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PAIR OF ITERATIVE ALGORITHM FOR SOLVING
SPLIT INCLUSION PROBLEM ASSOCIATED TO
CAYLEY’S OPERATOR IN HILBERT SPACES

UQBA RAFAT

ABsTRACT. The aspiration of the article is to find a solution of split inclusion problem
associated to Cayley operator C'\A/' in the framework of real Hilbert space and we
employ a classical approach to develop an iterative algorithm for solving this particular
inclusion problem. Under few reliable conditions, we state and prove a weak/strong
convergence theorem for the proposed algorithm. In addition, we also present an
application to the split feasibility problem and illustrate a numerical example in order
to show that the algorithm we proposed is efficient and feasible.

1. INTRODUCTION

Let H be a real Hilbert space with the inner product (-,-) and induced norm | - ||.
Assume D : H — H and M : H = H be the single and multi-valued mappings respectively,
then the Variational inclusion problem (VIP) is to obtain z* € H such that

0 € D(z*) + M(z*). (1.1)

"The forward-backward splitting algorithm and Douglas-Rachford algorithm have been
proposed to solve Problem (1.1). Forward-backward splitting method has been proposed
by Lions and Mercier [11], which is given by

Tnt1 = (I — A D) 4+ AuM)z,,,

where A, > 0 ¥n and D : H — H is co-coercive operator. Mercier [11] had studied the
convergence behavior of forward-backward method when M~! is ~-strongly monotone
with v > 0. They have proved that forward-backward algorithm converges weakly to
the point in the solution set provided A, < 27v is constant. In addition, if M is strongly
monotone, then {z,} shows strong convergence to the unique solution of problem (1.1).
Chen and Rockafellar [12] have also assumed the strong monotonicity of M to prove the
strong convergence of forward-backward method which depends on Lipschitz constant
and modulus of strong monotonicity.

In 2011, Moudafi [1] introduced the split variational inclusion problem (SVIP): find
x* € H such that

0€ Mi(x*) and 0 € My(Ax"), (1.2)

where, M; : H; = H; and My : Hy, = Hy are multi-valued maximal monotone mappings
and A : H; — Hs is a bounded linear operator. The solution set of the problem (1.2) is
denoted by

A= {x* € H;:0€ M;(x*) and 0 € Ma(Ax™)}.

A monotone mapping M is said to be maximal if the graph of M, denoted as G(M), is not
properly contained in the graph of any other monotone mapping M, G(M) = {(z,y) : y €
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M(z)}. It is well known that M is maximal if and only if for (z,u) € HxH, (t—y,u—v) >0
for all (y,v) € G(M) implies u € M(z).

The resolvent operator Jg/' associated with M and A is the mapping J&" : H — H defined
by

Ma)=T+ XMz, z€H >0

In 2012, Byrne et al.[2] studied the weak and strong convergence of the iterative
methods for solving (SVIP). To obtain the weak convergence, Byrne et al. introduced
the following algorithm: for a given g € H; and A > 0, the sequence {z,} generated
iteratively by the following scheme:

* 2
Tntl = Jg\/ll(I—’_’yA (JE\M - I)A)(En7 v S (03 ||A*A||>, (13)

2
where, A* is the adjoint of A, L is the spectral radius of A*A and v € (O, L>'

In 2001, a heavy ball method involved for studying maximal monotone operators is
introduced by Alvarez and Attouch [5], where an inertial term was added. This procedure
is called the inertial proximal point algorithm and it takes the shape

Zo, L1 S H17
Wy, = Ty, + Op(Tn, — Tp1), (1.4)
Tny1 = (I+ )\nM)ilwnv

they got the weak convergence for the mapping M, if {)\,} is nondecreasing and {6,,} C
[0,1)

o0
Z@nﬂxn — Tp_1| < o0.

n=1

In particular, the above condition on 6,, is true for 6,, < 1/3.

Motivated and inspired by the work of Moudafi [1], Byrne et al.[2] and by the ongoing
research in this direction [13, 14], we present a new split inclusion problem associated
with Cayley operator, which is a generalization of the classic split inclusion problem which
includes the generalized Cayley operator and the multi-valued mappings. Moreover, we
proposed an iterative algorithms which converges weakly and strongly to some point of a
solution set of the proposed problem.

2. PRELIMINARIES

Let H be a real Hilbert space and C' be a nonempty closed convex subset of H. The
weak convergence of {z,,}22; to x is denoted by z, — z as n — oo, while the strong
convergence of {z,}52, to x is written as x,, — x as n — oo. For each z,y € H and
a € R, we have the following identities

(@) llz +yl1* < ll2]® + 20y, = + ). (2.5)
(i1) oz + (1 = a)yl* = allz|® + (1 = &)lly[* — a1 — &) [l= — ylI*. (2.6)

For every point x € H, there exists a unique point in C, denoted by Pcz such that
lx — Pez|| < ||z —y|| Yy € C. P¢ is called the metric projection of H onto C. It is
known that P¢ is nonexpansive.

Definition 2.1 A mapping D : H — H is called nonexpansive if

ID(z) =D(y)ll < llz —yll Yo,y € H.
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Definition 2.2 A mapping D : H — H is called a-strongly monotone if there exists a
constant a > 0 such that

(D(z) = D(y),z —y) > allz —ylI*  Vz,yeH.

