
Methods of Functional Analysis and Topology
Vol. 30 (2024), no. 3-4, pp. 155–173
doi.org/10.31392/MFAT-npu26_3-4.2024.08

PAIR OF ITERATIVE ALGORITHM FOR SOLVING
SPLIT INCLUSION PROBLEM ASSOCIATED TO

CAYLEY’S OPERATOR IN HILBERT SPACES

UQBA RAFAT

Abstract. The aspiration of the article is to find a solution of split inclusion problem
associated to Cayley operator \sansC \sansM 

\lambda in the framework of real Hilbert space and we
employ a classical approach to develop an iterative algorithm for solving this particular
inclusion problem. Under few reliable conditions, we state and prove a weak/strong
convergence theorem for the proposed algorithm. In addition, we also present an
application to the split feasibility problem and illustrate a numerical example in order
to show that the algorithm we proposed is efficient and feasible.

1. Introduction

Let \sansH be a real Hilbert space with the inner product \langle \cdot , \cdot \rangle and induced norm \| \cdot \| .
Assume \sansD : \sansH \rightarrow \sansH and \sansM : \sansH \rightrightarrows \sansH be the single and multi-valued mappings respectively,
then the Variational inclusion problem (VIP) is to obtain x\ast \in \sansH such that

0 \in \sansD (x\ast ) +\sansM (x\ast ). (1.1)

"The forward-backward splitting algorithm and Douglas-Rachford algorithm have been
proposed to solve Problem (1.1). Forward-backward splitting method has been proposed
by Lions and Mercier [11], which is given by

xn+1 = (I  - \lambda n\sansD )(I + \lambda n\sansM )xn,

where \lambda n > 0 \forall n and \sansD : \sansH \rightarrow \sansH is co-coercive operator. Mercier [11] had studied the
convergence behavior of forward-backward method when \sansM  - 1 is \gamma -strongly monotone
with \gamma > 0. They have proved that forward-backward algorithm converges weakly to
the point in the solution set provided \lambda n < 2\gamma is constant. In addition, if \sansM is strongly
monotone, then \{ xn\} shows strong convergence to the unique solution of problem (1.1).
Chen and Rockafellar [12] have also assumed the strong monotonicity of \sansM to prove the
strong convergence of forward-backward method which depends on Lipschitz constant
and modulus of strong monotonicity.

In 2011, Moudafi [1] introduced the split variational inclusion problem (SVIP): find
x\ast \in \sansH such that

0 \in \sansM 1(\mathrm{x}
\ast ) \mathrm{a}\mathrm{n}\mathrm{d} 0 \in \sansM 2(\sansA \mathrm{x}

\ast ), (1.2)

where, \sansM 1 : \sansH 1 \rightrightarrows \sansH 1 and \sansM 2 : \sansH 2 \rightrightarrows \sansH 2 are multi-valued maximal monotone mappings
and \sansA : \sansH 1 \rightarrow \sansH 2 is a bounded linear operator. The solution set of the problem (1.2) is
denoted by

\Delta := \{ \mathrm{x}\ast \in \sansH 1 : 0 \in \sansM 1(\mathrm{x}
\ast ) \mathrm{a}\mathrm{n}\mathrm{d} 0 \in \sansM 2(\sansA \mathrm{x}

\ast )\} .

A monotone mapping \sansM is said to be maximal if the graph of \sansM , denoted as G(\sansM ), is not
properly contained in the graph of any other monotone mapping \sansM , G(\sansM ) = \{ (x, y) : y \in 
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\sansM (x)\} . It is well known that \sansM is maximal if and only if for (x, u) \in \sansH \times \sansH , \langle x - y, u - v\rangle \geq 0
for all (y, v) \in G(\sansM ) implies u \in \sansM (x).

The resolvent operator \sansJ \sansM \lambda associated with \sansM and \lambda is the mapping \sansJ \sansM \lambda : \sansH \rightarrow \sansH defined
by

\sansJ \sansM \lambda (x) = (I + \lambda \sansM ) - 1x, x \in \sansH , \lambda > 0.

In 2012, Byrne et al.[2] studied the weak and strong convergence of the iterative
methods for solving (SVIP). To obtain the weak convergence, Byrne et al. introduced
the following algorithm: for a given x0 \in \sansH 1 and \lambda > 0, the sequence \{ xn\} generated
iteratively by the following scheme:

xn+1 = \sansJ \sansM 1

\lambda (I + \gamma \sansA \ast (\sansJ \sansM 2

\lambda  - I)\sansA )xn, \gamma \in 

\Biggl( 
0,

2

\| \sansA \ast \sansA \| 

\Biggr) 
, (1.3)

where, \sansA \ast is the adjoint of \sansA , L is the spectral radius of \sansA \ast \sansA and \gamma \in 
\biggl( 
0,

2

L

\biggr) 
.

In 2001, a heavy ball method involved for studying maximal monotone operators is
introduced by Alvarez and Attouch [5], where an inertial term was added. This procedure
is called the inertial proximal point algorithm and it takes the shape\left\{   x0, x1 \in \sansH 1,

wn = xn + \theta n(xn  - xn - 1),
xn+1 = (I + \lambda n\sansM ) - 1wn,

(1.4)

they got the weak convergence for the mapping \sansM , if \{ \lambda n\} is nondecreasing and \{ \theta n\} \subset 
[0, 1)

\infty \sum 
n=1

\theta n\| xn  - xn - 1\| <\infty .

In particular, the above condition on \theta n is true for \theta n < 1/3.
Motivated and inspired by the work of Moudafi [1], Byrne et al.[2] and by the ongoing

research in this direction [13, 14], we present a new split inclusion problem associated
with Cayley operator, which is a generalization of the classic split inclusion problem which
includes the generalized Cayley operator and the multi-valued mappings. Moreover, we
proposed an iterative algorithms which converges weakly and strongly to some point of a
solution set of the proposed problem.

2. Preliminaries

Let \sansH be a real Hilbert space and C be a nonempty closed convex subset of \sansH . The
weak convergence of \{ xn\} \infty n=1 to x is denoted by xn \rightharpoonup x as n \rightarrow \infty , while the strong
convergence of \{ xn\} \infty n=1 to x is written as xn \rightarrow x as n \rightarrow \infty . For each x, y \in \sansH and
\alpha \in \BbbR , we have the following identities

(i) \| x+ y\| 2 \leq \| x\| 2 + 2\langle y, x+ y\rangle . (2.5)

(ii) \| \alpha x+ (1 - \alpha )y\| 2 = \alpha \| x\| 2 + (1 - \alpha )\| y\| 2  - \alpha (1 - \alpha )\| x - y\| 2. (2.6)

For every point x \in \sansH , there exists a unique point in C, denoted by \sansP Cx such that
\| x  - \sansP Cx\| \leq \| x  - y\| \forall y \in C. \sansP C is called the metric projection of \sansH onto C. It is
known that \sansP C is nonexpansive.
Definition 2.1 A mapping \sansD : \sansH \rightarrow \sansH is called nonexpansive if

\| \sansD (x) - \sansD (y)\| \leq \| x - y\| \forall x, y \in \sansH .
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Definition 2.2 A mapping \sansD : \sansH \rightarrow \sansH is called \alpha -strongly monotone if there exists a
constant \alpha > 0 such that

\langle \sansD (x) - \sansD (y), x - y\rangle \geq \alpha \| x - y\| 2 \forall x, y \in \sansH .

Definition 2.3 A mapping \sansD : \sansH \rightarrow \sansH is called \mu - inverse strongly monotone if there
exists a constant \mu > 0 such that

\langle \sansD (x) - \sansD (y), x - y\rangle \geq \mu \| \sansD (x) - \sansD (y)\| 2 \forall x, y \in \sansH .

Definition 2.4 Let \sansM : \sansH \rightrightarrows \sansH be a multi-valued mapping, then it is said to be
(i) monotone if for all x, y \in \sansH , u \in \sansM (x), v \in \sansM (y)

\langle x - y, u - v\rangle \geq 0.

(ii) strongly monotone if for all x, y \in \sansH , u \in \sansM (x), v \in \sansM (y), there exist \theta > 0 such
that

\langle x - y, u - v\rangle \geq \theta \| x - y\| 2.

(iii) maximal monotone if \sansM is monotone and (I+\lambda \sansM )(\sansH )=\sansH for all \lambda > 0, where I is
the identity mapping on \sansH .

