

ON NEIGHBOURHOOD SEMI-STAR ROTHBERGER (MENGER AND HUREWIEZ) SPACES

RACHID LAKEHAL

ABSTRACT. In this paper, we introduce and study new types of star-selection principles, namely semi-neighbourhood semi-star-Rothberger (Menger, Hurewicz, and Lindelöf) and neighbourhood semi-star-Rothberger (Menger, Hurewicz, and Lindelöf) spaces. We establish several properties of these selection principles and investigate their relationships with other selection properties in topological spaces. Furthermore, we present a collection of fundamental theorems and propositions that characterize these spaces.

1. Introduction

In 1963, N. Levine (see [11]) introduced the concept of semi-open sets. A subset A of a topological space X is termed semi-open if there exists an open set U such that $U \subset A \subset \overline{U}$, where \overline{U} 'or' Cl(U) denotes the closure of U in X. S. Crossley and S. Hildebrand (see [5]). Defined a set to be semi-closed if its complement is semi-open. Equivalently, A is semi-open[resp., semi-closed] if and only if $A \subset \overline{Int(A)}$ [resp., $Int(\overline{A}) \subset A$].

While every open set is semi-open, a semi-open set may not necessarily be open. The union of any number of semi-open sets is semi-open, but the intersection of two semi-open sets may not be semi-open. However, the intersection of an open set and a semi-open set is always semi-open. The semi-closure sCl(A) of $A \subset X$ is defined as the intersection of all semi-closed sets containing A. A set A is semi-open if and only if sInt(A) = A, and A is semi-closed if and only if sCl(A) = A. It's worth noting that for any subset A of X,

$$Int(A) \subset sInt(A) \subset A \subset sCl(A) \subset Cl(A)$$
.

A subset A of a topological space X is termed semi-regular if it is both semi-open and semi-closed, or equivalently, A = sCl(sInt(A)) 'or' A = sInt(sCl(A)).

In [8], Kočinac introduced star selection hypothesis similar to the previous ones. Let \mathcal{A} and \mathcal{B} be collections of covers of a space X. Then: (A) The symbol $\mathsf{S}_{\mathsf{fin}}^*(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of \mathcal{A} there exists a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n and $\bigcup_{n \in \mathbb{N}} \{\mathsf{St}(\mathcal{V}, \mathcal{U}_n) : \mathcal{V} \in \mathcal{V}_n\}$ is an element of \mathcal{B} .

(B) The symbol $SS^*_{comp}(\mathcal{A}, \mathcal{B})$ (resp., $SS^*_{fin}(A, B)$) denotes the selection hypothesis that for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of A there exists a sequence $(K_n : n \in \mathbb{N})$ of compact (resp., finite) subsets of X such that $\{St(K_n, \mathcal{U}_n) : n \in \mathbb{N}\} \in B$.

Let \mathcal{O} denote the collection of all open covers of a space X.

Definition 1.1. (see [8]) A space X is said to be star-Menger [resp., star-Rothberger] if it satisfies the selection hypothesis $S_{fin}^*(\mathcal{O}, \mathcal{O})$ [resp., $S_1^*(\mathcal{O}, \mathcal{O})$]

Definition 1.2. (see [8]) A space X is said to be star-Hurewicz if for every sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X, one can choose finite $\mathcal{V}_n \subset \mathcal{U}_n$ so that for every $x \in X$ we have $x \in \operatorname{St}(\bigcup \mathcal{V}_n, \mathcal{U}_n)$ for all but finitely many n.

²⁰²⁰ Mathematics Subject Classification. 54D20, 54A35, 54C05.

Keywords. Selection principles, semi-star Menger, semi-star Rothberger, semi-star Hurewicz, neighbourhood, semi-open.

The following three generalizations of star selection properties have been introduced (in a general form and under different names) in (see [9]) and studied in details in (see [3]).

Definition 1.3. (see [3]) A space X is said to be *neighbourhood star-Menger* (NSM) if for every sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X, one can choose finite $(F_n \subset X, n \in \mathbb{N})$, so that for every open $O_n \supset F_n$, $n \in \mathbb{N}$, we have $\bigcup_n \{ \operatorname{St}(O_n, \mathcal{U}_n) : n \in \mathbb{N} \} = X$.

Definition 1.4. (see [3]) A space X is said to be neighbourhood star-Rothberger (NSR) if for every sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X, one can choose $(x_n \in X : n \in \mathbb{N})$, so that for every open $O_n \ni x_n$, $n \in \mathbb{N}$, we have $\bigcup_{n \in \mathbb{N}} \operatorname{St}(O_n, \mathcal{U}) = X$.

Definition 1.5. (see [3]) A space X is said to be neighbourhood star-Hurewicz (NSH) if for every sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X, one can choose finite $F_n \subset X$, $n \in \mathbb{N}$, so that for every open $O_n \supset F_n$, $n \in \mathbb{N}$, each $x \in X$ belongs to $\operatorname{St}(O_n, \mathcal{U}_n)$ for all but finitely many n.

2. New Selection Principles

In this section we introduce and study some new types of star-selection principles denoted as sNsSM, sNsSR and sNsSH spaces.