Definition 2.3 A mapping D : H — H is called p- inverse strongly monotone if there
exists a constant p > 0 such that

(D(z) = D(y),z —y) > p|D(z) = D(y)|I>  Va,y € H.

Definition 2.4 Let M : H = H be a multi-valued mapping, then it is said to be
(i) monotone if for all z,y € H,u € M(z),v € M(y)

(x —y,u—v)>0.

(ii) strongly monotone if for all x,y € H,u € M(z),v € M(y), there exist § > 0 such
that

(@ —y,u—v) >0z —y|.

(iil) rmazimal monotone if M is monotone and (I+-X M)(H)=H for all A > 0, where I is
the identity mapping on H.

Definition 2.5 Let M : H = H be a multi-valued mapping, then the resolvent operator
is defined as:

M(z) == (I 4+ IM)"L(z),Vz € H,

for some A > 0, where I stands for the identity operator on H.

Remark 2.1 The resolvent operator Jk" has the following properties:
(i) it is single-valued and nonexpansive, i.e.,

19 () = NIl < =z = yll, Y2,y € H,
(ii) it is 1-inverse strongly monotone, i.e,

1N (@) = N @)1 < (& =y, N (x) = K (@), Ve, y € H.

Definition 2.6 Let M : H = H be a multi-valued mapping and J'/\\/' be the resolvent
operator associated with M, then the Cayley operator C&" is defined as:

cM(z) == (20M(z) — I),Vz € H.

Remark 2.2 [t can be easily seen that the Cayley operator CR" is 3-Lipschitz continuous.

Let M : H = H be a multi-valued maximal monotone mapping, J&" be the resolvent
operator and C\ be the Cayley operator associated with M, then the inclusion problem
associated to Cayley’s operator is to find z € H such that

0 € CV(x) + M(x). (2.7)

Lemma 2.1 [3] Let M : H = H be a mazimal monotone mapping and B : H — H be a
Lipschitz continuous mapping. Then a mapping B+ M : H = H is a mazximal monotone
mapping.

In view of Remark 2.2 and Lemma 2.1, we can see that C\ + M : H = H is a maximal
monotone mapping, where C) is a Cayley operator. Now, we can easily define a new
resolvent operator associated with the maximal monotone mapping Cﬁ\" + M as

JEHM () o= [ A(CY + MY~ (2), ¥ 2 € H. (2.8)
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Notice that

I (a)

[T+ MCY + M)~ () =
z 4+ MCX(2) + M(z)) =
0 € A(CY'(z) + M(x))

0 € CY(2) + M(x)

clearly, the fixed point of J§T+M is a solution of the problem (2.7).

Remark 2.3 From the definition (2.1) and (2.3) one can easily verify that the new

ANm . .
resolvent operator J; is also nonexpansive and 1-inverse strongly monotone.

Lemma 2.2 [10] Let A : H — Hs be a bounded linear operator with L = ||A||? and
Ms : Ho = Ho be a multi-valued mazimal monotone mapping. Let A > 0 and {\,} be a
sequence of positive real numbers and define the operator U, : H; — Hy by

Uy =T+ XA (Y2 — DA,
Then for all z € Hy and p € Afl(Fix(J[\\/b) we have
Uz = pl* < llz = plI* = An(1 = X L)||(1 = J3=)Ac]|?.

Lemma 2.3 [5] Let {¢,},{6n} and {a,,} be the sequences in [0,400) such that pi1 <
U+ oy (Y, — p—1) + 0, YR > 1, :ij O0n < +00 and there exist a real number o with
0<a,<a<lforaln>1. Then the following hold:

(i) D1V — Y1)y < +o0 where [t]; = max{t,0};

(ii) there exists ¥* € [0, +00) such that lim, oo ¥y = *.

Lemma 2.4 [9] Let M : H = H be a set-valued mazimal monotone mapping and A > 0.
Then the following statements hold:

(1) JY is a single-valued and firmly nonexpansive mappings;

(ii) sz(JM) M~1(0);

(i) [Jo — X[l < 2[lw — ||, YO <A <,z € H;

(iv) (I —JW) is ﬁrmly nonexapansive Mapping;

(v) Suppose that M=1(0) # ¢. Then

[IM(z) — 2| < ||z — 2| = [[IM(z) — 2||* for all x € H and z € M~1(0);

and

(=N IM—2)>0 forall z€Handze M 1(0).

Lemma 2.5 [4] Let Hy and Hg be two real Hilbert spaces, A : Hi — Hz be a bounded
linear operator and A* be adjoint of A, and let B > 0 be fized. Let M : H = H be a
set-valued maximal monotone mapping, and let J&" be a resolvent mapping of M. Then

1 = M)Az — (1 — )Y < (A* (1 — M)Az — A*(1 — M)Ay, 2 — y),
for all x,y € Hy.

Lemma 2.6 [6] Let {a,} be a sequence of nonnegative real numbers such that there exists
a subsequence {an;} of {an} such that an; < an, 1 for all je N. Then there exists a
non-decreasing sequence {my} such that lim,_,. my = co and the following properties
are satisfied by all (sufficiently large) number ke N:

w L amgr and ag < Gppyt1-

In fact, my, is the largest number n in the set {1,2,3,...,k} such that a, < any1.
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Lemma 2.7 [7] Let {a,} be a sequence of nonnegative real numbers such that:
Ap+1 S (1 - an)an + anbn

where {ay,} C (0,1) and {b,} is a sequence such that

(1) 2opzgan = 00;

(ii) limy,— 00 sup b, < 0.

