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n-POWER-POSINORMAL OPERATORS

EL MOCTAR OULD BEIBA

ABSTRACT. B(H) will denote the algebra of all bounded linear operators on a complex
Hilbert space H. In [6], the authors proved that natural power of a posinormal operator
is not in general posinormal. Precisely, they constructed an example of a posinormal
operator with square not being posinormal. Given a positive integer n, the aim of this
article is to study a class of operators in B(H) called n-power-posinormal. This class
is invariant under natural power and contains any natural power of any posinormal
operator and all n-power normal operators.

TTosnauumo uepes B(H) anrebpy Beix o6MeKeHUX JHIHUX OIEepaToOpiB y KOMIIJIEKC-
HOMY rinbbeprosim npocropi H. ¥ [6] moBeseHo, mo ninuit creniob NO3iHOPMAJILHOTO
orepaTopa He 000B’SI3KOBO € MO3IHOPMAaJIbHUM. 30KpeMa, OyB HaBeJAEeHUN IIPUKJIaT
MO31HOPMAJILHOT'O OllepaTopa, KBaJApaT sIKOTO He € No3inopMasibuuM. MeToro 1iel crarTi
€ JJOCJI/I?KEHHS KJIaCy N-CTElleHEeBO I03iHOpMaJIbHIX onepaTopis 3 B(H), iHBapiaHTHOTO
BiTHOCHO HATYpPaJIbHUX CTEIEHIB, AKUI MICTUTh HaTypaJsbHI CTEIeHI TO3IHOPMAIBHUX
OIIEpPaTOpiB Ta N-CTEMEHEBO HOPMAJIbHI OIIEPATOPH.

1. INTRODUCTION

Let H be a complex Hilbert space and let B(#H) be the algebra of all bounded linear
operators on H. Let S, T € B(H). We will let T* denote the adjoint of T', N (T') denote
the null space of T' and R(T') denote the range of T'. Moreover, T is self-adjoint if 7% = T,
T is positive (T' > 0) if it is self-adjoint and (T'z,x) > 0, forallz € H, T > S if S and T
are self-adjoint and T'— S > 0 and T ts hyponormal if T*T > TT*. [S,T] = ST — TS is
the commutator of S, T.

Adnan Jibril [4] generalized the concept of a normal operator to the concept of the
n-power normal operator (n € N), T is n-power normal if T"T* = T*T™. He showed that
T is n-power normal if and only if 7" is normal.

Let T € B(H). P is said to be an interrupter for T if it satisfies the equation

TT* =T*PT.

From the last equation, if T" is not the zero operator, we get that the operator norm of the
interrupter P satisfies HP || > 1. Rhaly [8] introduced a class of posinormal operators. An
operator T' € B(H) is said to be posinormal if it has a positive interrupter or equivalently
if there exists a positive operator P such that the self commutator [T*,T] of T verifies
the equation

[T*,T) = T*(I — P)T,

where I stands for the identity operator. T is called coposinormal if its adjoint is
posinormal.

Normal operators are obviously posinornormal. Rhaly proved (see [8], Corollary 2.1)
that hyponormal operators are posinormal. From the last statement, using the fact that
a hyponormal operator needs not to be normal, we get that a posinormal operator is not
necessarily normal.
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It is easy to verify that if V' is an isometry and T is posinormal with interrupter P,
then V*T'V is posinormal with interrupter V*PV. Consequently, two unitarily equivalent
operators are both posinormal or both nonposinormal.

A natural power of a posinormal operator is not in general posinormal. Indeed,
Kubrusly et al. (see [6], Example 1) proved that there is a posinormal operator with
square not posinormal.

The class what we introduce in the present paper, namely the class of n-power-posinomal
operator, contains posinormal operators as a subclass and is invariant under positive
integer power.

2. FUNDAMENTAL PROPERTIES OF n-POWER-POSINORMAL OPERATORS

We start with a definition of what we call an n-interrupter.

Definition 2.1. Let n be a positive integer, T' and S be operators in B(H). S is said to
be an n-interrupter for T if

T"T*" = T*ST. (2.1)
Note that a l-interrupter is an interrupter as described above.
Remark 2.2. It is easy to check from (2.1) that if S serves as an n-interrupter for a

n (|2

nonzero operator, then [|S|| > HHTTHH? , where ||S]| is the operator norm of S. In particular
if n =1, we have ||S|| > 1.

