

ESSENTIAL DESCENT SPECTRUM EQUALITY

MBARK ABKARI, HAMID BOUA, AND ABDELAZIZ TAJMOUATI

ABSTRACT. A bounded operator T in a Banach space X is said to satisfy the essential descent spectrum equality, if the descent spectrum of T coincides with the essential descent spectrum of T. In this note, we give some conditions under which the equality $\sigma_{desc}(T) = \sigma_{desc}^e(T)$ holds for T.

1. Introduction

Throughout this paper, X denotes a complex Banach space and $\mathcal{B}(X)$ denotes the Banach algebra of all bounded linear operators on X. Let $T \in \mathcal{B}(X)$, we denote the adjoint of T, the range of T, the kernel of T, the resolvent set of T, the spectrum of T and the surjective spectrum of T by T^* , R(T), N(T), $\rho(T)$, $\sigma(T)$ and $\sigma_{su}(T)$ respectively.

An operator $T \in \mathcal{B}(X)$ is called semi-regular if R(T) is closed and $N(T^n) \subseteq R(T)$ for every positive integer n. The operator $T \in \mathcal{B}(X)$ is said to have the single-valued extension property at $\lambda_0 \in \mathbb{C}$ (for brevity, T has the SVEP at λ_0), if for every neighborhood \mathcal{U} of λ_0 , the only analytic function $f: \mathcal{U} \to X$ which satisfies the equation $(\lambda I - T)f(\lambda) = 0$ is the constant function $f \equiv 0$. For an arbitrary operator $T \in \mathcal{B}(X)$, let $\mathcal{S}(T) = \{\lambda \in \mathbb{C} : T \text{ does not have the SVEP at } \lambda\}$. Note that $\mathcal{S}(T)$ is an open of the complex plane and is contained in the interior of the point spectrum $\sigma_p(T)$. The operator T is said to have the SVEP if $\mathcal{S}(T)$ is empty.

For $T \in \mathcal{B}(X)$, the local resolvent set $\rho_T(x)$ of T at the point $x \in X$ is defined as the set of all $\lambda \in \mathbb{C}$ for which there exists an open neighborhood \mathcal{U}_{λ} of λ and an analytic function $f: \mathcal{U}_{\lambda} \to X$ such that $(T - \mu)f(\mu) = x$ for all $\mu \in \mathcal{U}_{\lambda}$. The local spectrum $\sigma_T(x)$ of T at x is then defined as $\sigma_T(x) = \mathbb{C} \setminus \rho_T(x)$. The local analytic solution occurring in the definition of the local resolvent set are unique for all $x \in X$ if and only if T has the SVEP.

A bounded linear operator $T \in \mathcal{B}(X)$ on a complex Banach space X is said to be decomposable if every open cover $\mathbb{C} = U \cup V$ of the complex plane \mathbb{C} by two open sets U and V generates a splitting of the spectrum $\sigma(T)$ and the latter generates a decomposition of X, in the sense that there exists Y and Z which are closed T-invariant subspaces of X such that $\sigma(T_{|Y}) \subseteq U$, $\sigma(T_{|Z}) \subseteq V$, and X = Y + Z.

A bounded linear operator T on a complex Banach space X has the decomposition property (δ) if $X = \mathcal{X}_T(\overline{U}) + \mathcal{X}_T(\overline{V})$ for every open cover U, V of \mathbb{C} , where $\mathcal{X}_T(F)$ is the vector space of all elements $x \in X$ for which there exists an analytic function $f : \mathbb{C} \backslash F \to X$ such that $(T - \mu)f(\mu) = x$, for all $\mu \in \mathbb{C} \backslash F$.

We define and denotes the descent of a bounded linear operator T by $d(T) = \min\{q : R(T^q) = R(T^{q+1})\}$, if no such q exists, we write $d(T) = \infty$, see [1], [8] and [9]. Also, we denote and define the descent spectrum of T by $\sigma_{desc}(T) = \{\lambda \in \mathbb{C} : d(\lambda - T) = \infty\}$.

Now we consider for $T \in \mathcal{B}(X)$ a decreasing sequence $c_n(T) := \dim(R(T^n)/R(T^{n+1}))$, $n \in \mathbb{N}$ (see [6]). Following M. Mbekhta and M. Müller [10], we say that T has a finite essential descent if $d_e(T) := \inf\{n \in \mathbb{N} : c_n(T) < \infty\}$ is finite, while we convey that the infimum over the empty set is equal to infinity. The latter class of operators contains every operator T with finite descent. In general $\sigma_{desc}^e(T) \subseteq \sigma_{desc}(T)$, where $\sigma_{desc}^e(T)$

denotes the essential descent spectrum of T, also, the last inequality can be strict. Indeed, we take T the unilateral right shift operator T, according to [5], $\sigma_{desc}(T)$ contains strictly the closed unit disk, while $\sigma^e_{desc}(T)$ is contained in the unit circle.