A semi-open cover \mathcal{U} of a space X is defined as follows;

- $s\mathcal{O}$ the family of semi-open covers of X;
- an $s\omega$ -cover if X does not belong to \mathcal{U} and every finite subset of X is contained in a member of \mathcal{U} ;
- an $s\gamma$ -cover if it is infinite and each $x \in X$ belongs to all but finitely many elements of \mathcal{U} ;
- s-groupable if it can be expressed as a countable union of finite, pairwise disjoint subfamilies \mathcal{U}_n , $n \in \mathbb{N}$, such that each $x \in X$ belongs to $\bigcup \mathcal{U}_n$ for all but finitely many n;
- weakly s-groupable if it is a countable union of finite, pairwise disjoint sets \mathcal{U}_n , $n \in \mathbb{N}$, such that for each finite set $F \subset X$ we have $F \subset \bigcup \mathcal{U}_n$ for some n.

Definition 2.1. A space X is said to be:

- 1. semi-neighbourhood semi star-Menger (resp., neighbourhood semi star-Menger) sNsSM (resp., NsSM) if for every sequence $(\mathcal{U}_n:n\in\mathbb{N})$ of semi-open covers of X, one can choose finite sets $F_n\subset X,\,n\in\mathbb{N}$, so that for every semi open $O_n\supset F_n,\,n\in\mathbb{N}$ (resp., for every open $O_n\supset F_n)$, we have $\bigcup_{n\in\mathbb{N}}\operatorname{St}(O_n,\mathcal{U}_n)=X$
- 2. semi-neighbourhood semi star-Rothberger (resp., neighborhood semi star-Rothberger) sNsSR(resp., NsSR) if for every sequence $(\mathcal{U}_n:n\in\mathbb{N})$ of semi-open covers of X, one can choose the sequence $(x_n:n\in\mathbb{N})$ of elements of X so that for every semi open $O_n\ni x_n$, $n\in\mathbb{N}$ (resp., for every open $O_n\ni x_n$), we have $\bigcup_{n\in\mathbb{N}}\operatorname{St}(O_n,\mathcal{U}_n)=X$
- 3. semi-neighbourhood semi star-Hurewicz (resp., neighbourhood semi star-Hurewicz sNsSH(resp., NsSH) if for every sequence $(\mathcal{U}_n:n\in\mathbb{N})$ of semi open covers of X, one can choose finite $F_n\subset X,\ n\in\mathbb{N}$, so that for every semi open $O_n\supset F_n,\ n\in\mathbb{N}$ (resp., for every open $O_n\supset F_n$), each $x\in X$ belongs to $\mathrm{St}(O_n,\mathcal{U}_n)$.
- **Remark 2.2.** Every sNsSM space is NsSM, and every NsSM space is NSM. Similarly, for Rothberger-type and Hurewicz-type properties.

Moreover, we have the following relationships among the classes of spaces defined above.

$$sNsSR \implies NsSR \implies NSR$$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $sNsSM \implies NsSM \implies NSM$
 $\uparrow \qquad \qquad \uparrow \qquad \uparrow$
 $sNsSH \implies NsSH \implies NSH$
Diagram 01

Theorem 2.3. A topological space X is classified as semi-neighborhood semi-star-Menger if for every $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of semi-open cover. Then, there exist $F_n : n \in \mathbb{N}$ of finite subset of X such that for all $x \in X$ we have $sCl(\operatorname{St}(\{x\},\mathcal{U}_n)) \cap F_n \neq \emptyset$.

Proof.

- $\Rightarrow) \quad \text{Let } X \text{ be a semi neighborhood semi star-Menger and let } (\mathcal{U}_n : n \in \mathbb{N}) \text{ of semi-open cover. Then exists a fin } F_n \subset X \text{ such that for all semi-open } O_n \text{ containing } F_n : \{ \operatorname{St}(O_n, \mathcal{U}_n) : n \in \mathbb{N} \} \in s\mathcal{O}. \text{ This implies that } \bigcup_{n \in \mathbb{N}} \operatorname{St}(O_n, \mathcal{U}_n) = X. \text{ Let } x \in X, \ \exists k \in \mathbb{N} \text{ fulfilling that } x \in \operatorname{St}(O_k, \mathcal{U}_k). \text{ Let } f_k \in F_k \subset O_k. \text{ Since } \operatorname{St}(\{x\}, \mathcal{U}_k) \cap O_k \neq \emptyset, \ f_k \in sCl(\operatorname{St}(\{x\}, \mathcal{U}_k)). \text{ Hence, } sCl(\operatorname{St}(\{x\}, \mathcal{U}_n)) \cap F_n \neq \emptyset.$
- \Leftarrow) Conversely, let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of semi-open sets. Then exists F_n of fin subsets of X fulfilling that for every $x \in X$, $\exists n \in \mathbb{N}$ fulfilling that $sCl(\operatorname{St}(\{x\},\mathcal{U}_n)) \cap F_n \neq \emptyset$. This implies that for every semi-open set $O_n \supset F_n$ we have $\operatorname{St}(\{x\},\mathcal{U}_n) \cap F_n \neq \emptyset$. This implies that $x \in \operatorname{St}(O_n,\mathcal{U}_n)$. Hence, $\{\operatorname{St}(O_n,\mathcal{U}_n) : n \in \mathbb{N}\} \in s\mathcal{O}$.