Proposition 2.3. If S is n-interrupter for T, then

(Sy,y) >0, Vy e R(T).

Proof. From Definition 2.1, we obtain ||T*"xH2 = (ST(x),Tx), for allz € H. Thus,
(Sy,y) =0, for ally € R(T). Therefore, (Sy,y) >0, for ally € R(T). O

As a direct consequence of Proposition 2.3, we have the following corollary.

Corollary 2.4. IfT has dense range, then any n-interrupter for T is positive.

Proof. Since R(T) = H, the corollary follows from Proposition 2.3. O

Proposition 2.5. If T has dense range, then T has at most one n-interrupter.

Proof. Let S; and Ss be n-interrupters for T'. We have T* ST = T*S1T which gives
T*(S2 — S1)T = 0. Since the range of T' is dense, we obtain T*(Sy — S1) = 0. Applying
again the fact that T has dense range, we get that 7™ is one to one. Thus, we obtain
from the later identity So — S; = 0. Therefore, So = 5. O

We need the two following results:

Theorem 2.6. [[1], Theorem 1| Let A and B be bounded operators on a Hilbert space H.
The following statements are equivalent:

(1) R(4) C R(B);

(2) AA* < u2BB* for some p > 0;

(3) There exists a bounded operator C so that A = BC.

Moreover, if (1), (2) and (3) hold, then there is a unique operator T such that

(a) |IT|? = inf{s, AA* < y?BB"};

(b) N(A) = N(T) ;

(¢) R(T) C R(B").
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Theorem 2.7. [[8], Theorem 2.1] For T € B(H) the following statements are equivalent:

(1) T is posinormal;

(2) R(T) C R(T*);

(3) TT* < N2T*T or equivalently ||T*xz|| < \|Tz||, x € H for some X > 0;

(4) There exists a bounded operator C' so that T = T*C.

Moreover, if (1), (2), (3) and (4) hold, then there is a unique operator S such that

(i) ||S||? = inf{\, TT* < N2T*T};

(i1) N(T) = N(S) ;

(1i1) R(S) CR(T).

We observe from (2) in Theorem 2.7 that if T' is posinormal then R(T™) C R(T™*) for
any positive integer n. Starting from this observation, and since our goal is to introduce a
new class of operators containing posinormal operators, we take this necessary condition
for posinormality as a definition of the new concept. This leads to the following definition:

Definition 2.8. Let n be a positive integer and T € B(H). T is n-power-posinormal if
R(T™) C R(T*), and T is n-power-coposinormal if T* is n-power-posinormal.

Remark 2.9. The class of 1-power-posinormal operators is the well known class of
posinormal operators introduced by Rhaly in [8].

Remark 2.10. If N(T) = {0}, then T* is surjective. Consequently, T is n-power-
posinormal for any positive integer n.

Remark 2.11. Let n be a positive integer. It is easy to check that the following
statements hold:

(a) If T is n-power-posinormal, then 7" is m-power-posinormal for any integer m > n;

(b) If T is n-power-posinormal, then N'(T') C N (T*");

(¢) If T is n-power-posinormal, then N (T"*1) = N'(T");

(d) If T is n-power-posinormal, then N (T**1) = N(T*) for k > n;

(e) If T is n-power-posinormal, then T is n 4+ 1-power-posinormal ;

(f) If T is posinormal, then T* is n-power-posinormal for any positive integer k.

Remark 2.12. In ([6], Example 1), the authors constructed a posinormal operator T'
for which the square T2 is not posinormal. From (f) in Remark 2.11 (take k = 1), T is
2-power-posinormal. This example shows that n-power-posinormality of T does not imply
that T" is posinormal.

Theorem 2.13. For T € B(H), the following statements are equivalent:

(1) T has positive n-interrupter;

(2) T"T*™ < N2T*T  or equivalently ||T*"z| < M|Tx||, x € H for some X > 0;

(3) T is n-power-posinormal : R(T™) C R(T*);

(4) There exists C € B(H) such that T" = T*C.