In [4] Olfa Bel Hadj Fredj has proved that, if $T \in \mathcal{B}(X)$ with a spectrum $\sigma(T)$ at most countable, then $\sigma_{desc}(T) = \sigma_{desc}^e(T)$. It is easy to construct an operator T satisfying the essential descent spectrum equality such that $\sigma(T)$ is uncountable. For example, let H be the Hilbert space $\ell^2(\mathbb{N})$ provided by the canonical basis $\{e_1, e_2, ...\}$ and let $T \in \mathcal{B}(H)$ be defined as $T(x_1, x_2, ...) = (\frac{x_1}{2}, 0, x_2, x_3, ...), (x_n)_n \in \ell^2(\mathbb{N})$. From [2], we have $\sigma_{su}(T) = \Gamma \cup \{\frac{1}{2}\}$, where Γ denotes the unit circle. Then $\sigma_{su}(T)$ is of empty interior. According to [4], $\sigma_{desc}(T) \setminus \sigma_{desc}^e(T)$ is open. Since $\sigma_{desc}(T) \setminus \sigma_{desc}^e(T) \subseteq \sigma_{su}(T)$, we have $\sigma_{desc}(T) = \sigma_{desc}^e(T)$. Motivated by the previous example, we wil study the following question:

Question 1. Let $T \in \mathcal{B}(X)$. If $\sigma(T)$ is uncountable, under which conditions on T does $\sigma_{desc}(T) = \sigma^e_{desc}(T)$?

2. Main results

We start by the following results:

Theorem 2.1. [4] Let $T \in \mathcal{B}(X)$ be an operator for which $d_e(T)$ is finite. Then there exists $\delta > 0$ such that for $0 < |\lambda| < \delta$ and p := p(T), we have the following assertions:

- (1) $T \lambda$ is semi regular;
- (2) dim $N(T-\lambda)^n = n \dim N(T^{p+1})/N(T^p)$ for all $n \in \mathbb{N}$;
- (3) $\operatorname{codim} R(T \lambda)^n = n \operatorname{dim} R(T^p) / R(T^{p+1})$ for all $n \in \mathbb{N}$.

Corollary 2.2. [4] Let $T \in \mathcal{B}(X)$ be an operator of finite descent d. Then there exists $\delta > 0$ such that the following assertions hold for $0 < |\lambda| < \delta$:

- (1) $T \lambda$ is onto;
- (2) $\dim N(T \lambda) = \dim N(T^{d+1})/N(T^d)$.

We have the following theorem.

Theorem 2.3. Let $T \in \mathcal{B}(X)$, then

$$\sigma_{desc}(T) = \sigma_{desc}^e(T) \cup \overline{\mathcal{S}(T^*)}.$$

Proof. If $\lambda \notin \sigma_{desc}(T)$, then $\lambda \notin \sigma_{desc}^e(T)$. From [1, Theorem 3.8], T^* has the SVEP at λ , which establish $\sigma_{desc}^e(T) \cup \mathcal{S}(T^*) \subseteq \sigma_{desc}(T)$, then it follows that $\sigma_{desc}^e(T) \cup \overline{\mathcal{S}(T^*)} = \overline{\sigma_{desc}^e(T) \cup \mathcal{S}(T^*)} \subseteq \overline{\sigma_{desc}(T)} = \sigma_{desc}(T)$. For the other inclusion, let λ be a complex number such that $T - \lambda$ has finite essential descent and $\lambda \notin \overline{\mathcal{S}(T^*)}$. According to theorem 2.2, there is $\delta > 0$, such that for $0 < |\lambda - \mu| < \delta$ and $p \in \mathbb{N}$, the operator $T - \mu$ is semi-regular and codim $R(T - \mu) = \dim R(T - \lambda)^p / R(T - \lambda)^{p+1}$. Let $D^*(\lambda, \delta) = \{\mu : 0 < |\lambda - \mu| < \delta\}$. But since $\lambda \notin \overline{\mathcal{S}(T^*)}$, $D^*(\lambda, \delta) \backslash \mathcal{S}(T^*)$ is non-empty, it follows that there exists $\mu_0 \in D^*(\lambda, \delta)$ such that $T - \mu_0$ is semi-regular and T^* has the SVEP at μ_0 . From [1, Theorem 3.17], $T - \mu_0$ is of finite descent. Also by Corollary 2.3, there exists $\mu_1 \in D^*(\lambda, \delta)$ such that $T - \mu_1$ is surjective. Therefore codim $R(T - \mu) = \dim R(T - \lambda)^p / R(T - \lambda)^{p+1} = 0$. It follows that $R(T - \lambda)^p = R(T - \lambda)^{p+1}$, which yields $\lambda \notin \sigma_{desc}(T)$.

Corollary 2.4. Let $T \in \mathcal{B}(X)$. If T^* has the SVEP, then $\sigma_{desc}(T) = \sigma_{desc}^e(T)$.