Then lim,, o a, = 0.

Lemma 2.6 [8] Let C be a nonempty set of H and {x,,} be a sequence in H such that the
following two conditions hold:

(i) for every x € C, lim, o ||zn — || exists;

(ii) every sequentially weak cluster point of {xy} is in C.

Then {x,} converges weakly to a point in C.

3. MaAIN RESULT

Let H; and Hy be two real Hilbert spaces and By : H; = Hy, B2 : Hy = Hs be the
multi-valued maximal monotone mappings, where B; := C'/\\/I1 + M; and By := Cg/b + M,
associated with multi-valued mappings M; and Ms respectively. Consider A : H; — Hs
be bounded linear operator. Then Split Inclusion Problem (SIP) associated to Cayley
operator is to find z* € Hy such that

0 € By(z) (3.9)
and y* = Ax™ solves
0 € Ba(y™). (3.10)

The solution set of (SIP) is defined by Q := {z* € H; : 0 € By(a*) and y* =
Ax* such that 0 € Ba(y*)}.

A classical approach for solving (SIP)(3.9)-(3.10) is an iterative method, which involves
the resolvent operator associated with the maximal monotone operator. For a given
xo € Hy and A > 0, compute

Tnp1 = I8 (2, + A (I5 — DAz,), (3.11)

L
First, we establish a weak convergence theorem for solving (SIP)(3.9)-(3.10).

1
where A* is the adjoint of A, L is the spectal radius of the A*A and v € (0, — .

Theorem 3.1 Let Hy and Ho be two real Hilbert spaces and A : Hy — Hs be a bounded
linear operator, and A* be the adjoint of A. Let By : Hi = Hy and By : Hy = Hybe two
set-valued mazximal monotone mappings and 2 be the solution set of (SIP)(3.9) — (3.10)
with Q # ¢. Assume that the sequence {0,,} is non-decreasing such that 0 < 6, <0 < 1.
Let A > 0 and {)\,} be a sequence of real numbers such that 0 < a <\, <b < (1), where
L := ||A|]* and the sequence {cv,} is non-decreasing such that

1
<a, < —— 12
S (3.12)

for some § >0 and a > 0.
Let {x,} be a sequence in Hy defined by
zo,z1 € Huy,
Wy, = Ty, + en(xn - xn—l);
Yo = IS (I + N A(IS — DAYw,,
Tnt1 = (]- - an)xn + anYn-

Then, the sequence {x,} converges weakly to an element of Q.
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1
Proof. Fix p € Q. Since A, € [a,b] C (O, z), by Lemma 2.2, we have
lyn = pll < lwn —pl- (3.13)
Using (2.6) and (3.13) we have
Znt1 — p”2 = [[(1 = an)xn + anyn — p||2

= (1 = an)(@n = p) + anl(yn — p)

=(1—an)llzn — pH2 + anllyn —p||2 — (I —ap)anlly, — anQ

< (1= an)llzn =l + anllwn = plI* = (1 = an)anllyn —2a|*  (3.14)

I

on the other hand, we also have

1

Combining (3.14) and (3.15) we get

1—a,
[— (3.16)

lzns1 = plI* < (1= an)lzn = plI* + anflwn — pl* —

n

By the definition of w,,, we have
[|wn — p||2 = [|zn + 0p (20 — Tp—1) — sz
= (1 + 6,)(xn = p) = On(zn1 — )|
= 1+ 0n)llzn = pl* = Onllzn—1 = plI* + 0n (1 + 0n) 20 — 2a—a | (3.17)
combining (3.16) with (3.17) we obtain

[nt1 = plI* <1 = )|z = plI* + an (1 + ) |2n — plI* — anbnl|lzn—1 — pl|?

1—a,

+ b (1 + 0n) |20 — xn71||2 - |Zns1 — anQ

=1+ anbyn) ||z —p||2 — apbh || Ty -1 _pH2

1—a,

+ anbn (14 0,) ||z _acn—ln2 - |Zn+1 _xn||2 (3.18)

n
=1+ 7vn)lzn —p||2 — YullTn-1 _pH2 + pinllTn — xn—1H2

1— o
”anrl - xn”Q; (319)

n
where, v, 1= a0, and u, := @, 0, (1 + 6,).
Put v, = [log = pl|? = yallwn—1 = plI* + pnl|lwn — 2n—1]]%. By the sequences {ay}, {0}
are non-decreasing we have the sequence{y,} is non-decreasing. This implies that
Yot = Y = NTnsr = Pl = (14 mrn)llzn = Pl +yllzn—1 = plf?
+ ,Un-&-l”xn-&-l - anQ - ,un”xn - xn—1H2
wnsa = plI? = A+ )llzn = plI* + a1 — pl?

+ Ml Tngr — anZ — Bl — Tp—1 H2 (3.20)

It follows from (3.19) and (3.20) that

-«
Hlzntr = zll® + pasr [ Eng1 — @a?