Definition 2.5 Let \sansM : \sansH \rightrightarrows \sansH be a multi-valued mapping, then the resolvent operator
is defined as:

\sansJ \sansM \lambda (x) := (I + \lambda \sansM ) - 1(x),\forall x \in \sansH ,

for some \lambda > 0, where I stands for the identity operator on \sansH .

Remark 2.1 The resolvent operator \sansJ \sansM \lambda has the following properties:
(i) it is single-valued and nonexpansive, i.e.,

\| \sansJ \sansM \lambda (x) - \sansJ \sansM \lambda (y)\| \leq \| x - y\| ,\forall x, y \in \sansH ,

(ii) it is 1-inverse strongly monotone, i.e,

\| \sansJ \sansM \lambda (x) - \sansJ \sansM \lambda (y)\| 2 \leq \langle x - y, \sansJ \sansM \lambda (x) - \sansJ \sansM \lambda (y)\rangle ,\forall x, y \in \sansH .

Definition 2.6 Let \sansM : \sansH \rightrightarrows \sansH be a multi-valued mapping and \sansJ \sansM \lambda be the resolvent
operator associated with \sansM , then the Cayley operator \sansC \sansM 

\lambda is defined as:

\sansC \sansM 
\lambda (x) := (2\sansJ \sansM \lambda (x) - I),\forall x \in \sansH .

Remark 2.2 It can be easily seen that the Cayley operator \sansC \sansM 
\lambda is 3-Lipschitz continuous.

Let \sansM : \sansH \rightrightarrows \sansH be a multi-valued maximal monotone mapping, \sansJ \sansM \lambda be the resolvent
operator and \sansC \sansM 

\lambda be the Cayley operator associated with \sansM , then the inclusion problem
associated to Cayley’s operator is to find x \in \sansH such that

0 \in \sansC \sansM 
\lambda (x) +\sansM (x). (2.7)

Lemma 2.1 [3] Let \sansM : \sansH \rightrightarrows \sansH be a maximal monotone mapping and \sansB : \sansH \rightarrow \sansH be a
Lipschitz continuous mapping. Then a mapping \sansB +\sansM : \sansH \rightrightarrows \sansH is a maximal monotone
mapping.

In view of Remark 2.2 and Lemma 2.1, we can see that \sansC \sansM 
\lambda +\sansM : \sansH \rightrightarrows \sansH is a maximal

monotone mapping, where \sansC \sansM 
\lambda is a Cayley operator. Now, we can easily define a new

resolvent operator associated with the maximal monotone mapping \sansC \sansM 
\lambda +\sansM as

\sansJ 
\sansC \sansM 
\lambda +\sansM 

\lambda (x) := [I + \lambda (\sansC \sansM 
\lambda +\sansM )] - 1(x), \forall x \in \sansH . (2.8)
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Notice that

\sansJ 
\sansC \sansM 
\lambda +\sansM 

\lambda (x) = x

[I + \lambda (\sansC \sansM 
\lambda +\sansM )] - 1(x) = x

x+ \lambda (\sansC \sansM 
\lambda (x) +\sansM (x)) = x

0 \in \lambda (\sansC \sansM 
\lambda (x) +\sansM (x))

0 \in \sansC \sansM 
\lambda (x) +\sansM (x)

clearly, the fixed point of \sansJ \sansC 
\sansM 
\lambda +\sansM 

\lambda is a solution of the problem (2.7).

Remark 2.3 From the definition (2.1) and (2.3) one can easily verify that the new
resolvent operator \sansJ 

\sansC \sansM 
\lambda +\sansM 

\lambda is also nonexpansive and 1-inverse strongly monotone.

Lemma 2.2 [10] Let \sansA : \sansH 1 \rightarrow \sansH 2 be a bounded linear operator with L = \| \sansA \| 2 and
\sansM 2 : \sansH 2 \rightrightarrows \sansH 2 be a multi-valued maximal monotone mapping. Let \lambda > 0 and {\lambda n} be a
sequence of positive real numbers and define the operator Un : \sansH 1 \rightarrow \sansH 1 by

Un := I + \lambda n\sansA 
\ast (\sansJ \sansM 2

\lambda  - I)\sansA .

Then for all x \in \sansH 1 and p \in \sansA  - 1(Fix(\sansJ \sansM 2

\lambda ) we have

\| Unx - p\| 2 \leq \| x - p\| 2  - \lambda n(1 - \lambda nL)\| (I  - \sansJ \sansM 2

\lambda )\sansA x\| 2.

Lemma 2.3 [5] Let \{ \psi n\} , \{ \delta n\} and \{ \alpha n\} be the sequences in [0,+\infty ) such that \psi n+1 \leq 
\psi n + \alpha n(\psi n  - \psi n - 1) + \delta n \forall n \geq 1,

\sum +\infty 
n=1 \delta n < +\infty and there exist a real number \alpha with

0 \leq \alpha n \leq \alpha < 1 for all n \geq 1. Then the following hold:
(i)
\sum 

n=1[\psi n  - \psi n - 1]+ < +\infty where [t]+ = \mathrm{m}\mathrm{a}\mathrm{x}\{ \mathrm{t}, 0\} ;
(ii) there exists \psi \ast \in [0,+\infty ) such that \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \psi n = \psi \ast .

Lemma 2.4 [9] Let \sansM : \sansH \rightrightarrows \sansH be a set-valued maximal monotone mapping and \lambda > 0.
Then the following statements hold:
(i) \sansJ \sansM \lambda is a single-valued and firmly nonexpansive mappings;
(ii) Fix(\sansJ \sansM \lambda )= \sansM  - 1(0);
(iii) \| x - \sansJ \sansM \lambda \| \leq 2\| x - \sansJ \sansM \gamma \| , \forall 0 < \lambda \leq \gamma , x \in \sansH ;
(iv) (I  - \sansJ \sansM \lambda ) is firmly nonexapansive mapping;
(v) Suppose that \sansM  - 1(0) \not = \phi . Then
\| \sansJ \sansM \lambda (x) - z\| 2 \leq \| x - z\| 2  - \| \sansJ \sansM \lambda (x) - x\| 2 for all x \in \sansH and z \in \sansM  - 1(0);
and
\langle x - \sansJ \sansM \lambda , \sansJ 

\sansM 
\lambda  - z\rangle \geq 0 for all x \in \sansH and z \in \sansM  - 1(0).

Lemma 2.5 [4] Let \sansH 1 and \sansH 2 be two real Hilbert spaces, \sansA : \sansH 1 \rightarrow \sansH 2 be a bounded
linear operator and \sansA \ast be adjoint of \sansA , and let \beta > 0 be fixed. Let \sansM : \sansH \rightrightarrows \sansH be a
set-valued maximal monotone mapping, and let \sansJ \sansM \lambda be a resolvent mapping of \sansM .Then

\| (I  - \sansJ \sansM \lambda )\sansA x - (I  - \sansJ \sansM \lambda )\sansA y\| 2 \leq \langle \sansA \ast (I  - \sansJ \sansM \lambda )\sansA x - \sansA \ast (I  - \sansJ \sansM \lambda )\sansA y, x - y\rangle ,

for all x, y \in \sansH 1.
Lemma 2.6 [6] Let \{ an\} be a sequence of nonnegative real numbers such that there exists
a subsequence \{ anj

\} of \{ an\} such that anj
< anj+1 for all j\in \BbbN . Then there exists a

non-decreasing sequence \{ mk\} such that \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty mk = \infty and the following properties
are satisfied by all (sufficiently large) number k\in \BbbN :

amk
\leq amk+1 and ak \leq amk+1.

In fact, mk is the largest number n in the set \{ 1, 2, 3, ..., k\} such that an < an+1.
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Lemma 2.7 [7] Let \{ an\} be a sequence of nonnegative real numbers such that:

an+1 \leq (1 - \alpha n)an + \alpha nbn

where \{ \alpha n\} \subset (0, 1) and \{ bn\} is a sequence such that
(i)
\sum \infty 

n=0 \alpha n = \infty ;
(ii) \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \mathrm{s}\mathrm{u}\mathrm{p} bn \leq 0.
Then \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty an = 0.
Lemma 2.6 [8] Let C be a nonempty set of \sansH and \{ xn\} be a sequence in \sansH such that the
following two conditions hold:
(i) for every x \in C, \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \| xn  - x\| exists;
(ii)every sequentially weak cluster point of \{ xn\} is in C.
Then \{ xn\} converges weakly to a point in C.