Proposition 2.4.

(1) A space X is neighborhood semi star-Rothberger iff for every $\{U_n : n \in \mathbb{N}\}$ of semi-open cover there exist $x_n : n \in \mathbb{N}$ of point of X such that for all $x \in X$ we have $x_n \in \overline{\operatorname{St}(\{x\}, \mathcal{U}_n)}$.

(2) A space X is semi neighborhood semi star-Rothberger iff for every $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of semi-open cover there exist $x_n : n \in \mathbb{N}$ of point of X such that for all $x \in X$ we have $x_n \in sCl(\operatorname{St}(\{x\}, \mathcal{U}_n))$.

- (3) A space X is neighborhood semi star-Menger iff for every $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of semi-open cover there exist $F_n : n \in \mathbb{N}$ of finite subset of X such that for all $x \in X$ we have $\overline{\operatorname{St}(\{x\}, \mathcal{U}_n)} \cap F_n \neq \emptyset$.
- (4) A space X is semi-neighborhood semi-star-Menger iff for every $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of semi-open cover there exist $F_n : n \in \mathbb{N}$ of finite subset of X such that for all $x \in X$ we have $sCl(\operatorname{St}(\{x\}, \mathcal{U}_n)) \cap F_n \neq \emptyset$.
- (5) A space X is neighborhood semi star-Hurewicz iff for every $\{U_n : n \in \mathbb{N}\}$ of semi-open cover there exist $F_n : n \in \mathbb{N}$ of finite subset of X such that for all $x \in X$ we have $\overline{\operatorname{St}(\{x\}, U_n)} \cap F_n \neq \emptyset$ for all but finitely many $n \in \mathbb{N}$.
- (6) A space X is semi-neighborhood semi-star-Hurewicz iff for every $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of semi-open cover there exist $F_n : n \in \mathbb{N}$ of finite subset of X such that for all $x \in X$ we have $sCl(\operatorname{St}(\{x\}, \mathcal{U}_n)) \cap F_n \neq \emptyset$ for all but finitely many $n \in \mathbb{N}$.

Proposition 2.5. If all finite powers of a space X are sNsSM(resp., NsSM) then X satisfies $sNsSM(s\mathcal{O}, s\Omega)$ (resp., $NsSM(s\mathcal{O}, s\Omega)$). Such that the symbol $s\Omega$ denotes the family of $semi-\omega$ -covers of a space.

Proof. We prove the sNsSM case, and the other case can be proved similarly. Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of semi-open covers of X and let $\mathbb{N} = \{N_1 \cup N_2 \cup\}$

be a partition of $\mathbb N$ into infinite (pairwise disjoint) sets. For every $k \in \mathbb N$ and every $m \in N_k$ let $\mathcal W_m = (\mathcal U_m)^k$. Then $(\mathcal W_m : m \in N_k)$ is a sequence of semi-open covers of X^k . Applying to this sequence the fact that X^k is sNsSM we find a sequence $(A_m : m \in N_k)$ of finite subsets of X^k such that for every semi open sequence $(O_m(A_m) : m \in N_k)$ of neighborhoods of A_m , $m \in N_k$, $in \ X^k$. (Since X^k is semi-neighbourhood semi star-Menger) the family $\{\operatorname{St}(O_m, \mathcal W_m) : m \in N_k\}$ is semi-open cover of X^k (that is, $X^k \subseteq \bigcup \operatorname{St}(O_m, \mathcal W_m)$). For every $m \in N_k$, let S_m be a finite subset of X such that $S_m^k \supset A_m$ consider the sequence of all S_m , $m \in N_k$, $k \in \mathbb N$, chosen in this way and denote it $(S_n : n \in \mathbb N)$. Let $(G_n(S_n) : n \in \mathbb N)$ be a sequence of semi neighborhoods of S_n , $n \in \mathbb N$. We claim that $\{\operatorname{St}(G_n(S_n)), \mathcal U_n) : n \in \mathbb N\}$ is an $s\omega$ -cover of X. Let $F = \{x_1 \cdot \dots \cdot x_p\}$ be a finite subset of X. Then $(x_1 \cdot \dots \cdot x_p) \in X^p$. There exists $n \in N_p$ such that $\{(G_n(S_n))^p \in \mathbb N\}$ is a sequence of semi neighborhoods of A_n . So that there exists $n \in \mathbb N$ such that, $(x_1 \cdot \dots \cdot x_p) \in \operatorname{St}(O_n, \mathcal W_n) \subset \operatorname{St}((G_n(S_n))^p, \mathcal W_n)$, so that we have $F \subset \operatorname{St}(G_n(S_n), \mathcal U_n)$. Then X satisfies $sNsSM(s\mathcal O, s\Omega)$.