Moreover, if (1), (2), (3) and (4) hold, then there is a unique operator S such that

(i) ||S]|? = inf{\, T"T™ < N*T*T};

(i6) N(T™) = N(S) ;

(1i1) R(S) S R(T™).
Proof. (1) = (2) : If T"T*" = T*PT with P positive, we get

(T"T*"x,z) = (VPTz,V/PTz) = ||VPTz|* < |VP|?|Tz|? = |VP|*{T*Tz,z).
Thus (2) holds with A > ||v/P].

Applying Theorem 2.6, by taking A = T"™ and B = T*, we obtain the equivalences
(2) <= (3) <= (4). If (4) holds then (1) holds by taking P = C"C.

To get (i), (i7) and (iii), take A =T"™ and B =T* in (a), (b) and (c), respectively, in
Theorem 2.6. 0
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The following example shows that a 3-power-posinormal weighted shift is not necessarily
posinormal.

Example 2.14. Let (ex)ren be an orthonormal basis of a Hilbert space H. Define an
operator T' on H by

Te; = e, Tea =2e3, Tes =0, Ter, = ep41, k > 4.
A simple calculation yields
T e; =0, T% ey = 2e1, T¥e3 = 2e5, T¥ ey =0, T" ey = ex_1, k> 5. (2.2)

Observe that e3 € N(T) but eg ¢ N(T*) . Thus, T is not posinormal.
Iterating, we obtain

T3, =0,k =1,2,3 and T3e;, = ejy3, k> 4. (2.3)

From (2.2) and (2.3), we obtain T3¢, € R(T*) for k > 1. Thus R(T3) C R(T*).
Therefore, by Theorem 2.13, T is 3-power-posinormal.

Theorem 2.15. Let T € B(H). If T has dense range and an n-interrupter, then T is
n-power-posinormal.

Proof. This follows from (1) in Theorem 2.13 and Corollary 2.4. U

Remark 2.16. We observe from (1) in Theorem 2.13 that if T' is n-power-posinormal
with P as an n-interrupter and V' is an isometry, then VI'V* is n-power-posinormal with
V PV* as n-interrupter. Consequently, n-power-posinotmality is a unitary invariant.

Theorem 2.17. T" is k-power-posinormal if and only if T is nk-power-posinormal.
Proof. Since R(T™) = R((T™)*), we have

R(T™) C R(T*) <= R((IT™)") C R(T™).
This yields the desired equivalence. O

Corollary 2.18. T is n-power-posinormal if one of the following statements holds:
(1) T™ is hyponormal;
(2) T is n-power normal.

Proof. (1) The statement follows from Corollary 2.1 [8] and Theorem 2.17.
(2) If T is n-power normal then 7™ is normal (see [4]) and thus T™ is posinormal.
Applying Theorem 2.17, we obtain that T" is n-power-posinormal. U

Proposition 2.19. If T is n-power-posinormal and R(T) = R(T™), then T is posinormal.

Proof. If T is n-power-posinormal, we have R(T™) C R(T*). Since R(T) = R(T™) we
obtain R(T") € R(T™*). Thus, from (2) in Theorem 2.7, T' is posinormal. O

Proposition 2.20. If T is k + n-power-posinormal such that T*" is an isometry, then
T is k-power-posinormal.

Proof. Let P be a positive n 4 k-interrupter for 7. We have
TR th — pepr,
Since TnT*™ = I, we have ThtnT*"+tk — Thp*k Thys
T+T** = T*PT.
Therefore, T is k-power-posinormal. O

Corollary 2.21. If T" is posinormal and T*" ™ is an isometry, then T is posinormal.
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Proof. Straightforward from Theorem 2.17 and Proposition 2.20. O
Proposition 2.22. If T is 2-power-posinormal and T* is an isometry, then T is unitary.

Proof. From Proposition 2.20, we obtain that T is posinormal. Let P be an interrupter
for T. We have,

TT* =T*PT.
Since T is an isometry, we have TT* = I. This gives
I =T*PT
Multiplying the later identity from the left by T and from the right by 7*, we obtain
I=TT*=P
Thus, we have [ = TT* = T*T . This achieves the proof. O

3. OTHER CHARACTERIZATION OF n-POWER-POSINORMAL OPERATORS
Masuo Ito obtained the following characterization of posinormal operators:

Theorem 3.1. [[3] , Theorem 2| T is posinormal if and only if , there exists X > 0 such
that
(T, y)| < MITI2ITTyll, 2,y € H. (34)

We give a generalization of Theorem 3.1 to the class of n-power-posinormal operators.
For that we need the following result due to Fuji et al. (see [2]).