Example 2.5. We consider the forward bilateral shift T on $\ell^2(\mathbb{Z})$ defined by $Te_n = e_{n+1}$ for all $n \in \mathbb{Z}$. It is well known that

$$\sigma(T^*) = \sigma(T) = \{\lambda : |\lambda| = 1\}.$$

As the interior of $\sigma(T^*)$ is empty. Therefore, taking into account that $S(T^*)$ is open and contained in the interior of $\sigma(T^*)$, we conclude that $S(T^*) = \emptyset$. Hence, T^* admits the SVEP, and by the last corollary, we conclude that

$$\sigma_{desc}(T) = \sigma_{desc}^e(T).$$

Example 2.6. Let $T \in \mathcal{B}(X)$ and T is a compact operator. It is well known that $\sigma(T)$ is countable so, T^* is compact and $\sigma(T^*)$ is countable. Therefore the interior of $\sigma(T^*)$ is empty. It follows that T^* has the SVEP, and by corollary 2.4, we conclude that $\sigma_{desc}(T) = \sigma_{desc}^e(T)$.

Remark 2.7. If $T \in \mathcal{B}(X)$ and T is a quasinilpotent operator, then we have: $\sigma_{desc}(T) = \sigma_{desc}^e(T)$.

Now, in order to give a corollary about multipliers, we recall that a mapping $T: \mathcal{A} \to \mathcal{A}$ on a commutative complex Banach algebra \mathcal{A} is said to be a multiplier if

$$u(Tv) = (Tu)v$$
 for all $u, v \in \mathcal{A}$.

Any element $a \in \mathcal{A}$ provides an example, since, if $L_a : \mathcal{A} \to \mathcal{A}$ denotes the mapping given by $L_a(u) := au$ for all $u \in \mathcal{A}$, then the multiplication operator L_a is clearly a multiplier on \mathcal{A} . The set of all multipliers of \mathcal{A} is denoted by $M(\mathcal{A})$. We recall that an algebra \mathcal{A} is said to be semi-prime if $\{0\}$ is the only two-sided ideal J for which $J^2 = 0$.

Corollary 2.8. Let $T \in M(A)$ be a multiplier on a semi-prime, regular and commutative Banach algebra A then

$$\sigma_{desc}(T) = \sigma^e_{desc}(T).$$

Proof. From [1, Corollary 6.52], then T^* has the SVEP. Therefore by corollary 2.4, we have $\sigma_{desc}(T) = \sigma_{desc}^e(T)$.

A bounded operator $T \in \mathcal{B}(X)$ is said to be supercyclic if for some $x \in X$, the homogeneous orbit $\mathbb{C}.O(x,T) = \{\lambda T^n(x) : n \in \mathbb{N}\}$ is dense in X.

Corollary 2.9. Let $T \in \mathcal{B}(X)$ be supercyclic operator. Then

$$\sigma_{desc}(T) = \sigma^e_{desc}(T).$$

Proof. If $T \in \mathcal{B}(X)$ is supercyclic, according to [3, Proposition 1.26], either $\sigma_p(T^*) = \emptyset$ or $\sigma_p(T^*) = \{\lambda\}$ for some $\lambda \neq 0$, hence $\operatorname{int}(\sigma_p(T^*)) = \emptyset$, so $S(T^*) = \emptyset$, from corollary 2.4, we have $\sigma_{desc}(T) = \sigma^e_{desc}(T)$.

Corollary 2.10. Let $T \in \mathcal{B}(X)$. If T satisfies one of the following properties:

- (1) T is decomposable,
- (2) T has the property (δ) ,

then

$$\sigma_{desc}(T) = \sigma_{desc}^e(T).$$

Proof. If T is decomposable or T has the property (δ) . We know from [7, Theorem 1.2.7] and [7, Theorem 2.5.5] that T^* has the SVEP, by corollary 2.4, we have $\sigma_{desc}(T) = \sigma_{desc}^e(T)$.

Acknowledgements: The authors thank the referee for his suggestions, comments and thorough reading the manuscript.

References

- P.Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer. Acad. Press, 2004.
- [2] P. Aiena, Property (w) and perturbations II, J. Math. Anal. Appl. 342 (2008) 830-837
- [3] F. Bayart, É. Matheron, Dynamics of Linear Operators, Cambridge University Press, (2009).
- [4] O. Bel Hadj Fredj, Essential descent spectrum and commuting compact perturbations, Extracta Math. 21 (2006), 261-271.
- [5] M. Burgos, A. Kaidi, M. Mbekhta and M. Oudghiri, The descent spectrum and perturbations, Journal of Operator Theory 56 (2006), 259-271.
- [6] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982) 317-337.
- [7] K.B. LAURSEN, M.M. NEUMANN, Introduction to Local Spectral Theory, Clarendon Press, Oxford, (2000).
- [8] D. C. Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184 (1970), 197-214.
- [9] V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, 2nd edition. Oper. Theory Advances and Applications, vol. 139 (2007).
- [10] M. MBEKHTA, V. MULLER, On the axiomatic theory of spectrum II, Studia Math. 199 (1996) 129-147.

Mbark Abkari: mbark.abkari@gmail.com

Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Sciences and Applications, Fez, Morocco

Hamid Boua: hamid12boua@yahoo.com

Multidisciplinary Faculty, Laboratory Ibn Al Banna, Nador, Morocco

Abdelaziz Tajmouati: abdelaziz.tajmouati@usmba.ac.ma Sidi Mohamed Ben Abdellah University, Fez, Morocco