In similarity we have,

Theorem 2.6. If each finite power of a space X is semi-neighborhood semi star-Hurewicz (resp., neighborhood semi star-Hurewicz) then X satisfies $SSH(s\mathcal{O}, s\Omega)$ (resp., X satisfies $SSH(s\mathcal{O}, s\Omega)$).

Theorem 2.7. Let X be an extremally disconnected space, X is sNsSH space (resp., NsSH space) if and only if X satisfies $sNsSH(s\mathcal{O}, s\mathcal{O}^{gp})$ (resp., $NsSH(s\mathcal{O}, s\mathcal{O}^{gp})$). Such that, $s\mathcal{O}^{gp}$ is family of s-groupable covers of X.

Proof. We prove the sNsSH case, and the other case can be proved similarly. Let $(\mathcal{U}_n:n\in\mathbb{N})$ be a sequence of covers of X by semi-open sets. Since X is semi neighborhood semi star-Hurewicz space, one can choose finite $F_n\subset X,\,n\in\mathbb{N}$, so that for every semi-open $O_n\supset F_n,\,n\in\mathbb{N}$, and each $x\in X$ belongs to $\mathrm{St}(O_n,\mathcal{U}_n)$ for all but finitely many n. This implies that $\{\mathrm{St}(O_n,\mathcal{U}_n):n\in\mathbb{N}\}$ is an $s\gamma$ -cover of X. Since each countable $s\gamma$ -cover is s-groupable, $\{\mathrm{St}(O_n,\mathcal{U}_n):n\in\mathbb{N}\}\in s\mathcal{O}^{\mathrm{gp}}$.

Conversely, let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of covers of X by semi-open sets. Let

$$\mathcal{H}_n = \bigwedge_{i \leq n} \mathcal{U}_i$$
.

Then $(\mathcal{H}_n: n \in \mathbb{N})$ is a sequence of semi-open covers of X since X is extremally disconnected. Use now $sNsSH(s\mathcal{O},s\mathcal{O}^{\mathrm{gp}})$ property of X. For each \mathcal{H}_n and for each $n \in \mathbb{N}$ select semi-open set $O_n \supset F_n$, such that the set $\{\mathrm{St}(O_n,\mathcal{H}_n): n \in \mathbb{N}\}$ is an s-groupable cover of X. Let $n_1 < n_2 < ... < n_k < ...$ be a sequence of natural numbers which witnesses this fact, that is, for each $x \in X$, x belongs to $\bigcup \{\mathrm{St}(O_i,\mathcal{H}_i): n_k < i \leq n_{k+1}\}$ for all but finitely many k. Put

$$\mathcal{W}_n = \bigcup_{i < n} O_i, \text{ for } n < n_1;$$

$$\mathcal{W}_n = \bigcup_{n_k < i \le n_{k+1}} O_i, \text{ for } n_k \le n < n_{k+1}.$$

Then we shows that $\bigcup \mathcal{W}$ is semi neighborhood of F_n and X satisfies sNsSH property because each $x \in X$ belongs to all but finitely many $\operatorname{St}(\bigcup \mathcal{W}_n, \mathcal{U}_n)$.

Definition 2.8. (see [5]) A mapping $f:(X,\tau_X)\to (Y,\tau_Y)$ is called irresolute if $f^{-1}(O)$ is semi-open in X for every O semi-open in Y.

Theorem 2.9. Let X be a sNsSM topological space and let Y be a topological space. If $f: X \to Y$ is an irresolute. Then Y is a sNsSM.

Proof. Let $(\mathcal{U}_n:n\in\mathbb{N})$ be a sequence of semi open covers of Y. For each $n\in\mathbb{N}$, the set $\mathcal{U}_n'=\{f^{-1}(U):U\in\mathcal{U}_n\}$ is an semi open cover of X. Since X is semi neighbourhood semi star-Menger, there are finite $(F_n\subset X),\,n\in\mathbb{N}$, so that for every semi-open $O_n\supset F_n,\,n\in\mathbb{N}$, we have $\{\operatorname{St}(O_n,\mathcal{U}_n'):n\in\mathbb{N}\}$ is a semi-cover of X. The sets $f(F_n),\,n\in\mathbb{N}$, are finite in Y. Let $G_n\supset f(F_n)$ for each n be semi-open set in Y. Then $f^{-1}(G_n)=H_n$ is an semi-open subset of X for each $n\in\mathbb{N}$ and $H_n\supset F_n$. Thus $X=\bigcup_{n\in\mathbb{N}}\operatorname{St}(H_n,\mathcal{U}_n')$. We prove that $Y=\bigcup_{n\in\mathbb{N}}\operatorname{St}(G_n,\mathcal{U}_n)$.

Let $y \in Y$ and let $x \in X$ be such that y = f(x). Then there is $k \in \mathbb{N}$ such that $x \in \operatorname{St}(H_k, \mathcal{U}'_k)$. Then $y = f(x) \in f(\operatorname{St}(H_k, \mathcal{U}'_k))$. Because $f(\operatorname{St}(H_k, \mathcal{U}'_k)) \subset f(\operatorname{St}(f^{-1}(G_k), \mathcal{U}'_k)) \subset \operatorname{St}(G_k, \mathcal{U}_k)$ we have $y \in \operatorname{St}(G_k, \mathcal{U}_k)$. Therefore $Y = \bigcup_{n \in \mathbb{N}} \operatorname{St}(G_k, \mathcal{U}_k)$, that is, Y is semi-neighbourhood semi star Menger.