3. Main Result

Let \sansH 1 and \sansH 2 be two real Hilbert spaces and \sansB 1 : \sansH 1 \rightrightarrows \sansH 1, \sansB 2 : \sansH 2 \rightrightarrows \sansH 2 be the
multi-valued maximal monotone mappings, where \sansB 1 := \sansC \sansM 1

\lambda +\sansM 1 and \sansB 2 := \sansC \sansM 2

\lambda +\sansM 2

associated with multi-valued mappings \sansM 1 and \sansM 2 respectively. Consider \sansA : \sansH 1 \rightarrow \sansH 2

be bounded linear operator. Then Split Inclusion Problem (SIP) associated to Cayley
operator is to find x\ast \in \sansH 1 such that

0 \in \sansB 1(x
\ast ) (3.9)

and y\ast = \sansA x\ast solves

0 \in \sansB 2(y
\ast ). (3.10)

The solution set of (SIP) is defined by \Omega := \{ x\ast \in \sansH 1 : 0 \in \sansB 1(x
\ast ) \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{y}\ast =

\sansA \mathrm{x}\ast \mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h} \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t} 0 \in \sansB 2(\mathrm{y}
\ast )\} .

A classical approach for solving (SIP)(3.9)-(3.10) is an iterative method, which involves
the resolvent operator associated with the maximal monotone operator. For a given
x0 \in \sansH 1 and \lambda > 0, compute

xn+1 = \sansJ \sansB 1

\lambda (xn + \gamma \sansA \ast (\sansJ \sansB 2

\lambda  - I)\sansA xn), (3.11)

where \sansA \ast is the adjoint of \sansA , L is the spectal radius of the \sansA \ast \sansA and \gamma \in 
\biggl( 
0,

1

L

\biggr) 
.

First, we establish a weak convergence theorem for solving (SIP)(3.9)-(3.10).

Theorem 3.1 Let \sansH 1 and \sansH 2 be two real Hilbert spaces and \sansA : \sansH 1 \rightarrow \sansH 2 be a bounded
linear operator, and \sansA \ast be the adjoint of \sansA . Let \sansB 1 : \sansH 1 \rightrightarrows \sansH 1 and \sansB 2 : \sansH 2 \rightrightarrows \sansH 2be two
set-valued maximal monotone mappings and \Omega be the solution set of (SIP)(3.9) - (3.10)
with \Omega \not = \phi . Assume that the sequence \{ \theta n\} is non-decreasing such that 0 \leq \theta n \leq \theta < 1.
Let \lambda > 0 and \{ \lambda n\} be a sequence of real numbers such that 0 < a \leq \lambda n \leq b < ( 1

L ), where
L := \| \sansA \| 2 and the sequence \{ \alpha n\} is non-decreasing such that

\alpha \leq \alpha n \leq 1

1 + \theta + \delta 
(3.12)

for some \delta > 0 and \alpha > 0.
Let \{ xn\} be a sequence in \sansH 1 defined by\left\{       

x0, x1 \in \sansH 1,
wn = xn + \theta n(xn  - xn - 1),

yn = \sansJ \sansB 1

\lambda (I + \lambda n\sansA 
\ast (\sansJ \sansB 2

\lambda  - I)\sansA )wn,
xn+1 = (1 - \alpha n)xn + \alpha nyn.

Then, the sequence \{ xn\} converges weakly to an element of \Omega .
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Proof. Fix p \in \Omega . Since \lambda n \in [a, b] \subset 
\Bigl( 
0,

1

L

\Bigr) 
, by Lemma 2.2, we have

\| yn  - p\| \leq \| wn  - p\| . (3.13)

Using (2.6) and (3.13) we have

\| xn+1  - p\| 2 = \| (1 - \alpha n)xn + \alpha nyn  - p\| 2

= \| (1 - \alpha n)(xn  - p) + \alpha n(yn  - p)\| 2

= (1 - \alpha n)\| xn  - p\| 2 + \alpha n\| yn  - p\| 2  - (1 - \alpha n)\alpha n\| yn  - xn\| 2

\leq (1 - \alpha n)\| xn  - p\| 2 + \alpha n\| wn  - p\| 2  - (1 - \alpha n)\alpha n\| yn  - xn\| 2 (3.14)

on the other hand, we also have

yn  - xn =
1

\alpha n
(xn+1  - xn). (3.15)

Combining (3.14) and (3.15) we get

\| xn+1  - p\| 2 \leq (1 - \alpha n)\| xn  - p\| 2 + \alpha n\| wn  - p\| 2  - 1 - \alpha n

\alpha n
\| xn+1  - xn\| 2. (3.16)

By the definition of wn, we have

\| wn  - p\| 2 = \| xn + \theta n(xn  - xn - 1) - p\| 2

= \| (1 + \theta n)(xn  - p) - \theta n(xn - 1  - p)\| 2

= (1 + \theta n)\| xn  - p\| 2  - \theta n\| xn - 1  - p\| 2 + \theta n(1 + \theta n)\| xn  - xn - 1\| 2 (3.17)

combining (3.16) with (3.17) we obtain

\| xn+1  - p\| 2 \leq (1 - \alpha n)\| xn  - p\| 2 + \alpha n(1 + \theta n)\| xn  - p\| 2  - \alpha n\theta n\| xn - 1  - p\| 2

+ \alpha n\theta n(1 + \theta n)\| xn  - xn - 1\| 2  - 
1 - \alpha n

\alpha n
\| xn+1  - xn\| 2

=(1 + \alpha n\theta n)\| xn  - p\| 2  - \alpha n\theta n\| xn - 1  - p\| 2

+ \alpha n\theta n(1 + \theta n)\| xn  - xn - 1\| 2  - 
1 - \alpha n

\alpha n
\| xn+1  - xn\| 2 (3.18)

=(1 + \gamma n)\| xn  - p\| 2  - \gamma n\| xn - 1  - p\| 2 + \mu n\| xn  - xn - 1\| 2

 - 1 - \alpha n

\alpha n
\| xn+1  - xn\| 2, (3.19)

where, \gamma n := \alpha n\theta n and \mu n := \alpha n\theta n(1 + \theta n).
Put \gamma n := \| xn  - p\| 2  - \gamma n\| xn - 1  - p\| 2 +\mu n\| xn  - xn - 1\| 2. By the sequences {\alpha n}, \{ \theta n\} 

are non-decreasing we have the sequence{\gamma n} is non-decreasing. This implies that

\gamma n+1  - \gamma n = \| xn+1  - p\| 2  - (1 + \gamma n+1)\| xn  - p\| 2 + \gamma n\| xn - 1  - p\| 2

+ \mu n+1\| xn+1  - xn\| 2  - \mu n\| xn  - xn - 1\| 2

\leq \| xn+1  - p\| 2  - (1 + \gamma n)\| xn  - p\| 2 + \gamma n\| xn - 1  - p\| 2

+ \mu n+1\| xn+1  - xn\| 2  - \mu n\| xn  - xn - 1\| 2. (3.20)

It follows from (3.19) and (3.20) that

\gamma n+1  - \gamma n \leq  - 1 - \alpha n

\alpha n
\| xn+1  - xn\| 2 + \mu n+1\| xn+1  - xn\| 2

=  - 
\bigl( 1 - \alpha n

\alpha n
 - \mu n+1

\bigr) 
\| xn+1  - xn\| 2. (3.21)
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Thanks to (3.12), we get

1 - \alpha n

\alpha n
 - \mu n+1 =

1

\alpha n
 - 1 - \alpha n+1\theta n+1(1 + \theta n+1)

\geq 1 + \theta + \delta  - 1 - 1

1 + \theta + \delta 
(\theta 2 + \theta )

= \delta +
\theta \delta 

1 + \theta + \delta 
\geq \delta . (3.22)

Combining (3.21) and (3.22) we get

\gamma n+1  - \gamma n \leq  - \delta \| xn+1  - xn\| 2 \leq 0. (3.23)

This implies that the sequence \{ \gamma n\} is nonincreasing. On the other hand, we have

\gamma n = \| xn  - p\| 2  - \gamma n\| xn - 1  - p\| 2 + \mu n\| xn  - xn - 1\| 2

\geq \| xn  - p\| 2  - \gamma n\| xn - 1  - p\| 2. (3.24)

We have

\gamma n = \alpha n\theta n <
\theta 

1 + \theta + \delta 
=: \gamma < 1. (3.25)

It implies from (3.24) and (3.25) that

\| xn  - p\| 2 \leq \gamma n\| xn - 1  - p\| 2 + \gamma n

\leq \gamma \| xn - 1  - p\| 2 + \gamma 1

\leq \cdot \cdot \cdot \leq \gamma n\| x0  - p\| 2 + \gamma 1(\gamma 
n - 1 + ...+ 1)

\leq \gamma n\| x0  - p\| 2 + \gamma 1
1 - \gamma 

. (3.26)

We also have

\gamma n+1 = \| xn+1  - p\| 2  - \gamma n+1\| xn  - p\| 2 + \mu n+1\| xn+1  - xn\| 2

\geq  - \gamma n+1\| xn  - p\| 2. (3.27)

From (3.26) and (3.27) we obtain

 - \gamma n+1 \leq \gamma n+1\| xn  - p\| 2 \leq \gamma \| xn  - p\| 2 \leq \gamma n+1\| x0  - p\| 2 + \gamma \gamma 1
1 - \gamma 

.