’7n+1 _'Vn S -

n

1—a,
-~

- ﬂn+1) |Zni1 — xn”z (3.21)

O
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Thanks to (3.12), we get
1—a, 1

o Pnt1 = o 1 —api1bnp1(1+60np1)
>140+0—-1————(0*+96
=10 rors Y
06
=0+ -——>0. .22
+ 1+604+6 — (3:22)
Combining (3.21) and (3.22) we get

Vnt1 = Vo < —0[|Tn41 — z,|* < 0. (3.23)

This implies that the sequence {~,} is nonincreasing. On the other hand, we have
Yn = ||z _pH2 = YnllZn-1 — p||2 + |20 — CCnfl||2
> ||z = plI* = llza-1 — plI*. (3.24)
We have
Yo = Qpby < ———— =1y < 1. (3.25)
It implies from (3.24) and (3.25) that
2 =Pl <vallzn—1 =l +7n
<Yan-1 = pl* +m
<< lmo = plP (T 4+ D)

gl

- (3.26)

<y"||zo — p||* +

We also have

1 = [ng1 = pI* = Yngrllzn = oI + s [€n1 — 2l
> —nrllen = pl*. (3.27)
From (3.26) and (3.27) we obtain

M
Y1 < Yntallzn = I < Allzn = pl* <" lzo = pl* + >
Thanks to (3.23) we obtain
z v
5 2 <y < 12 1
;::1 zn+1 = 2all” < 71 = s <V 2o = pIIP + 75
gi!
<|lzo — pl? :
Sllwo —pl? + 722
This implies
o0
Z |Zni1 — Tn]|* < 4-o00. (3.28)
n=1
Therefore, we obtain lim, o ||Zn4+1 — @] = 0. Since (3.18) we get
lzns1 = plI* < @+ )llzn = plI* = ynllzn-1 = pI* + 20/|zn — 201l (3.29)

By (3.28), (3.29) and Lemma 2.5 we have
. _ 2 _
Tl = pl =1 (330
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and by (3.17) we obtain
lim [w, —p|% = L.
n—oo
From the definition of w,, we have
lim ||w, — z,|| <6 lim ||z, —2,-1] = 0.
n—oo n—oo
It follows from (3.14) that
lzns1 = plI* < (1 = @)z = plI* + anllyn — plI*.
This implies that

lzni1 = plI* = llzn — 2l
o

Since {a,} is bounded, it implies from (3.30) and (3.34) that

+ |z — pl.

lyn — plI* >

lim |y —pl* > lim [lz, —p|* = 1.
n—oo n—oo
By Lemma 2.2 we get
Jim |y, —pl|* < limJlw, — pl|* = 1.
Combining (3.35) and (3.36) we obtain
Tim ly, = pl? = 1.
By Lemma 2.2 we get
An(1 = A L)[[(52 = DAw,[* < wy = pl* = [lyn = plI* = 0.
From A, € [a,b] C (0, %), we get lim,_, ||(J§2 — IAw,|| = 0. We have
IA*(J52 = D)Aw,|| < A" (JF2 = DAw, | — 0.
Since the fact that JE2 is firmly nonexpansive, we have
lyn = pII* =[5 (wn + A A" (J32 = DAw,) - p||?
=I5 (wn + MAT (52 = DAwW,) — 52 ()2
S<yn — D, Wy + )\nA* (Jiz - I)Awn - p>
1 *
=5 Ll = P+ e+ 0 A" (052 — 1) A, — 2
- ”yn —P - [wn + )\nA*(J§2 - I)Awn _p]||2}
1 2, 1 2, Loy e/ Bo 2
=l = I+ 3l — I + SNAA (S — 1) Auw |

* 2 1
+ (wn —p, AnA (JE — I)Awn) — §Hyn — wp|®

1
— S ARIATUR = D Awn | + (g — wn, A A (I3 = 1) Awn)

_1 2 1 2 1 2
=2 =PI + Sl = plP = 5 lym — wal
+ (Yo — 2 A AT (Y — 1) Aw,,).
This implies that
yn =PI <llwn = pI* = llyn = wall® + 2y — p, A A" (IF* = 1) Aw,)

<llwn = plI* = llyn = wall® + 2Anllyn — Pl A" (32 — ) Awy].

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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It follows from (3.33) and (3.40) that
|Zni1 — p”2 <(1 = ap)l|zn — p”2 + aljw, — p”2 — i |lyn — wn”2
+ 2Xnanllyn — Pl ||A*(J§2 — 1) Aw, .
This implies that

anllyn = wall® <z = plI* = llznrs = plP| + an(lwn = plI* = llzn = pII*)

T 20wy — plIA* (8 — 1) Aw, . (3.41)
Combining (3.30),(3.31),(3.39) and (3.41) we get
nh_)rr;o lyn — wyp || = 0. (3.42)

Now, we show that the sequence {z,} converges weakly to an element of . Indeed, since
p € Q, it follows that p € B;'(0) and that is p € Fix(J?l). By Lemma 2.3 (v) we get