Similarly, we can prove the following.

Theorem 2.10.

- (1) Let X be a sNsSR topological space and let Y be a topological space. If $f: X \to Y$ is an irresolute. Then Y is a sNsSR.
- (2) Let X be a sNsSH topological space and let Y be a topological space. If $f: X \to Y$ is an irresolute. Then Y is a sNsSH.

Definition 2.11. A space X is :

- (1) meta semi-compact if every semi-open cover \mathcal{U} of X has a point-finite semi-open refinement \mathcal{V} , that means, (every point of X belongs to at most finitely many members of \mathcal{V}),
- (2) meta semi-Lindelöf if every semi-open cover $\mathcal U$ of X has a point-countable semi-open refinement $\mathcal V$.

Theorem 2.12. If a space X is semi-neighborhood semi-star-Menger meta semi-compact space, then X is semi-Menger.

Proof. Let X be a sNsSM meta semi-compact space. Let $(\mathcal{U}_n:n\in\mathbb{N})$ be a sequence of semi-open covers of X. Let \mathcal{V}_n be a point-finite semi-open refinement of \mathcal{U}_n . Since X is semi-neighborhood semi star-Menger, one can choose a sequence $(F_n:n\in\mathbb{N})$ of finite subsets of X such that for every semi-open $(O_n\supset F_n):\bigcup_{n\in\mathbb{N}}\operatorname{St}(O_n,\mathcal{V}_n)=X$. As \mathcal{V}_n is a point-finite refinement and each $F_n\subset O_n$ is finite belongs to finitely many members of \mathcal{V}_n say $V_{n_1},V_{n_2},V_{n_3},V_{n_4},...,V_{n_k}$. Let $\mathcal{V}'_n=\{V_{n_1},V_{n_2},V_{n_3},V_{n_4},...,V_{n_k}\}$. Then $St(O_n,\mathcal{V}_n)=\bigcup\{\mathcal{V}'_n:n\in\mathbb{N}\}$. This mean $\bigcup_{n\in\mathbb{N}}(\cup\mathcal{V}'_n)=X$. For every $V\in\mathcal{V}'_n$, take $U_V\in\mathcal{U}_n$ such that $V\subset U_V$. Then we have, $W_n=\{U_V:V\in\mathcal{V}'_n\}$ is a finite subfamily of \mathcal{U}_n and $\bigcup_{n\in\mathbb{N}}\cup W_n=X$. Then X is semi-Menger (sM) space.

Similarly, we can prove the following

Theorem 2.13. If a space X is semi-neighborhood semi-star-Hurewicz meta-semi-compact space then X is semi-Hurewicz.

Theorem 2.14. If a space X is semi-neighborhood semi-star-Rothberger meta semi-compact space then X is semi-Rothberger.

Definition 2.15. Let T be a subset of X then:

- (1) T is relatively sNsSM (resp., relatively sNsSH) in X if for each $(\mathcal{U}_n : n \in \mathbb{N})$ of semi-open covers of X, one can choose a $(A_n : n \in \mathbb{N})$ of finite subsets of X, such that for every semi-open $(O_n \supset A_n, n \in \mathbb{N})$, we have $\bigcup \{St(O_n, \mathcal{U}_n) : n \in \mathbb{N}\} \supset T$ (resp., $\forall t \in T, t \in St(O_n, \mathcal{U}_n)$ for all but finitely many n).
- (2) T is relatively sNsSR in X if for each $(\mathcal{U}_n : n \in \mathbb{N})$ of semi-open covers of X, there are $(x_n \in X, n \in \mathbb{N})$, such that for all semi-open $(x_n \in O_n, n \in \mathbb{N})$, we have $\bigcup \{St(O_n, \mathcal{U}_n) : n \in \mathbb{N}\} \supset T$.

Proposition 2.16. If $X = \bigcup \{T_k : k \in \mathbb{N}\}$, and every T_k is relatively sNsSM (resp., relatively sNsSH, relatively sNsSH) in X, then X is sNsSM (resp., sNsSH, sNsSR).

Proof. We shall prove the sNsSM. The other cases follow in the same way. Let $(\mathcal{U}_n:n\in\mathbb{N})$ be a sequence of a semi-open covers of X. Then for all $k,n\in\mathbb{N}$, \mathcal{U}_n covers T_k , and since T_k is relatively sNsSM, there are countable sets $G_{k,n}\subset X$, such that for each semi-open set $O_{k,n}\supset G_{k,n}$, we have $St(O_{k,n},\mathcal{U}_n)\supset T_k$. Consider the $(G_{k,n})$ and $(F_{k,n})$ of neighborhood of $G'_{k,n}$. It is easy to conclude that $\bigcup_{k\in\mathbb{N}} St(F_{k,n},\mathcal{U}_n)\supset \bigcup_{k\in\mathbb{N}} T_k=X$, which means that X is sNsSM.