Thanks to (3.23) we obtain

\delta 

k\sum 
n=1

\| xn+1  - xn\| 2 \leq \gamma 1  - \gamma k+1 \leq \gamma k+1\| x0  - p\| 2 + \gamma 1
1 - \theta 

\leq \| x0  - p\| 2 + \gamma 1
1 - \theta 

.

This implies
\infty \sum 

n=1

\| xn+1  - xn\| 2 < +\infty . (3.28)

Therefore, we obtain \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \| xn+1  - xn\| = 0. Since (3.18) we get

\| xn+1  - p\| 2 \leq (1 + \gamma n)\| xn  - p\| 2  - \gamma n\| xn - 1  - p\| 2 + 2\theta \| xn  - xn - 1\| 2. (3.29)

By (3.28), (3.29) and Lemma 2.5 we have

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| xn  - p\| 2 = l, (3.30)
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and by (3.17) we obtain

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| wn  - p\| 2 = l. (3.31)

From the definition of wn we have

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| wn  - xn\| \leq \theta \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| xn  - xn - 1\| = 0. (3.32)

It follows from (3.14) that

\| xn+1  - p\| 2 \leq (1 - \alpha n)\| xn  - p\| 2 + \alpha n\| yn  - p\| 2. (3.33)

This implies that

\| yn  - p\| 2 \geq \| xn+1  - p\| 2  - \| xn  - p\| 2

\alpha n
+ \| xn  - p\| 2. (3.34)

Since \{ \alpha n\} is bounded, it implies from (3.30) and (3.34) that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| yn  - p\| 2 \geq \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| xn  - p\| 2 = l. (3.35)

By Lemma 2.2 we get

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| yn  - p\| 2 \leq \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| wn  - p\| 2 = l. (3.36)

Combining (3.35) and (3.36) we obtain

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| yn  - p\| 2 = l. (3.37)

By Lemma 2.2 we get

\lambda n(1 - \lambda nL)\| (\sansJ \sansB 2

\lambda  - I)\sansA wn\| 2 \leq \| wn  - p\| 2  - \| yn  - p\| 2 \rightarrow 0. (3.38)

From \lambda n \in [a, b] \subset 
\Bigl( 
0, 1

L

\Bigr) 
, we get \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \| (\sansJ \sansB 2

\lambda  - I)\sansA wn\| = 0. We have

\| \sansA \ast (\sansJ \sansB 2

\lambda  - I)\sansA wn\| \leq \| \sansA \ast \| \| (\sansJ \sansB 2

\lambda  - I)\sansA wn\| \rightarrow 0. (3.39)

Since the fact that \sansJ \sansB 2

\lambda is firmly nonexpansive, we have

\| yn  - p\| 2 =\| \sansJ \sansB 1

\lambda (wn + \lambda n\sansA 
\ast (\sansJ \sansB 2

\lambda  - I)\sansA wn) - p\| 2

=\| \sansJ \sansB 1

\lambda (wn + \lambda n\sansA 
\ast (\sansJ \sansB 2

\lambda  - I)\sansA wn) - \sansJ \sansB 2

\lambda (p)\| 2

\leq \langle yn  - p, wn + \lambda nA
\ast (\sansJ \sansB 2

\lambda  - I)Awn  - p\rangle 

=
1

2

\Bigl\{ 
\| yn  - p\| 2 + \| wn + \lambda nA

\ast (\sansJ \sansB 2

\lambda  - I)Awn  - p\| 2

 - \| yn  - p - [wn + \lambda nA
\ast (\sansJ \sansB 2

\lambda  - I)Awn  - p]\| 2
\Bigr\} 

=
1

2
\| yn  - p\| 2 + 1

2
\| wn  - p\| 2 + 1

2
\lambda 2n\| \sansA \ast (\sansJ \sansB 2

\lambda  - I)Awn\| 2

+ \langle wn  - p, \lambda nA
\ast (\sansJ \sansB 2

\lambda  - I)Awn\rangle  - 
1

2
\| yn  - wn\| 2

 - 1

2
\lambda 2n\| A\ast (\sansJ \sansB 2

\lambda  - I)Awn\| 2 + \langle yn  - wn, \lambda nA
\ast (\sansJ \sansB 2

\lambda  - I)Awn\rangle 

=
1

2
\| yn  - p\| 2 + 1

2
\| wn  - p\| 2  - 1

2
\| yn  - wn\| 2

+ \langle yn  - p, \lambda nA
\ast (\sansJ \sansB 2

\lambda  - I)Awn\rangle .
This implies that

\| yn  - p\| 2 \leq \| wn  - p\| 2  - \| yn  - wn\| 2 + 2\langle yn  - p, \lambda nA
\ast (\sansJ \sansB 2

\lambda  - I)Awn\rangle 

\leq \| wn  - p\| 2  - \| yn  - wn\| 2 + 2\lambda n\| yn  - p\| \| A\ast (\sansJ \sansB 2

\lambda  - I)Awn\| . (3.40)
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It follows from (3.33) and (3.40) that

\| xn+1  - p\| 2 \leq (1 - \alpha n)\| xn  - p\| 2 + \alpha n\| wn  - p\| 2  - \alpha n\| yn  - wn\| 2

+ 2\lambda n\alpha n\| yn  - p\| \| A\ast (\sansJ \sansB 2

\lambda  - I)Awn\| .

This implies that

\alpha n\| yn  - wn\| 2 \leq \| xn  - p\| 2  - \| xn+1  - p\| 2\| + \alpha n(\| wn  - p\| 2  - \| xn  - p\| 2)

+ 2\lambda n\alpha n\| yn  - p\| \| A\ast (\sansJ \sansB 2

\lambda  - I)Awn\| . (3.41)

Combining (3.30),(3.31),(3.39) and (3.41) we get

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| yn  - wn\| = 0. (3.42)

Now, we show that the sequence \{ xn\} converges weakly to an element of \Omega . Indeed, since
p \in \Omega , it follows that p \in \sansB  - 1

1 (0) and that is p \in Fix(\sansJ \sansB 1

\lambda ). By Lemma 2.3 (v) we get

\langle \lambda n\sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA wn  - wn + yn, yn  - p\rangle \leq 0. (3.43)

It also follows that \sansA p \in \sansB  - 1
2 (0), thus \sansA p \in Fix(\sansJ \sansB 2

\lambda ). This implies that \sansA \ast (I - \sansJ \sansB 2

\lambda )\sansA p = 0.
By Lemma 2.4 we have

\langle \sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA yn  - \sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA p, yn  - p\rangle \geq \| (I  - \sansJ \sansB 2

\lambda )Ayn\| 2. (3.44)

It follows from (3.43) and (3.44) that

\lambda n\| \sansA yn  - \sansJ \sansB 2

\lambda \sansA yn\| 2 \leq \langle \lambda n\sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA yn, yn  - p\rangle 

\leq \langle wn  - yn  - \lambda n\sansA 
\ast (I  - \sansJ \sansB 2

\lambda )\sansA wn

+ \lambda n\sansA 
\ast (I  - \sansJ \sansB 2

\lambda )\sansA yn, yn  - p\rangle 

+ \langle \lambda n\sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA wn  - wn + yn, yn  - p\rangle 