A" (I — I52)Aw,, — wy, + Y, yn — p) < 0. (3.43)
It also follows that Ap € B 1(0), thus Ap € FiX(JEQ). This implies that A*(I — J?Q)Ap =0.
By Lemma 2.4 we have
(A*(T = J52) Ay — A*(T = J3)Ap, g — p) > [|(T = J52) Ayal . (3.44)
It follows from (3.43) and (3.44) that
Al Ay = IR Ayall* <OA™(L = I32) Ay, g — p)
<(wy — Yo — M A (I — I5?)Aw,
+ A A (I = J52)AYn, yn — D)
+ A AT (I = %) Aw,, — Wy + Y, Y — D)
<(wy, — Yo — MA (I — I5)Aw,
+ A A (I = I52)AYn, Yo — p)
<Jwn = Y — A (I = I32)Aw,
+ XA (L = I3 Ayl [y — 2
<(|[wn = ynll + BIA™(I = I32)Aw,
— A*(1 =I5 Aya ) llym — pll- (3.45)
On the other hand, using Lemma 2.3 (iv) we have
|A*(1 = J52) Awy, — A™(1 = J52) Agn||* =(A™(1 = J52) Awy, — A™(1 = J52) Ay,
A* (I — %) Aw,, — A*(I — J$*)Ay,)
=(AA*(I - J$)Aw,, — (I — J$*)Ay,,
(I = J52)Aw, — (I = J52)Ay,)
<[IAA[I[[(T = I52)Aw, — (I = J5) Ay, |®
<L||Aw, — Ay, |?
<L?|[wp = yal*.
This implies that
IA*(1 = J32)Aw, — A*(1 = J52)Ayall < Llwy = yal. (3.46)
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It follows from (3.45) and (3.46) that
Al Ay = I32)Ayall < (14 L) [w — yallllyn — pl-

It follows from A, > a > 0 and (3.42) that

lim || Ay, — 2Ay, || = 0. (3.47)
We also have

AW, — I§2 Awy || <[ Awy, — J52Awy, — Ayy + J52 Aw, || + [|Ayn — J52Aya |
<2|Allllwn — yull + 1 Ayn — I3 Ayall.

This implies that

Jim || Aw, — 52 Aw, | = 0. (3.48)

By the definition of of y, and JEl is firmly nonoexpansive, we have
[y — IS wn|| =[98 (wn — M A (I = I52)Aw,,) — J¥rw, ||
SAIAII(T = I52) Awy |
It follows that
. _ B: _

nh_}n;o lyn — I3 wy|| =0 (3.49)
Therefore, from (3.42) and (3.49) we get

lim {|w,, — Brw, | =0 (3.50)

Since {z,} is bounded sequence, there exists a subsequence {zy, } of {z,} and ¢ € H,
such that {z,, } — ¢. By (3.32) we get w,, — ¢. Since A is bounded linear operator, it
follows that Aw,, — Aq. By (3.50) and Lemma 2.3 (i) we get q € Fia:(JEl). By (3.48)
and Lemma 2.3 (i) we have Ag € Fiz(J$").

Therefore, we proved that:

(1) limy,— o0 ||z — p|| exists for all p €

(ii) If @y, — q then ¢ € Q.

By Lemma 2.6, we get {x,,} converges weakly to an element of €. O

Next, we establish strong convergence theorem for solving (SIP)(3.9)-(3.10).

Theorem 3.2 Let Hy and Hs be two real Hilbert spaces and A : Hy — Hsy be a bounded
linear operator and A* be the adjoint of A. Let By : Hy = Hy and Bs : Hy = Hy be two
set-valued mazimal monotone mappings and Q be the solution set of (SIP)(3.9)-(5.10).
with Q # ¢. Assume that the sequence {6, } is sequence in [0, 0] for some § > 0. Let A >0
and {\n} be a sequence of real numbers such that 0 < a < A\, < b < (), where L := ||A]|?.
Let f:Hy — Hy be a contraction mapping with contraction parameter r € [0,1). Assume
that {a,} is a sequence in (0,1) such that

(o]
lim «, =0, g Q;, = 00.
n—oo

n=0

Let {z,,} be a sequence in Hy defined by

To,T1 € Hy,

Wp, = Ty, + en(l‘n - xn—l)y

Yo = IS (I + N A(IS — DAYw,,
Tnit1 = O‘nf(xn) + (1 - an)yn

(3.51)
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Assume that the sequence {0, } is chosen such that satisfying the following condition

7
lim —||xn ZTn—1]] = 0. (3.52)

n—oo
Then the sequence {x,} generated by (3.51) converges strongly to an element of p € Q,
where p = Pg o f(p).
Proof. Claim 1. The sequence {z,} is bounded. Indeed, by Lemma 2.2, we have
lyn = plI* < llwn = pI* = X (1 = A L)I[(J32 = T)Awn||*. (3.53)
Therefore

1yn = pll < llwn —p|| (3.54)

From the definition of w, we get

wn = pll = |20 + On(Tn — 2n—1) — Pl
<zn = pll + Onllzn — 2o

On

By condition (0, /) ||xn — 2n—1]| — 0, there exist a constant M; > 0 such that

Or
Q—Hxn —Tpoa|| < M;. Vn (3.56)

n

Combining (3.54), (3.55) and (3.56) we obtain
[yn = pll < llwn —pll < [lzn — pll + an M. (3.57)
From the definition of {z,,} we get

[@ntall = lon f(2n) + (1 = an)yn — pl|
= llanf(@n —p) + (1 = an)(yn — D)
<an|[f(zn) —pll + (1 = an)[ (yn — D)l
<an|[f(zn) = f() + anll f(p) = Pl + (1 = an)|(yn — P
<an|[zn —pll + an | f(p) — Pl + (1 = an)l(yn — D). (3.58)

Substituting (3.57) into (3.58) we obtain
%041 = pll (1= (1 = #)Bn)llen = pll + Bu My + Bullf(p) = pll
M — _
= (= (1= Bl —pl+ (1 -, LI ]

1—k
M+||f) p||
1 - )
M1+||f() pH}
1-—

Thsi implies {z,} is bounded. We also get {yn}, {f(zn)}, {wn} are bounded.
Claim 2.