3. About sNsSL and NsSL spaces

In this section, we give some facts about semi neighborhood semi star-Lindelöf and neighborhood semi star-Lindelöf.

Definition 3.1. A space X is said to be semi neighborhood semi star-Lindelöf (sNsSL) (resp., neighborhood semi star-Lindelöf (NsSL), if for every semi open cover \mathcal{U} of X, one can choose a countable subset $A \subset X$ such that for every semi neighbourhood O(resp.), neighbourhood O(resp.) of A, we have $St(O,\mathcal{U}) = X$.

Remark 3.2. Of course, every sNsSL space is NsSL and NsSL space is NSL.

In fact, we have the following relations among classes of spaces defined above.

$$sNsSM \implies NsSM \implies NSM$$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $sNsSL \implies NsSL \implies NSL$
Diagram 02

Proposition 3.3.

- (1) A space X is semi-neighborhood semi-star-Lindelöf iff for every $\{U_n : n \in \mathbb{N}\}$ of semi-open cover there exist a countable subset $F_n : n \in \mathbb{N}$ of X such that for all $x \in X$ we have $sCl(\operatorname{St}(\{x\}, \mathcal{U}_n)) \cap F_n \neq \emptyset$.
- (2) A space X is neighborhood semi star-Lindelöf iff for every $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of semi-open cover there exist a countable subset $F_n : n \in \mathbb{N}$ of X such that for all $x \in X$ we have $\overline{\operatorname{St}(\{x\}, \mathcal{U}_n)} \cap F_n \neq \emptyset$.

Proof. We shall prove the sNsSL case.

- ⇒) Let X be a semi neighborhood semi star-Lindelöf and let $(\mathcal{U}_n : n \in \mathbb{N})$ of semi-open cover. There exists a countable $F_n \subset X$ such that for all semi-open O containing $F_n : \{\operatorname{St}(O,\mathcal{U}_n) : n \in \mathbb{N}\} \in s\mathcal{O}$. This implies that $\bigcup_{n \in \mathbb{N}} \operatorname{St}(O,\mathcal{U}_n) = X$. Let $x \in X$, $\exists k \in \mathbb{N}$ fulfilling that $x \in \operatorname{St}(O,\mathcal{U}_k)$. Let $f_k \in F_k \subset O$. Since $\operatorname{St}(\{x\},\mathcal{U}_k) \cap O \neq \emptyset$, $f_k \in sCl(\operatorname{St}(\{x\},\mathcal{U}_k))$. Hence, $sCl(\operatorname{St}(\{x\},\mathcal{U}_n)) \cap F_n \neq \emptyset$.
- \Leftarrow) Conversely, let $(\mathcal{U}_n : n \in \mathbb{N})$ of semi-open sets. Then exists a countable F_n of subsets of X fulfilling that for every $x \in X \exists n \in \mathbb{N}$ fulfilling that $sCl(\operatorname{St}(\{x\}, \mathcal{U}_n)) \cap F_n \neq \emptyset$. This implies that for every semi-open set $O \supset F_n$ we have $\operatorname{St}(\{x\}, \mathcal{U}_n) \cap F_n \neq \emptyset$. This implies that $x \in \operatorname{St}(O, \mathcal{U}_n)$. Hence, $\{\operatorname{St}(O, \mathcal{U}_n) : n \in \mathbb{N}\} \in sO$.

Theorem 3.4. An semi-open F_{σ} -subset of a semi-neighbourhood semi star-Lindelöf space (resp., NsSL) is semi-neighbourhood semi star-Lindelöf (resp., NsSL). (F_{σ} -set is a countable union of closed sets).

Proof. Let (X,τ) be a sNsSL space and let $Y = \bigcup \{H_n : n \in \mathbb{N}\}$ be a semi-open F_{σ} -subset of X, where the set H_n is closed in X for each $n \in \mathbb{N}$. We show that Y is

semi-neighborhood semi star-Lindelöf. Let \mathcal{U} be a semi-open cover of (Y, τ_Y) . We have to find a countable subset F of Y such that for each τ_Y semi-open $O \supseteq F$, $Y \subseteq \operatorname{St}(O, \mathcal{U})$.

For each $n \in \mathbb{N}$, consider the semi-open cover $\mathcal{U}_n = \mathcal{U} \cup \{X \setminus (H_n)\}$ of X. Since X is semi-neighborhood semi star-Lindelöf, there exists a countable subset F_n of X such that for each semi-open $O' \supseteq F_n$, we have $X = \operatorname{St}(O', \mathcal{U})$. For each $n \in \mathbb{N}$, let $M_n = F_n \cap Y$. Then M_n is a countable subset of Y such that for each semi-open $O \supseteq M_n$, $H_n \subseteq \operatorname{St}(O,\mathcal{U})$. If we put $F = \bigcup \{M_n : n \in \omega\}$, then F is a countable subset of Y such that for each semi-open $O \supseteq F$, $\operatorname{St}(O,\mathcal{U}) \supseteq Y$, which shows that Y is semi-neighborhood semi star-Lindelöf.