\leq \langle wn  - yn  - \lambda n\sansA 
\ast (I  - \sansJ \sansB 2

\lambda )\sansA wn

+ \lambda n\sansA 
\ast (I  - \sansJ \sansB 2

\lambda )\sansA yn, yn  - p\rangle 

\leq \| wn  - yn  - \lambda n\sansA 
\ast (I  - \sansJ \sansB 2

\lambda )\sansA wn

+ \lambda n\sansA 
\ast (I  - \sansJ \sansB 2

\lambda )\sansA yn\| \| yn  - p\| 

\leq (\| wn  - yn\| + b\| \sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA wn

 - \sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA yn\| )\| yn  - p\| . (3.45)

On the other hand, using Lemma 2.3 (iv) we have

\| \sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA wn  - \sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA yn\| 2 =\langle \sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA wn  - \sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA yn,

\sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA wn  - \sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA yn\rangle 

=\langle \sansA \sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA wn  - (I  - \sansJ \sansB 2

\lambda )\sansA yn,

(I  - \sansJ \sansB 2

\lambda )\sansA wn  - (I  - \sansJ \sansB 2

\lambda )\sansA yn\rangle 

\leq \| \sansA \sansA \ast \| \| (I  - \sansJ \sansB 2

\lambda )\sansA wn  - (I  - \sansJ \sansB 2

\lambda )\sansA yn\| 2

\leq L\| \sansA wn  - \sansA yn\| 2

\leq L2\| wn  - yn\| 2.

This implies that

\| \sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA wn  - \sansA \ast (I  - \sansJ \sansB 2

\lambda )\sansA yn\| \leq L\| wn  - yn\| . (3.46)
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It follows from (3.45) and (3.46) that

\lambda n\| \sansA yn  - \sansJ \sansB 2

\lambda )\sansA yn\| \leq (1 + bL)\| wn  - yn\| \| yn  - p\| .

It follows from \lambda n \geq a > 0 and (3.42) that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| \sansA yn  - \sansJ \sansB 2

\lambda \sansA yn\| = 0. (3.47)

We also have

\| \sansA wn  - \sansJ \sansB 2

\lambda \sansA wn\| \leq \| \sansA wn  - \sansJ \sansB 2

\lambda \sansA wn  - \sansA yn + \sansJ \sansB 2

\lambda \sansA wn\| + \| \sansA yn  - \sansJ \sansB 2

\lambda \sansA yn\| 

\leq 2\| \sansA \| \| wn  - yn\| + \| \sansA yn  - \sansJ \sansB 2

\lambda \sansA yn\| .
This implies that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| \sansA wn  - \sansJ \sansB 2

\lambda \sansA wn\| = 0. (3.48)

By the definition of of yn and \sansJ \sansB 1

\lambda is firmly nonoexpansive, we have

\| yn  - \sansJ \sansB 1

\lambda wn\| =\| \sansJ \sansB 1

\lambda (wn  - \lambda n\sansA 
\ast (I  - \sansJ \sansB 2

\lambda )\sansA wn) - \sansJ \sansB 1

\lambda wn\| 

\leq \lambda n\| \sansA \ast \| \| (I  - \sansJ \sansB 2

\lambda )\sansA wn\| .
It follows that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| yn  - \sansJ \sansB 1

\lambda wn\| = 0 (3.49)

Therefore, from (3.42) and (3.49) we get

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| wn  - \sansJ \sansB 1

\lambda wn\| = 0 (3.50)

Since \{ xn\} is bounded sequence, there exists a subsequence \{ xnk
\} of \{ xn\} and q \in \sansH 1

such that \{ xnk
\} \rightharpoonup q. By (3.32) we get wnk

\rightharpoonup q. Since \sansA is bounded linear operator, it
follows that \sansA wnk

\rightharpoonup \sansA q. By (3.50) and Lemma 2.3 (i) we get q \in Fix(\sansJ \sansB 1

\lambda ). By (3.48)
and Lemma 2.3 (i) we have \sansA q \in Fix(\sansJ \sansB 1

\lambda ).
Therefore, we proved that:
(i) \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \| xn  - p\| exists for all p \in \Omega ;
(ii) If xnk

\rightharpoonup q then q \in \Omega .
By Lemma 2.6, we get \{ xn\} converges weakly to an element of \Omega . \square 

Next, we establish strong convergence theorem for solving (SIP)(3.9)-(3.10).

Theorem 3.2 Let \sansH 1 and \sansH 2 be two real Hilbert spaces and \sansA : \sansH 1 \rightarrow \sansH 2 be a bounded
linear operator and \sansA \ast be the adjoint of \sansA . Let \sansB 1 : \sansH 1 \rightrightarrows \sansH 1 and \sansB 2 : \sansH 2 \rightrightarrows \sansH 2 be two
set-valued maximal monotone mappings and \Omega be the solution set of (SIP)(3.9)-(3.10).
with \Omega \not = \phi . Assume that the sequence \{ \theta n\} is sequence in [0, \theta ] for some \theta > 0. Let \lambda > 0
and \{ \lambda n\} be a sequence of real numbers such that 0 < a \leq \lambda n \leq b < ( 1

L ), where L := \| \sansA \| 2.
Let f : \sansH 1 \rightarrow \sansH 1 be a contraction mapping with contraction parameter \kappa \in [0, 1). Assume
that \{ \alpha n\} is a sequence in (0, 1) such that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\alpha n = 0,

\infty \sum 
n=0

\alpha n = \infty .

Let \{ xn\} be a sequence in \sansH 1 defined by\left\{       
x0, x1 \in \sansH 1,
wn = xn + \theta n(xn  - xn - 1),

yn = \sansJ \sansB 1

\lambda (I + \lambda n\sansA 
\ast (\sansJ \sansB 2

\lambda  - I)\sansA )wn,
xn+1 = \alpha nf(xn) + (1 - \alpha n)yn

(3.51)
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Assume that the sequence \{ \theta n\} is chosen such that satisfying the following condition

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\theta n
\alpha n

\| xn  - xn - 1\| = 0. (3.52)

Then the sequence \{ xn\} generated by (3.51) converges strongly to an element of p \in \Omega ,
where p = P\Omega \circ f(p).

Proof. Claim 1. The sequence \{ xn\} is bounded. Indeed, by Lemma 2.2, we have

\| yn  - p\| 2 \leq \| wn  - p\| 2  - \lambda n(1 - \lambda nL)\| (\sansJ \sansB 2

\lambda  - I)\sansA wn\| 2. (3.53)

Therefore

\| yn  - p\| \leq \| wn  - p\| (3.54)

From the definition of wn we get

\| wn  - p\| = \| xn + \theta n(xn  - xn - 1) - p\| 
\leq \| xn  - p\| + \theta n\| xn  - xn - 1\| 

= \| xn  - p\| + \theta n
\alpha n

\| xn  - xn - 1\| \alpha n. (3.55)

By condition (\theta n/\alpha n)\| xn  - xn - 1\| \rightarrow 0, there exist a constant M1 > 0 such that

\theta n
\alpha n

\| xn  - xn - 1\| \leq M1. \forall n (3.56)

Combining (3.54), (3.55) and (3.56) we obtain

\| yn  - p\| \leq \| wn  - p\| \leq \| xn  - p\| + \alpha nM1. (3.57)

From the definition of \{ xn\} we get

\| xn+1\| = \| \alpha nf(xn) + (1 - \alpha n)yn  - p\| 
= \| \alpha nf(xn  - p) + (1 - \alpha n)(yn  - p)\| 

\leq \alpha n\| f(xn) - p\| + (1 - \alpha n)\| (yn  - p)\| 
\leq \alpha n\| f(xn) - f(p)\| + \alpha n\| f(p) - p\| + (1 - \alpha n)\| (yn  - p)\| 
\leq \alpha n\| xn  - p\| + \alpha n\| f(p) - p\| + (1 - \alpha n)\| (yn  - p)\| . (3.58)

Substituting (3.57) into (3.58) we obtain

\| \mathrm{x}\mathrm{n}+1  - \mathrm{p}\| \leq (1 - (1 - \kappa )\beta n)\| xn  - p\| + \beta nM1 + \beta n\| f(p) - p\| 

= (1 - (1 - \kappa )\beta n)\| xn  - p\| + (1 - \kappa )\beta n
M  - 1 + \| f(p) - p\| 

1 - \kappa 

\leq \mathrm{m}\mathrm{a}\mathrm{x}\{ \| \mathrm{x}\mathrm{n}  - \mathrm{p}\| , \mathrm{M}1 + \| \mathrm{f}(\mathrm{p}) - \mathrm{p}\| 
1 - \kappa 

\} 

\leq ... \leq \mathrm{m}\mathrm{a}\mathrm{x}\{ \| \mathrm{x}0  - \mathrm{p}\| , \mathrm{M}1 + \| \mathrm{f}(\mathrm{p}) - \mathrm{p}\| 
1 - \kappa 

\} 

Thsi implies \{ xn\} is bounded. We also get \{ yn\} , \{ f(xn)\} , \{ wn\} are bounded.
Claim 2.