<max{[xn —p,

<... <max{||xo — p|,

(1 = an)An(1 - )‘nL)||((JE2 — I)Aw,|| < |lzn — pH2 — | Tpy1 — p”2 + My,
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for some My > 0. indeed, we get
lzns1 =l = llen f(zn) + (1 = an)yn —pl?

<llenf(@n) = pI* + (1 = an)llyn — 2l

<an(||f(@n) = FP)I + [1£ () = 2I)* + (1 = an)llyn — pII?

<an(kllzn —pl + 1 f () = pI)* + (1 = an)llyn — p]?

<anllzn = pl* + anllzn = pllI1F ) = 2l + [1F(p) = pl) + 1 £(p) = pII?

+ (1= an)llyn —pl?

<an||zn = pl* + (1 = an)llyn = plI* + an Mz, (3.59)

for some My > 0. Substituting (3.53) into (3.59) we get
[2n41 = )1 <anllzn —p)|? + (1 — an)|[w, —p||®
— (1= an) (1 = M D)[|(JF2 = D)Aw, ||? + B Mo. (3.60)
It implies from (3.57) that
[wn = plI* <2 — pl| + anMy)?
= [lzn =l + an(2Mi||lzn — pl| + @ M7)
<l =l + anMs, (3.61)
for some M3 > 0. Combining (3.60) and (3.61) we obtain
[2n41 =Pl <anllzn —p* + (1 = an)zn —pl®
+ oMz — (1 — )M (1 = A\ L)[|(J52 — I)Aw, |12 + a Mo
=l = plI* + an Mz — (1 = an)An (1 = A L)[|(J52 = I)Aw,||?
+ oy, Ms.
This implies that
(1= an)An(1 = A D)5 = DAw,|* < 21 = gl* = J2n — all* + an M,

where My := M + Ms.
Claim 3.

(1= a)llyn — wn|® <llan — plI* = [|znsr — plI? + oMy
+2(1 = an)Aallyn —pll A" (32 — DAw,|.
Indeed, according to (3.40) we have
lyn =PI <llwn = pl* = lyn = wall® + 2Xallyn — 2l IA* IS = DAw,.  (3.62)
Combining (3.59) and (3.62) we get
lzns1 = pl* <amllan = pl? + (1 = an)wn = plI* = (1 = an)llyn — wall?
+ 20, (1 = )|y — Pl 1A (%2 — 1) Aw, || + o, Ms. (3.63)
Substituting (3.61) into (3.63) we obtain
zns1 = plI* Samllzn = plI* + (1 = an)llzn — pl* + @ Ms
— (1= ) lyn — wal® + 220 (1 = o) lyn — 1|
x [|A*(J52 — ) Aw, || + a, M,
<[l = plI* = (1 = an)llyn — wal?
+2(1 = an)Anllyn = pILIATIR? = DAw,|| + cn Ms.
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This implies that
(1= ) llyn — wal?® <[lwn = plI* = l2ns1 — plI> + an My
+2(1 — an) M|y — Pl 1A (%2 — D) Aw, || + o, M.
Claim 4.
21 = plI* <(1 = (1 = K)an) [z, —pl* + (1 = K)o,

2 0 M 1
X b

1_ H<f(p) —P;Tn+t1 —p> + ?n||$n — an,lu.ﬁ

for some M > 0. Indeed, we have
[|wn — p||2 = || + On Ty — Tp—1 — p)H2
= ||xn - pH2 + 20n<xn — P, Tn — ZEn—1> + G%Hxn - xn—1||2

<llwn = pl? + 205w = pllllen — zaall + 03|20 — 201
= llzn =PI + 20 |20 = plllen — a1 ll[2z0 = pll + allzn = 201 ]
Sllwn = pl? + Onllzn — zp—1 || M, (3.64)
for M > 0. Using (2.5) we have
21 = pII* = llanf(zn) + (1 = an)y, —p?
= lan(f(zn) = f(0)) + (1 = @) (yn — p) + an(f(p) — p)|*
<llen(f(@n) = F()) + (1 = @) (yn — D)II?
+ 20, (f(p) = P, Tnt1 — p)
<an|[f(zn) = FR)I? + (1 = an)llyn — pl®
+ 200, (f(p) — P, Tt1 — p)
<ank?[lzn = plI* + (1 = an)llyn — oIl
+ 200, (f (P) = P, Tnt1 — p)
<apkllzn = pl? + (1 = @) wn = plI* + 205, (f(P) = p, @01 —p).  (3.65)
Substituting (3.64) into (3.65) we obtain
zns1 = pl* <(1— (1 = w)an) |20 = plI* + Opl|2n — pa[|M
+ 2an(f(p) — P, Tn+1 — P)
= (1= (1 = r)ag)|zn —pl* + (1 = K)o

M

O
>< < - - . - —_ D .
= f(p) D Tnt1 p> + an, Hi[,’n Tn 1” 1—x

11—k

Claim 5. The sequence {||z, — p||} converges to zero by considering two possible cases
on the sequence {||z, — p|*}.