A cozero-set in a space X is a set of the form $f^{\leftarrow}(\mathbb{R} \setminus \{0\})$ for some real-valued continuous function f on X (see [6]).

Since a cozero-set is a semi-open F_{σ} -set, we have the following corollary of theorem (3.4).

Corollary 3.5. A cozero-set of a semi-neighborhood semi star-Lindelöf(resp., NsSL) space is semi-neighborhood semi star-Lindelöf (resp., NsSL).

Theorem 3.6. Let X be a semi-neighbourhood semi star-Lindelöf topological space and let Y be a topological space. If $f: X \to Y$ is an irresolute, then Y is a semi-neighbourhood semi star-Lindelöf space.

Proof. Let $(\mathcal{U}_n:n\in\mathbb{N})$ be a semi-open cover of Y. Then for each $n\in\mathbb{N}$, the set $\mathcal{U}'_n=\{f^{-1}(U):U\in\mathcal{U}_n\}$ is a semi-open cover of X. Since X is semi-neighbourhood semi star-Lindelöf, there are countable $(F_n\subset X),\,n\in\mathbb{N}$, so that for every semi-open $O\supset F_n,\,n\in\mathbb{N}$, we have $\{\operatorname{St}(O,\mathcal{U}'_n):n\in\mathbb{N}\}$ is a semi-cover of X. The sets $f(F_n),\,n\in\mathbb{N}$, are countable in Y. Let $G\supset f(F_n)$ for each n be semi-open set in Y. Then $f^{-1}(G)=H$ is a semi-open supset of X for each $n\in\mathbb{N}$ and $H\supset F_n$. Thus $X=\operatorname{St}(H,\mathcal{U}'_n)$. We prove that $Y=\operatorname{St}(G,\mathcal{U}_n)$.

Let $y \in Y$ and let $x \in X$ be such that y = f(x). Then there is $k \in \mathbb{N}$ such that $x \in \operatorname{St}(H, \mathcal{U}'_k)$. Then $y = f(x) \in f(\operatorname{St}(H, \mathcal{U}'_k))$. Because $f(\operatorname{St}(H, \mathcal{U}'_k)) \subset f(\operatorname{St}(f^{-1}(G), \mathcal{U}'_k)) \subset \operatorname{St}(G, \mathcal{U}_k)$ we have $y \in \operatorname{St}(G, \mathcal{U}_k)$. Therefore $Y = \operatorname{St}(G, \mathcal{U}_k)$, which shows that Y is semi-neighbourhood semi star-Lindelöf.

Recall that a space X is semi-paraLindelöf if every semi-open cover \mathcal{U} of X has a locally countable semi-open refinement.

Theorem 3.7. Every semi-paraLindelöf semi neighborhood semi star-Lindelöf space is semi Lindelöf.

Proof. Let X be a semi-paraLindelöf semi neighborhood semi star-Lindelöf space and \mathcal{U} be a semi-open cover of X. Then there exists a locally countable semi-open refinement \mathcal{V} of \mathcal{U} . For each $x \in X$, there exists a semi-open neighborhood V_x of x such that $V_x \subseteq V$ for some $V \in \mathcal{V}$ and $\{V \in \mathcal{V} : V_x \cap V \neq \emptyset\}$ is countable. Let $\mathcal{V}' = \{V_x : x \in X\}$. Then \mathcal{V}' is a semi-open refinement of \mathcal{V} . Since X is semi neighborhood semi star-Lindelöf, there exists a countable subset A of X such that for every semi-open $O \supseteq A$, $X \subseteq \operatorname{St}(O, \mathcal{V})$. We take $O = \bigcup \{V_x \in \mathcal{V}' : x \in A\}$. Then O is semi-open subset of X and $A \subseteq O$. Thus $St(O,\mathcal{V}) \supseteq X$. Let $\mathcal{V}'' = \{V \in \mathcal{V} : V \cap O \neq \emptyset\}$. Then \mathcal{V}'' is a countable semi-cover of X. For each $V \in \mathcal{V}''$, choose $U_V \in \mathcal{U}$ such that $V \subseteq U_V$. Then $\{U_V : V \in \mathcal{V}''\}$ is a countable subcover of \mathcal{U} , then $X \subseteq \bigcup U_V$ which shows that X is semi-Lindelöf. \square

Theorem 3.8. If a space X is semi-neighborhood semi-star-Menger meta semi-Lindelöf space then X is semi-Lindelöf.

Proof. Let X be a sNsSM meta semi-Lindelöf space and Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of semi-open covers of X. Let \mathcal{V}_n be a be a point-countable semi-open refinement of \mathcal{U}_n . Since X is semi-neighborhood semi star-Menger, one can choose a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of X such that for every semi-open $(O_n \supset F_n)$ we have $\bigcup_{n \in \mathbb{N}} \operatorname{St}(O_n, \mathcal{V}_n) = X$. Denote by \mathcal{W}_n the collection of all members of \mathcal{V} that intersect $F_n \subset O_n$. As \mathcal{V}_n is point countable and F_n is finite then \mathcal{W}_n is countable . So, the collection $\mathcal{W} = \bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ is a countable subfamily of \mathcal{V} and is a cover of X. For every $W \in \mathcal{W}$ pick a member $U_W \in \mathcal{U}$ such that $W \in U_W$. Then $\{U_W : W \in \mathcal{W}\}$ is a countable subcover of \mathcal{U} . Then X is a semi-Lindelöf space (sL).