(1 - \alpha n)\lambda n(1 - \lambda nL)\| ((\sansJ \sansB 2

\lambda  - I))\sansA wn\| \leq \| xn  - p\| 2  - \| xn+1  - p\| 2 + \alpha nM4,
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for some M4 > 0. indeed, we get

\| xn+1  - p\| 2 = \| \alpha nf(xn) + (1 - \alpha n)yn  - p\| 2

\leq \| \alpha nf(xn) - p\| 2 + (1 - \alpha n)\| yn  - p\| 2

\leq \alpha n(\| f(xn) - f(p)\| + \| f(p) - p\| )2 + (1 - \alpha n)\| yn  - p\| 2

\leq \alpha n(\kappa \| xn  - p\| + \| f(p) - p\| )2 + (1 - \alpha n)\| yn  - p\| 2

\leq \alpha n\| xn  - p\| 2 + \alpha n(2\| xn  - p\| .\| f(p) - p\| + \| f(p) - p\| ) + \| f(p) - p\| 2

+ (1 - \alpha n)\| yn  - p\| 2

\leq \alpha n\| xn  - p\| 2 + (1 - \alpha n)\| yn  - p\| 2 + \alpha nM2, (3.59)

for some M2 > 0. Substituting (3.53) into (3.59) we get

\| xn+1  - p\| 2 \leq \alpha n\| xn  - p\| 2 + (1 - \alpha n)\| wn  - p\| 2

 - (1 - \alpha n)\lambda n(1 - \lambda nL)\| (\sansJ \sansB 2

\lambda  - I)\sansA wn\| 2 + \beta nM2. (3.60)

It implies from (3.57) that

\| wn  - p\| 2 \leq (\| xn  - p\| + \alpha nM1)
2

= \| xn  - p\| 2 + \alpha n(2M1\| xn  - p\| + \alpha nM
2
1 )

\leq \| xn  - p\| 2 + \alpha nM3, (3.61)

for some M3 > 0. Combining (3.60) and (3.61) we obtain

\| xn+1  - p\| 2 \leq \alpha n\| xn  - p\| 2 + (1 - \alpha n)\| xn  - p\| 2

+ \alpha nM3  - (1 - \alpha n)\lambda n(1 - \lambda nL)\| (\sansJ \sansB 2

\lambda  - I)\sansA wn\| 2 + \alpha nM2

=\| xn  - p\| 2 + \alpha nM3  - (1 - \alpha n)\lambda n(1 - \lambda nL)\| (\sansJ \sansB 2

\lambda  - I)\sansA wn\| 2

+ \alpha nM2.

This implies that

(1 - \alpha n)\lambda n(1 - \lambda nL)\| (\sansJ \sansB 2

\lambda  - I)\sansA wn\| 2 \leq \| xn+1  - q\| 2  - \| xn  - q\| 2 + \alpha nM4,

where M4 :=M2 +M3.
Claim 3.

(1 - \alpha n)\| yn  - wn\| 2 \leq \| xn  - p\| 2  - \| xn+1  - p\| 2 + \alpha nM4

+ 2(1 - \alpha n)\lambda n\| yn  - p\| .\| \sansA \ast (\sansJ \sansB 2

\lambda  - I)\sansA wn\| .

Indeed, according to (3.40) we have

\| yn  - p\| 2 \leq \| wn  - p\| 2  - \| yn  - wn\| 2 + 2\lambda n\| yn  - p\| .\| \sansA \ast (\sansJ \sansB 2

\lambda  - I)\sansA wn\| . (3.62)

Combining (3.59) and (3.62) we get

\| xn+1  - p\| 2 \leq \alpha n\| xn  - p\| 2 + (1 - \alpha n)\| wn  - p\| 2  - (1 - \alpha n)\| yn  - wn\| 2

+ 2\lambda n(1 - \alpha n)\| yn  - p\| .\| \sansA \ast (\sansJ \sansB 2

\lambda  - I)\sansA wn\| + \alpha nM2. (3.63)

Substituting (3.61) into (3.63) we obtain

\| xn+1  - p\| 2 \leq \alpha n\| xn  - p\| 2 + (1 - \alpha n)\| xn  - p\| 2 + \alpha nM3

 - (1 - \alpha n)\| yn  - wn\| 2 + 2\lambda n(1 - \alpha n)\| yn  - p\| 

\times \| \sansA \ast (\sansJ \sansB 2

\lambda  - I)\sansA wn\| + \alpha nM2

\leq \| xn  - p\| 2  - (1 - \alpha n)\| yn  - wn\| 2

+ 2(1 - \alpha n)\lambda n\| yn  - p\| .\| \sansA \ast (\sansJ \sansB 2

\lambda  - I)\sansA wn\| + \alpha nM4.
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This implies that

(1 - \alpha n)\| yn  - wn\| 2 \leq \| xn  - p\| 2  - \| xn+1  - p\| 2 + \alpha nM4

+ 2(1 - \alpha n)\lambda n\| yn  - p\| .\| \sansA \ast (\sansJ \sansB 2

\lambda  - I)\sansA wn\| + \alpha nM4.

Claim 4.

\| xn+1  - p\| 2 \leq (1 - (1 - \kappa )\alpha n)\| xn  - p\| 2 + (1 - \kappa )\alpha n

\times 

\Biggl[ 
2

1 - \kappa 
\langle f(p) - p, xn+1  - p\rangle + \theta n

\alpha n
.\| xn  - xn - 1\| .

M

1 - \kappa 

\Biggr] 
,

for some M > 0. Indeed, we have

\| wn  - p\| 2 = \| xn + \theta n(xn  - xn - 1  - p)\| 2

= \| xn  - p\| 2 + 2\theta n\langle xn  - p, xn  - xn - 1\rangle + \theta 2n\| xn  - xn - 1\| 2

\leq \| xn  - p\| 2 + 2\theta n\| xn  - p\| \| xn  - xn - 1\| + \theta 2n\| xn  - xn - 1\| 2

= \| xn  - p\| 2 + 2\theta n\| xn  - p\| \| xn  - xn - 1\| 
\Bigl[ 
2\| xn  - p\| + \theta n\| xn  - xn - 1\| 

\Bigr] 
\leq \| xn  - p\| 2 + \theta n\| xn  - xn - 1\| M, (3.64)

for M > 0. Using (2.5) we have

\| xn+1  - p\| 2 = \| \alpha nf(xn) + (1 - \alpha n)yn  - p\| 2

= \| \alpha n(f(xn) - f(p)) + (1 - \alpha n)(yn  - p) + \alpha n(f(p) - p)\| 2

\leq \| \alpha n(f(xn) - f(p)) + (1 - \alpha n)(yn  - p)\| 2

+ 2\alpha n\langle f(p) - p, xn+1  - p\rangle 
\leq \alpha n\| f(xn) - f(p)\| 2 + (1 - \alpha n)\| yn  - p\| 2

+ 2\alpha n\langle f(p) - p, xn+1  - p\rangle 
\leq \alpha n\kappa 

2\| xn  - p\| 2 + (1 - \alpha n)\| yn  - p\| 2

+ 2\alpha n\langle f(p) - p, xn+1  - p\rangle 
\leq \alpha n\kappa \| xn  - p\| 2 + (1 - \alpha n)\| wn  - p\| 2 + 2\alpha n\langle f(p) - p, xn+1  - p\rangle . (3.65)

Substituting (3.64) into (3.65) we obtain

\| xn+1  - p\| 2 \leq (1 - (1 - \kappa )\alpha n)\| xn  - p\| 2 + \theta n\| xn  - xn - 1\| M
+ 2\alpha n\langle f(p) - p, xn+1  - p\rangle 
= (1 - (1 - \kappa )\alpha n)\| xn  - p\| 2 + (1 - \kappa )\alpha n

\times 

\Biggl[ 
2

1 - \kappa 
\leq f(p) - p, xn+1  - p\rangle + \theta n

\alpha n
.\| xn  - xn - 1\| .