Theorem 3.2. [2] Let A> 0 and B > 0. If T*T < A? and TT* < B? the inequality
[(TITPH~ e, )| < A AP[]|[[| By (3.5)
holds for all x,y € H, 0<p,q <1 withp+qg>1
Proposition 3.3. If T is n-power-posinormal operator, then there exists A > 0 such that
(T T P, y) | < AT P |AYT| || (3.6)
holds for all x,y € H, 0 <p,g <1 withp+q¢>1

Proof. Taking in (3.5), A = |T™| and B = MT| and A > 0 as in the statement (2) of
Theorem (2.13), we obtain

(T[T P, )| < AT P [ AT 7y||
forall z,y e H,0<p,q <1 withp+¢g>1. O

Corollary 3.4. T is n-power-posinormal if and only if, there exists A > 0 such that
(T T |z, y)| < AT 2Tl Yo,y € H. 3.7)
Proof. The direct statement follows immediately from Proposition 3.3 by puttingp = ¢ =1
in (3.6).
Conversely, suppose that (3.7) holds. Let T™ = U|T™| be the polar decomposition of
T™. Let z € H. Applying (3.7) to vectors U*z and = , we obtain

(T T U2, )| < AT U ||| T ]
which can be written
|<T"T*"aj7x>| < ATz ||| T |||
Thus, [|[T*"z||? < M|T*z|||||T|z|. This yields || T*"x||* < M|||T|x||?>. Since |||T|z|?* =
| Tz||? for x € H, we have then proved that there exists A > 0 such that
T x||> < N|Tz|?, =€ H.

Therefore, by Theorem 2.13, T is n-power-posinormal. This completes the proof. 0
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4. EXAMPLES

This section is devoted to give examples which illustrate various aspects of n-power-
posinormality. The following proposition allows to calculate an n-interrupter for the
power of posinormal operator.

Proposition 4.1. IfT is posinormal and P is an interrupter for T then (PT)"~*P(T*P)"~!
is an n-interrupter for T.

Proof. By induction : It is obvious that the statement is true for n = 1. Suppose that is
true for n. We have

Tt — et T = 7T (PT) L P(TF P TTE.
Since TT* = T* PT, we obtain
Tt — prrpr T = T PT(PT)Y L P(T*P)* ' T* PT = T*(PT)" P(T* P)"T.
Thus the property is true for n + 1. O

Example 4.2. Let H = (? and {e,, n = 0,1,...} its standard basis. The Cesaro
operator on H is defined by

=1
n = —— €k, =0,1,...
Ce ’;Zk—i—lek n=>0

By routine computation, one gets

1 n
C*e, = ., n=0,1,...
En n+1;)ek n

C is posinormal (see [8]) with interrupter the diagonal operator P with diagonal entries
apn = (n+1)/(n+2) for n=0,1,--- Applying the statement (f) of Remark 2.11 (take
k = 1) and the Proposition 4.1, we obtain that C is n-power-posinormal for any n with
n-interrupter (PC)"~1P(C*P)"~ 1.

Example 4.3. Unilateral weighted shifts are posinormal (see Proposition 1.1 [8]). Thus
these operators are n-power-posinormal operator for any positive integer n.

Let T'€ B(H). The hereditary functional calculus defines p(T') = >, 5o CmnT*"T™
for a polynomial p(z,y) = >, 50 cmn2™y" € Clz,y],
where ¢y, is the coefficient of ™y™ in p (see [7, 9]).

Proposition 4.4. Let T be a root of p(z,y) = ™ +yq(z,y), then T is n-power-posinormal.

Proof. If T is a root of p, we get, from p(T) = 0, that T = TC, where C = ¢(T).
Therefore, by the statement (4) of Theorem 2.13, T is n-power-posinormal. O

As a consequences of Proposotion 4.4, we get that If T is (m,n)-isosymetry (7T is a
root of p(x,y) = (yx — 1)™(y — x)™), then T is n-power-posinormal. In particular, if 7" is
n-symetry (T is a root of p(z,y) = (y — x)™ ), then T is n-power-posinormal.
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