In a similar way one can prove the following two theorems.

Theorem 3.9. If a space X is semi-neighborhood semi-star-Rothberger meta-semi-Lindelöf space then X is semi-Lindelöf.

Theorem 3.10. If a space X is semi-neighborhood semi-star-Hurewicz meta-semi-Lindelöf space then X is semi-Lindelöf.

Definition 3.11. Let T be a subspace of space X. Then

- (1) T is relatively sNsSL in X if for every semi-open covers \mathcal{U} of X, there exists a countable A of X, such that for each semi-open $O \supset A$, $\bigcup \{St(O,\mathcal{U})\} \supset T$.
- (2) T is relatively closed sNsSL spaces if it is closed and relatively sNsSL in X.

Proposition 3.12. If $X = \bigcup \{T_k : k \in \mathbb{N}\}$, and each T_k is relatively sNsSL in X, then X is sNsSL.

References

- L. Babinkostova, B.A. Pansera, M. Scheepers, Weak covering properties and infinite games, Topology and its Applications, 159:17 (2012), 3644-3657.
- [2] L. Babinkostova, B.A. Pansera, M. Scheepers, Weak covering properties and selection principles, Topology and its Applications, 160:18 (2013), 2251-2271.
- [3] M. Bonanzinga, F. Cammaroto, Lj.D.R. Kočinac, M.V. Matveev, On weaker forms of Menger Rothberger and Hurewicz properties, Matematicki Vesnik, 61:1 (2009), 13-23.
- [4] P. Bal, R. De, On strongly star semi-compactness of topological spaces, Khayyam J. Math, 9:1 (2023), 54-60.
- [5] S.G. Crossley and S.K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
- [6] R. Engelking, General Topology, 2nd edition, Sigma Series in Pure Mathematics, vol. 6, Heldermann Berlin, 1989.
- [7] G. Kumar, B. K. Tyagt, Remarks on semi-Menger and star semi-Menger spaces, Tatra Mountains Mathematical Publications, 81 (2022), 57-68.
- [8] Lj.D.R. Kočinac, Star-Menger and related spaces, Publicationes Mathematicae Debrecen, 55:3-4 (1999), 421-431.
- [9] Lj.D.R. Kočinac, star-Menger and related spaces II, Filomat, Vol. 13 (1999), 129-140.
- [10] Lj.D.R. Kočinac, A. Sabah, M. Khan, D. Seba, Semi-Hurewicz spaces, Hacettepe journal of Mathematics and Statistice, 46:1 (2017), 53-66.
- [11] N. Levine, Semi-open sets and semi-continuity in topological spaces, American Mathematical Monthly, 70:1 (1963), 36-41.
- [12] R. Lakehal, Lj.D.R. Kočinac, D. Seba, Almost and weakly NSR, NSM and NSH spaces, Khayyam J. Math. 7:1 (2021), 40–51.
- [13] R. Lakehal, Lj.D.R. Kočinac, D. Seba, Neighbourhood Star Selection Properties in Bitopological Spaces, Filomat, 35:1 (2021), 339-351.
- [14] Di Maio, G. Noiri, Weak and strong forms of irresolute functions, Rendiconti del Circolo Matematico di Palermo, 18 (1988), 255-273.
- [15] B.A. Pansera, Weaker forms of the Menger property, Quaestiones Mathematicae, 35:2 (2012), 161-169.
- [16] A. Sabah, M. Khan, Kočinac, Lj.D.R. Covering properties defined by semi-open sets, J. Nonlinear Sci. Appl. 9:6 (2016), 4388-4398.
- [17] A. Sabah, M. khan, semi- Rothberger and related space, Bulletin of the Iranian Mathematical Society, 43:6 (2017), 1969-1987.

- [18] S. Sarkar, P. Bal, Some alternative interpretations of strongly star semi-Rothberger and related space, Tatra Mountains Mathematical Publications, 86 (2024), 21–30.
- [19] S. Singh, Remarks on set-Menger and related properties, Topology and its Applications, 280 (2020), 107278, 4 pp.
- [20] Y-K. Song, Remarks on neighborhood star-Lindelöf spaces, Filomat, 27:1 (2013), 149-155.
- [21] Y-K. Song, Remarks on neighborhood star-Lindelöf spaces II, Filomat, 27:5 (2013), 875-880.
- [22] Y-K. Song, Remarks on strongly star-Hurewicz spaces, Filomat, 27:6 (2013), 1127-1131.
- [23] Y-K. Song, R. Li, On weakly Hurewicz Spaces, Filomat, 29:4 (2015), 667-671.

Rachid Lakehal: rachid.lakehal@univ-bejaia.dz

University of Bejaia, Faculty of Technologies, Targa Ouzemour, 06000 Bejaia, Algeria.

Received 05/12/2024; Revised 03/04/2025