M

1 - \kappa 

\Biggr] 
.

Claim 5. The sequence \{ \| xn  - p\| \} converges to zero by considering two possible cases
on the sequence \{ \| xn  - p\| 2\} .
Case 1. There exists N \in \BbbN such that \| xn+1  - p\| 2 \leq \| xn  - p\| 2 \forall n \geq N . This implies
that \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \| xn  - p\| exists and according to Claim 2 we obtain

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| (\sansJ \sansB 2

\lambda  - I)\sansA wn\| = 0. (3.66)

According to Claim 3 and (3.66) we get

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\| yn  - wn\| = 0. (3.67)
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We show that \| xn+1  - xn\| \rightarrow 0 as n\rightarrow \infty . Indeed, we have

\| xn+1  - yn\| = \alpha n\| yn  - f(xn)\| \rightarrow 0, (3.68)

and

\| xn  - wn\| = \theta n\| xn  - xn - 1\| =
\theta n
\alpha n

\| xn  - xn - 1\| .\alpha n \rightarrow 0. (3.69)

It implies from (3.67),(3.68) and (3.69) that

\| xn+1  - xn\| \leq \| xn+1  - yn\| + \| yn  - wn\| + \| wn  - xn\| \rightarrow 0. (3.70)

Since the sequence \{ xn\} is bounded, it implies that there exist a subsequence \{ xnk
\} of

\{ xn\} that weak convergence to some z \in \BbbH such that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{s}\mathrm{u}\mathrm{p}\langle f(p) - p, xn  - p\rangle = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\langle f(p) - p, xnk
 - p\rangle = \langle f(p) - p, z  - p\rangle . (3.71)

We will show that z \in \Omega . Indeed, thanks to (3.48) and (3.49), we obtain

\mathrm{l}\mathrm{i}\mathrm{m}
\mathrm{n}\rightarrow \infty 

\| \sansA \mathrm{w}\mathrm{n}  - \sansJ \sansB 2

\lambda \sansA \mathrm{w}\mathrm{n}\| = 0 \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{l}\mathrm{i}\mathrm{m}
\mathrm{n}\rightarrow \infty 

\| \mathrm{w}\mathrm{n}  - \sansJ \sansB 1

\lambda \mathrm{w}\mathrm{n}\| = 0. (3.72)

By (3.69) we get wnk
\rightharpoonup z. Since \sansA is a bounded linear operator, it follows that \sansA wnk

\rightharpoonup \sansA z.
By (3.72) and Lemma 2.6 (i) we get z \in Fix(\sansJ \sansB 1

\lambda ) and \sansA z \in Fix(\sansJ \sansB 2

\lambda ).
Therefore z \in \Omega .
Since (3.71) and \mathrm{p} = \mathrm{P}\Omega \circ \mathrm{f}(\mathrm{p}), we have

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{s}\mathrm{u}\mathrm{p}\langle f(p) - p, xn  - p\rangle = \langle f(p) - p, z  - p\rangle (3.73)

Combining (3.70) and (3.73) we obtain

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{s}\mathrm{u}\mathrm{p}\langle f(p) - p, xn+1  - p\rangle \leq \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{s}\mathrm{u}\mathrm{p}\langle f(p) - p, xn  - p\rangle = \langle f(p) - p, z  - p\rangle . (3.74)

Using Lemma 2.5 and (3.74), the restriction \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty 

\biggl( 
\theta n
\alpha n

\biggr) 
\| xn  - xn - 1\| = 0 and Claim

4 we get \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \| xn  - p\| = 0.

Case 2. There exist a subsequernce \{ \| xnj
 - p\| 2\} of \{ \| xn  - p\| 2\} such that \| xnj

 - p\| 2 <
\| xnj+1\| 2 for all j\in \BbbN . In this case, it follows from Lemma 2.5 that there exists a non-
decreasing sequence \{ mk\} of \BbbN such that \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty mk = \infty and the following inequalities
hold for all k\in \BbbN :

\| \mathrm{x}\mathrm{m}\mathrm{k}
 - \mathrm{p}\| 2 \leq \| \mathrm{x}\mathrm{m}\mathrm{k}+1  - \mathrm{p}\| 2 \mathrm{a}\mathrm{n}\mathrm{d} \| \mathrm{x}\mathrm{k}  - \mathrm{p}\| 2 \leq \| \mathrm{x}\mathrm{m}\mathrm{k}

 - \mathrm{p}\| 2. (3.75)

According to claim 2, we have

(1 - \alpha mk
)\lambda mk

(1 - \lambda mk
L)\| ((\sansJ \sansB 2

\lambda  - I))\sansA wmk
\| 

\leq \| xmk
 - p\| 2  - \| xmk+1  - p\| 2 + \alpha mk

M4

amk
M4.

Therefore, we obtain

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\| (\sansJ \sansB 2

\lambda  - I)\sansA wmk
\| = 0. (3.76)

According to claim 3, we have

(1 - \alpha mk
)\| ymk

 - wmk
\| 2 \leq \| xmk

 - p\| 2  - \| xmk+1  - p\| 2 + \alpha mk
M4

+ 2(1 - \alpha mk
)\lambda mk

\| ymk
 - p\| .\| \sansA \ast (\sansJ \sansB 2

\lambda  - I)\sansA wmk
\| 

\alpha mk
M4 + 2(1 - \alpha mk

)\lambda mk
\| ymk

 - p\| .

\times \| \sansA \ast (\sansJ \sansB 2

\lambda  - I)\sansA wmk
\| .
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Therefore, we obtain

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\| ymk
 - wmk

\| = 0.

Using the same arguments as in the proof of Case 1 we obtain

\| \mathrm{x}\mathrm{m}\mathrm{k}+1  - \mathrm{x}\mathrm{m}\mathrm{k}
\| \rightarrow 0 \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{l}\mathrm{i}\mathrm{m}

\mathrm{n}\rightarrow \infty 
\mathrm{s}\mathrm{u}\mathrm{p}\langle \mathrm{f}(\mathrm{p}) - \mathrm{p}, \mathrm{x}\mathrm{m}\mathrm{k}

 - \mathrm{p}\rangle \leq 0.

According to claim 4 we have

\| xmk+1  - p\| 2 \leq (1 - (1 - \kappa )\alpha mk
)\| xmk

 - p\| 2 + (1 - \kappa )\alpha mk

\times 
\Bigl[ 2

1 - \kappa 
\langle f(p) - p, xmk+1  - p\rangle + \theta mk

\alpha mk

.\| xmk
 - xmk - 1\| .

M

1 - \kappa 

\Bigr] 
. (3.77)

From (3.75) and (3.77) we obtain

\| xmk+1  - p\| 2 \leq 
\Bigl[ 2

1 - \kappa 
\langle f(p) - p, xmk+1  - p\rangle + \theta mk

\alpha mk

.\| xmk
 - xmk - 1\| .

M

1 - \kappa 

\Bigr] 
.

Therefore,

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{s}\mathrm{u}\mathrm{p} \| xmk+1  - p\| \leq 0. (3.78)

Combining (3.75) and (3.78) \mathrm{l}\mathrm{i}\mathrm{m}k\rightarrow \infty \| xk  - p\| \leq 0, that is xk \rightarrow p. The proof is
completed. \square 

4. Application to the split feasibility problem

Let \scrC and \scrQ be nonempty closed covex subsets of real Hilbert spaces \sansH 1 and \sansH 2,
respectively.The split feasibility problem is formulated as:

(SEP) Find x\ast \in \scrC such that \sansA x\ast \in \scrQ ,
where \sansA : \sansH 1 \rightarrow \sansH 2 is a bounded linear operator. Let \Delta SEP be the solution set of problem
(SEP). In 1994, Censor and Elfving [9] first introduced the SFP in finite-dimensional
Hilbert spaces for modelling inverse problems which arise from phase retrievals and in
medical image reconstruction. It has been found that the SFP can also be used in
various disciplines such as image restoration, computer tomograph and radiation therapy
treatment planning.