Case 1. There exists N € N such that ||z, 41 — p||?> < ||z, — p||?> ¥n > N. This implies
that lim,_, ||z» — p|| exists and according to Claim 2 we obtain

lim 1(J%2 — I)Aw,|| = 0. (3.66)

According to Claim 3 and (3.66) we get
nlgr;o lyn — wy|| = 0. (3.67)
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We show that ||zp+1 — 2n|| = 0 as n — oo. Indeed, we have

[Znt1 = ynll = anllyn = f(@n)ll = 0, (3.68)

and

On,
|z — wp] = OnllTn — Tn_1]| = a—||xn — Zp_1l||.an — 0. (3.69)

It implies from (3.67),(3.68) and (3.69) that
Hxn-i-l - Z‘nH < ||xn+1 - ynll + ||yn - wn” + Hwn - an — 0. (3'70)

Since the sequence {z,} is bounded, it implies that there exist a subsequence {z,, } of
{z,} that weak convergence to some z € H such that

Jim sup(f(p) = p,zn —p) = lim (f(p) = p,2n, —p) = (f(p) =p,2=p).  (3.71)
We will show that z € 2. Indeed, thanks to (3.48) and (3.49), we obtain
. B _ . _ B1 _
nlgrolo [|Aw, — J32Aw,|| =0 and nlgrgo |wn — I3 wn|| = 0. (3.72)
By (3.69) we get w,, — z. Since A is a bounded linear operator, it follows that Aw,,, — Az.
By (3.72) and Lemma 2.6 (i) we get z € Fiz(J}) and Az € Fiz(J5?).

Therefore z € Q.
Since (3.71) and p = Pg o f(p), we have

lim sup(f(p) — p,2n —p) = (f(p) —p, 2~ P) (3.73)
Combining (3.70) and (3.73) we obtain
Jim sup(f(p) = p, @1 —p) < Tim sup(f(p) = p, 20 —p) = (f(p) =P,z —p). (3.74)

b

Using Lemma 2.5 and (3.74), the restriction lim,, o ( ) |z, — n-1]| = 0 and Claim
!

n
4 we get lim,,_, ||zn — p|| = 0.

Case 2. There exist a subsequernce {||z,, — p||*} of {||lzn — p||*} such that |z, — p[* <
|2, +1]|* for all je N. In this case, it follows from Lemma 2.5 that there exists a non-
decreasing sequence {my} of N such that lim,,_, . my = oo and the following inequalities
hold for all ke N:

m = PI* < (X1 = plI* and [lxic = pl|* < [|xm, — plI*- (3.75)
According to claim 2, we have
(1=m ) Ay (1= A, D32 = D) Awg, |
Sllam, = pl* = llzmer1 = pI* + am, My
Qo My
Therefore, we obtain
Jim. (J52 — DAw,,, || = 0. (3.76)
According to claim 3, we have
(1 = m ) Yme = Wi, |? <l@m, = plI* = llzmr1 = pl* + am, My
+2(1 = @) A [Yms = PI-IAT IR = DAw, |
my, Ma + 2(1 = am ) A [[Ym, — plI-
x |A*(JS2 — 1) Aw, ||.
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Therefore, we obtain
lim ||ymk — Wmy, ” =0.
k—o0
Using the same arguments as in the proof of Case 1 we obtain
[¥mi+1 = Xm, | = 0 and  lim sup(f(p) — p,xm, — p) < 0.
n—oo
According to claim 4 we have

m1 = plI* <= (1= K)m)|2m, = plI* + (1 = K)am,

X [m(f(?) =P Tmyt1 —p) + o NTmy — xmk71”~f’€i|~ (3.77)

mp

From (3.75) and (3.77) we obtain

O M
l@met =PI < [T (F) = P @ms = P) + =y, = @l 7|
mp
Therefore,
kli_)n;(} sup || m,+1 — pl| <0. (3.78)

Combining (3.75) and (3.78) limy e [|2x — p|| < 0, that is x; — p. The proof is
completed. O

4. APPLICATION TO THE SPLIT FEASIBILITY PROBLEM

Let C and Q be nonempty closed covex subsets of real Hilbert spaces H; and H,
respectively.The split feasibility problem is formulated as:

(SEP) Find z* € C such that Az* € Q,

where A : H; — Hs is a bounded linear operator. Let Aggp be the solution set of problem
(SEP). In 1994, Censor and Elfving [9] first introduced the SFP in finite-dimensional
Hilbert spaces for modelling inverse problems which arise from phase retrievals and in
medical image reconstruction. It has been found that the SFP can also be used in
various disciplines such as image restoration, computer tomograph and radiation therapy
treatment planning.

Let f be a proper lower semicontinuous convex function of H into (—oo, c0). Then the
subdifferential Of of f is defined as follows:

Of(@) ={z €H: f(z) - f(y) < (z,2 —y)Vy € H}
for all x € H. Let C be a nonempty closed convex subset of real Hilbert space H and i¢
be the indicator function of C, that is,

z'c(:c){o if. x €C;

00 if xz ¢C.

Further, we define the normal cone Neu of C at u € C as follows:
Neu={zeH:{(z,v—u) <0 VYveCl}.

