algebra constructed with respect to the weak
topology on D′.

This measure dρ(ω) is Poisson in the following sense: its Laplace transform has the
form

(3.32)
∫
D′
e〈ω,f〉dρ(ω) = exp

(∫
X

(ef(x) − 1)dσ(x)
)
, f ∈ D,

where dσ(x) is the initial measure on X.
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Proof. Consider equality (3.25). In this equality ω is a linear functional f from D′. In
particular, we can take ω to be γ ∈ Γ, where γ = [x1, x2, . . . ], xm ∈ X and

(3.33) 〈γ, ψ〉 := ωγ(ψ) =
∞∑
m=1

ψ(xm), ψ ∈ D.

I. e., we identify, as usual, γ with
∑∞
m=1 δxm (see (2.3)).

As a result we have, using (3.33), for the character χϕ,

(3.34) 0 ≤ e〈γ,ψ〉 =
∞∑
n=0

(ϕ⊗n, Pn(γ))Fn(H) = (Ĩχϕ)(γ),

where ψ ∈ D and ϕ(x) = eψ(x) − 1, x ∈ X.
Consider in (3.34), instead of χϕ, the corresponding subcharacter (3.20) χϕ,sub;k(ξ) ∈

Ffin(D). We can write (3.34) in the form

0 ≤ e〈γ,ψ〉 =
∞∑
n=0

(ϕ⊗n, Pn(γ))Fn(H) = lim
k→∞

k∑
n=0

(ϕ⊗n, Pn(γ))Fn(H)

= lim
k→∞

(Ĩχϕ,sub;k)(γ) = lim
k→∞

(Kχϕ,sub;k)(γ).

(3.35)

We have used in (3.35) the inclusion χϕ,sub;k ∈ Ffin(D) and the following equality for
f ∈ Ffin(D):
(3.36) (Ĩf)(γ) = (If)(γ) = (Kf)(γ)

(the equality (3.36) follows from [9, Lemma 6.3]).
Consider the connection (2.42) between the Lebesgue-Poisson measure dλ(ξ) and the

Poisson measure dπ(γ),

(3.37) s(f) =
∫
Γ0

f(ξ)dλ(ξ) =
∫
Γ

(Kf)(γ)dπ(γ),

where f ∈ Ffin(D).
Integrating (3.36) with respect to γ ∈ Γ in the measure dπ(γ) and using (3.37) we get

(3.38)
∫
Γ

e〈γ,ψ〉dπ(γ) = lim
k→∞

∫
Γ

(Kχϕ,sub;k)(γ)dπ(γ) = lim
k→∞

s(χϕ,sub;k) = s(χϕ).

It is easy to prove that one can pass to the limit under the integral. The last limit exists
since χϕ ∈ Hs (see Lemma 3.5).
For the classical Poisson measure dπ(γ) we have the general equality (see (2.41)):

(3.39)
∫
Γ

e〈γ,ψ〉dπ(γ) = exp
(∫

X

(eψ(x) − 1)dσ(x)
)
, ψ ∈ D.

From equalities (3.31), (3.38) and (3.39) we conclude that∫
D′
e〈ω,f〉dρ(ω) = exp

(∫
X

(ef(x) − 1)dσ(x)
)
, ψ ∈ D. �

Let us come back to the question the arose in article [9], at the end of Section 2. It
is known, that the Poisson measure π constructed in a classical way from a Lebesgue-
Poisson measure by means of a Kolmogorov-type theorem has the following property:

(3.40) π(Γ0(X)) = 0

(see Lemma 2.5).
On the other hand, the spectral measure ρ of the family (Ã(ϕ))ϕ∈D of commuting

selfadjoint operators can be such that

(3.41) ρ(Γ0(X)) > 0,
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where Γ0(X) is a Borel set in the weak topology of the space D′. Moreover, property
(3.41) is used in the constructions of article [9] (see Theorems 2.10, 6.6), which are
essential for Propositions 3.2, 3.3.
We have proved that there is such a family (Ã(ϕ))ϕ∈D for which the spectral measure

ρ is equal to the Poisson π. Therefore we have some contradiction with (3.41) and (3.40).
But, indeed, this is no contradiction, since our spectral measure is Poissonian only in

the sense of Theorem 3.7, i. e., only by definition (1.1).
Let us explain the situation in more details.
Definition (1.1) is based on the assertion that the Laplace transform (1.1) is defines

uniquely a measure on D′, when this measure is given on some fixed σ-algebra on D′
(uniquely up to sets of measure zero). But in our case the situation is different. We
define π and ρ on Γ(X) with a different topology and, therefore, in principle, on different
Borel σ-algebras.
Namely in (3.40) the measure π is defined on Γ(X) with the ordinary-vague topology

(2.22), i. e., on Γ0(X) in the ordinary topology, and on Γ(X) \ Γ0(X) in the vague
topology (i. e., the relative topology as on the part Γ(X) \Γ0(X) of Γ(X) with the weak
topology on D′ = (C∞fin(X))

′).
In (3.41) we have another topology on Γ(X); this is the weak topology on D′ with the

inclusion Γ(X) ⊂ D′. Such type of the topology is convenient in spectral theory, see [9],
[6].
We ca also say that a similar situation about (3.41) and (3.40) is in the work [4], where

the spectral measure of special Jacobi fields may be Poissonian in the sense of definition
(1.1).
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