Let f be a proper lower semicontinuous convex function of \sansH into ( - \infty ,\infty ). Then the
subdifferential \partial f of f is defined as follows:

\partial f(x) = \{ z \in \sansH : f(x) - f(y) \leq \langle z, x - y\rangle \forall y \in \sansH \} 
for all x \in \sansH . Let \scrC be a nonempty closed convex subset of real Hilbert space \sansH and i\scrC 
be the indicator function of \scrC , that is,

i\scrC (x) =

\biggl\{ 
0 if x \in \scrC ;
\infty if x /\in \scrC .

Further, we define the normal cone N\scrC u of \scrC at u \in \scrC as follows:
N\scrC u = \{ z \in \sansH : \langle z, v  - u\rangle \leq 0 \forall v \in \scrC \} .

We known that i\scrC is a proper, lower semicontinuous and convex function on \sansH . Thus, the
subdifferential \partial i\scrC of i\scrC is a maximal monotone operator. So, we can define the resolvent
\sansJ \partial i\scrC \lambda of \partial i\scrC for each \lambda > 0, that is

\sansJ \partial i\scrC \lambda x = (I + \lambda \partial i\scrC )
 - 1x

for all x \in \sansH . Furthermore, for each x \in \scrC we have

\partial i\scrC x = \{ z \in \sansH : i\scrC + \langle z, y  - x\rangle \leq i\scrC y \forall y \in \sansH \} 
= \{ z \in \sansH : \langle z, y  - x\rangle \leq 0 \forall y \in \scrC \} 
= N\scrC x.
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Therefore, for each \alpha > 0, we derive

y = \sansJ \partial i\scrC \lambda x \Leftarrow \Rightarrow x \in y + \lambda \partial i\scrC y \Leftarrow \Rightarrow x - y \in \lambda \partial i\scrC y

\Leftarrow \Rightarrow \langle x - y, z  - y\rangle \leq 0 \forall z \in \scrC 
\Leftarrow \Rightarrow y = P\scrC x.

Now applying Theorem 3.1 and Theorem 3.2 we obtain the following results.

Theorem 4.1 Let \scrC and \scrQ be nonempty closed convexsubsets Hilbert spaces \sansH 1 and \sansH 2,
respectively and \sansA : \sansH 1 \rightarrow \sansH 2 be a bounded linear operator, and \sansA \ast be the adjoint of
\sansA . Let \Delta SEP be the solution set of problem (SEP) with \Delta SEP \not = \phi . Assume that the
sequence \{ \theta n\} is non-decreasing such that 0 \leq \theta n \leq \theta < 1. Let \{ \lambda n\} be a sequence of
real numbers such that 0 < a \leq \lambda n \leq b < ( 1

L ), where L := \| \sansA \| 2 and the sequence \{ \alpha n\} is
non-decreasing such that

\alpha \leq \alpha n \leq 1

1 + \theta + \delta 
(4.79)

for some \delta > 0 and \alpha > 0.
Let \{ xn\} be a sequence in \sansH 1 defined by\left\{       

x0, x1 \in \sansH 1,
wn = xn + \theta n(xn  - xn - 1),
yn = P\scrC (I + \lambda n\sansA 

\ast (P\scrQ  - I)\sansA )wn,
xn+1 = (1 - \alpha n)xn + \alpha nyn.

Then, the sequence \{ xn\} converges weakly to an element of \Delta SEP .

Theorem 4.2 Let \scrC and \scrQ be nonempty closed convex subsets of Hilbert spaces \sansH 1 and
\sansH 2 and \sansA : \sansH 1 \rightarrow \sansH 2 be a bounded linear operator and \sansA \ast be the adjoint of \sansA .Let \Delta SEP

be the solution set of problem (SEP) with \Delta SEP \not = \phi . Assume that the sequence \{ \theta n\} 
is sequence in [0, \theta ] for some \theta > 0. Let \{ \lambda n\} be a sequence of real numbers such that
0 < a \leq \lambda n \leq b < ( 1

L ), where L := \| \sansA \| 2. Let f : \sansH 1 \rightarrow \sansH 1 be a contaction mapping with
contraction parameter \kappa \in [0, 1). Assume that \{ \alpha n\} is a sequence in (0, 1) such that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\alpha n = 0,

\infty \sum 
n=0

\alpha n = \infty .

Let \{ xn\} be a sequence in \sansH 1 defined by\left\{       
x0, x1 \in \sansH 1,
wn = xn + \theta n(xn  - xn - 1),
yn = P\scrC (I + \lambda n\sansA 

\ast (P\scrQ  - I)\sansA )wn,
xn+1 = \alpha nf(xn) + (1 - \alpha n)yn

(4.80)

Assume that the sequence \{ \theta n\} is chosen such that satisfying the following condition

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\theta n
\alpha n

\| xn  - xn - 1\| = 0. (4.81)

Then the sequence \{ xn\} generated by (4.80) converges strongly to an element of p \in \Delta SEP ,
where p = P\Delta SEP

\circ f(p)."

5. Numerical illustration

In this section, we consider a numerical example to illustrate the convergence of the
algorithms.
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Example 5.1. Let \scrH = \BbbR , the set of real numbers and f : \BbbR \rightarrow \BbbR be contraction mapping
and \scrM 1,\scrM 2 : \BbbR \rightrightarrows \BbbR be a set-valued mappings. Let f(x) := x

10 and \scrM 1 := \{ x
5\} and

\scrM 2 := \{ x
7\} \forall x \in \BbbR , \alpha n := 1

2n , \lambda n := 1
n+3 and \theta n := 1

(n+1)2 , then we calculate resolvent
operator \sansJ \scrM \lambda and Cayley operator \sansC \scrM 

\lambda for \lambda = 1 as follows:

\sansJ \scrM 1

\lambda (x) = (I + \lambda \scrM 1)
 - 1(x) =

5x

6
,

\sansC \scrM 1

\lambda (x) = (2\sansJ \scrM 1

\lambda (x) - I) =
2x

3
,

\sansJ \sansB 1

\lambda (x) =
15x

28
.

\sansJ \scrM 2

\lambda (x) = (I + \lambda \scrM 2)
 - 1(x) =

7x

8
,

\sansC \scrM 2

\lambda (x) = (2\sansJ \scrM 2

\lambda (x) - I) =
3x

4
,

\sansJ \sansB 2

\lambda (x) =
 - 25x

81
.

All the assumptions of Theorem 3.1 and Theorem 3.2 are satisfied and the iterative
sequence \{ xn\} generated in the above algorithms is converges weakly to p = 0 (shows in
Fig.1) and converges strongly to p = 0 (shows in Fig.2) for different initial values.

6. Table

Table 1. Numerical results for two different initial values x0 = 1, x1 = 2
and x0 =  - 1, x1 =  - 2 .

Number of \bfx \bfn \bfx \bfn 

iterations (n) \bfx \bfzero =  - \bfone ,\bfx \bfone =  - \bftwo \bfx \bfzero = \bfone ,\bfx \bfone = \bftwo 

1. -1.00000 1.00000
2. -2.00000 2.000000
6. 0.35303 -0.003609
9. 0.017780 -0.017792
15. 0.001278 0.001938
19. -0.000215 0.000224
23. 0.00003840 0.000130
27. -0.000007 0.000054
31. 0.00000234 0.000002
34. -0.0000000 0.000001
35. 0.0000000 0.000000

7. figures

All of the codes have been developed in MATLAB R2021a for simplicity. We’ve tried
for different initial points and found that the sequence \{ xn\} converges to the solution of
the problem in each case. Graphs of convergence is depicted in the Figures below.
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Figure 1. Weak convergence of sequence \{ xn\} for initial values x0 =
 - 1, x1 =  - 2 and x0 = 1, x1 = 2.
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Figure 2. Strong convergence of sequence \{ xn\} for initial values x0 =
1, x1 = 1.5 and x0 =  - 1, x1 =  - 1.5.

9. Conclusion

In this paper, we solved a split inclusion problem associated to Cayley’s operator by
using some classical approach of generating sequences and introduce two new algorithms
in real Hilbert space. Also, weak and strong convergence theorems are established
under standard assumptions imposed on operators, parameters and mappings. Finally, a
numerical experiment has also been performed to illustrate the convergence of proposed
algorithms.
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