We known that i¢ is a proper, lower semicontinuous and convex function on H. Thus, the

subdifferential Jic of ic is a maximal monotone operator. So, we can define the resolvent
Jf\%c of di¢ for each \ > 0, that is

Wieq = (I 4+ M\i¢) 'z
for all z € H. Furthermore, for each z € C we have
Oicx ={z€H:ic+ (z,y—=x) <icy Yy e H}
={zeH:(z,y—z) <0 VyeC}
= Ncx.
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Therefore, for each o > 0, we derive
y:Jf\%Cx << r €Y+ ANicy < x —y € A\dicy
— (z—y,z—y) <0 Vzel
— y= FPex.
Now applying Theorem 3.1 and Theorem 3.2 we obtain the following results.

Theorem 4.1 Let C and Q be nonempty closed convexsubsets Hilbert spaces Hy and Ho,
respectively and A : Hi — Hg be a bounded linear operator, and A* be the adjoint of
A. Let Aggp be the solution set of problem (SEP) with Aggpp # ¢. Assume that the
sequence {0, } is non-decreasing such that 0 < 6,, < 0 < 1. Let {\,} be a sequence of
real numbers such that 0 < a < X, <b < (1), where L := ||A||* and the sequence {a,} is
non-decreasing such that

1
<oy < —— 4.
=M= T015 (4.79)
for some § > 0 and o > 0.

Let {x,,} be a sequence in Hy defined by
To,r1 € Hy,
Wp = Ty + en(mn - $n71)7
UYn = Pc(I + )\nA*(PQ - I)A)wn,
Tnt1 = (1 — ap)2p + anyn.

Then, the sequence {x,} converges weakly to an element of Aggp.

Theorem 4.2 Let C and Q be nonempty closed convex subsets of Hilbert spaces Hy and
Hy and A : Hy — Hs be a bounded linear operator and A* be the adjoint of A.Let Aspp
be the solution set of problem (SEP) with Asgp # ¢. Assume that the sequence {0,}
is sequence in [0,0] for some 6 > 0. Let {\,} be a sequence of real numbers such that
0<a<A, <b< (%), where L:= ||A||2. Let f:Hy — Hy be a contaction mapping with
contraction parameter r € [0,1). Assume that {ca,} is a sequence in (0,1) such that

o
lim a, =0, g o, = 00.
n— o0

n=0

Let {x,} be a sequence in Hy defined by

zo, 1 € Hy,

Wp = Ty, + en(mn - $n71)7

Yn = PC(I+ )\nA*(PQ - I)A)wru
Tpy1 = A f(T0) + (1 — an)yn

Assume that the sequence {0, } is chosen such that satisfying the following condition

(4.80)

0y,
lim — ||, — 2n-1]| = 0. (4.81)

n—00 Oy
Then the sequence {x,} generated by (4.80) converges strongly to an element of p € Aggp,
where p = Pagyp 0 f(p).”

5. NUMERICAL ILLUSTRATION

In this section, we consider a numerical example to illustrate the convergence of the
algorithms.
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Example 5.1. Let H = R, the set of real numbers and f : R — R be contraction mapping
and My, My : R = R be a set-valued mappings. Let f(z) := {5 and M; := {£} and

My = {2} Vzr € R, a,, := i, Ap = %4—3 and 0,, := m, then we calculate resolvent
operator Jf\\’l and Cayley operator Cf\\/l for A =1 as follows:
_ ST
B0 @) = (T4 2M) ) = 5,
2x
A (@) = R @) - 1) = 5
B 15x
J)\l (Z‘) = 78
_ Tz
B (@) = (I +AM2)7Ha) = =,
3z
G2 (@) = 21" (@) - 1) =,
—25z
B
3 (z) = ]1

All the assumptions of Theorem 3.1 and Theorem 3.2 are satisfied and the iterative
sequence {x,} generated in the above algorithms is converges weakly to p = 0 (shows in
Fig.1) and converges strongly to p = 0 (shows in Fig.2) for different initial values.

6. TABLE

TABLE 1. Numerical results for two different initial values g = 1,21 = 2

and zg = —1,271 = -2 .
Number of Xn Xn
iterations (n) xo=—-1,x3 =—2 xo=1,x1 =2
1. -1.00000 1.00000
2. -2.00000 2.000000
6. 0.35303 -0.003609
9. 0.017780 -0.017792
15. 0.001278 0.001938
19. -0.000215 0.000224
23. 0.00003840 0.000130
27. -0.000007 0.000054
31. 0.00000234 0.000002
34. -0.0000000 0.000001
35. 0.0000000 0.000000

7. FIGURES

All of the codes have been developed in MATLAB R2021a for simplicity. We’ve tried
for different initial points and found that the sequence {z,, }converges to the solution of
the problem in each case. Graphs of convergence is depicted in the Figures below.
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FIGURE 1. Weak convergence of sequence {x,} for initial values z¢ =
—1l,z1=-2and xg=1,21 = 2.
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FIGURE 2. Strong convergence of sequence {x,} for initial values xy =
l,z1 =15 and zg = —1,21 = —1.5.

In this paper, we solved a split inclusion problem associated to Cayley’s operator by
using some classical approach of generating sequences and introduce two new algorithms
Also, weak and strong convergence theorems are established
under standard assumptions imposed on operators, parameters and mappings. Finally, a
numerical experiment has also been performed to illustrate the convergence of proposed

in real Hilbert space.

algorithms.

9. CONCLUSION
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