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INEQUALITY OF RIEMANN-STIELTJES-A-INTEGRAL FOR
HILBERT SPACES ON TIME SCALES

BOSEDE ALFRED O., AFARIOGUN DAVID A., AND AYENI ELIZABETH O.

ABSTRACT. In this paper, the inequality of Riemann-Stieltjes integral is defined for
functions of Hilbert space. The concept of time scales is introduced to unify both
discrete and continuous problems. Also, the definition and properties of Riemann-
Stieltjes integral are used in the application of self-adjoint and unitary operators in
Hilbert spaces. Thees results are obtained on time scales.

1. INTRODUCTION AND PRELIMINARIES

The theory of Riemann integration finds application in almost every aspect of math-
ematical analysis. Lebesgue integral seems to be more difficult to handle because of
its measure theory. The definition and properties of Riemann integral are more easier
than that of Lebesgue integral, and therefore used in this paper. Riemann-Stieltjes
integral is widely used everywhere especially in the cases when the integrand and the
integrator have no common discontinuous points. For more details on Riemann and
Stieltjes integrals, see ([2], [3], [4], [5], [7], [8] and [9]). The theory of time scale is
introduced to unify discrete and continuous problems. Bohner and Guseinov [3], worked
on Riemann and Lebesgue integration which gives advances in dynamic equations on
time scales. See ([1], [3], [8], [10] and [11]) for more researchers that worked on calculus
of time scales. The aim of this paper is to apply the properties of the Riemann-Stieltjes-
A-integral to the study of selfadjoint and unitary operators in Hilbert spaces on time scales.

Let I = [a,b] be a real closed interval. A partition of I is any finite ordered subset
P =tg,t1,....,tn C [a,b], where a = tg < t; < ... < t, = b. Each partition P = tq, t1, ..., tp
of I decomposes I into subintervals In; = [tj_1,t;], j = 1,2,...,n such that In, NIa, =0
for any k # j. By At; =t; —tj—1, we denote the length of the jth subinterval in the
partition P; by P(I) the set of all partitions of I (see [8]).

Let P,,,P, € P(I). If P,, C P,, we call P, a refinement of P,,. If P,, P, are inde-
pendently chosen, then the partition P,, U P, is a common refinement of P,, and P,. Let
us now consider a strictly increasing real-valued function g on the interval I. Then, for
the partition P of I, we define

g(P) = {g(a) = g(tO)vg(t1)7 "'7g(tn71)ag<tn) = g(b) - g(I)} and Agj = g(tj) - g<tj*1)'
We note that Ag; is positive and Z?:1 Ag; = g(b) — g(a).

Moreover, g(P) is a partition of [g(a), g(b)]r. In what follows, for the particular case
g(t) = t, we obtain the Riemann sums for delta integrals studied by Mozyrska, Pawlusze-
wicz, and Torres [8].

Definition 1.1. Let f : [a,0] — R and let P = {(¢;, [t;j—1,¢;]) : 1 < i <n} be a tagged
partition of [a, b]. The Riemann sum S(P, f) of f on P is defined by
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S(P, f) :Zf(ti)(tj —tj-1). (1.1)
i=1
A positive § : [a,b] — R i.e. § > 0 for all ¢ in [a,d]) is known as a gauge on [a, b].

Definition 1.2. A function f : [a,b] — R is Riemann integrable on [a, ] if there exists a
number L such that for each € > 0 there exists a constant 6 > 0 such that |[S(P, f)—L| < ¢
for all tagged partitions P of [a, b] with norm of P less than 0.

Definition 1.3. [8] Let f be a real-valued and bounded function on the interval I and
P =tg,t1,...,t, of I. Denote In;, = [t; —t;_1], j=1,2,..,n and

ma, = it f(0) (1.2)
and
Ma, = sup £(t) (13)
tGIAj

The upper Riemann-Stieltjes-/A-sum of f with respect to a monotone increasing function
g with the partition P, denoted by Ua (P, f, g) is defined by

UA(P’ 1 g) = ZMAjAgj’ (14)

j=1
while the lower Riemann-Stieltjes-A-sum of f with respect to a monotone increasing
function g with the partition P, denoted by La (P, f,g), is defined by

La(P,f.g) =) ma,Ag; (1.5)
j=1

Definition 1.4. [8] Let I = [a,b], where a,b € I. The upper Riemann-Stieltjes -/A-
integral from a to b with respect to function g is defined by

b
[ 10200 = int, Us(P1.9) (16)

while the upper Riemann-Stieltjes-A-integral from a to b with respect to function g is
defined by ,
[ 10890 = sw La(P.f.9). (17)
Ja teP(I)
If the upper Riemann-Stieltjes-A-integral coincides with the lower Darboux-Stieltjes—A-
integral, we say that f is Riemann-Stieltjes-A-integrable with respect to g on I, and the
common value of the integrals, denoted by

b
| w890 (1.8
a
is called the Riemann-Stieltjes (or simply Stieltjes)-A-integral of f with respect to g on I.

2. THE MAIN RESULTS

In this section, we shall give some inequalities of Riemann-Stieltjes integral with
applications in Hilbert spaces on time scales.

A time scale is simply a non-empty, closed subset T of the real numbers. Let denote a
time scales by T and let a,b € T, a < b. We distinguish [a, b] as a real interval and define
I = [a,b]r = [a,b] N'T. In this sense, [a,b] = [a,b]r. Let I be a nonempty, closed, and
bounded interval consisting points from a time scales T. Moreover, if I = [a, b]t, then
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define In_jq ot} a0d Ig=[o(a),b];-

The forward jump operator is the function o : T — T defined by o(a;) = b; for all i and
o(t) =t for all t € T that are not a right-hand endpoint of a contiguous interval. ( Note
that if tg = supT is finite, then definition requires that o(t9) = to which is the usual
convention. A function f: T — R is continuous (continuous at a point) if it is continuous
in the usual relative sense (i.e., using the topology that T inherits as subset of R). The
set of points {a;} from T is called the right-scattered points. The set of points {b;} from

T is called the left-scattered points.

Definition 2.1. ([3]). A function f: T — R is said to have delta derivative f2(t) at a
point ¢t € T provided that for every € > 0 there is a neighbourhood (t — 0,¢+0) N T of ¢
such that

[f(o(t) = f(s) = FA() (o (t) = 5)| < elo(t) — s| (2.1)
forall se (t—4,t+0)NT.

The graininess function p : T — [0, 00) is defined by p(t) = o(t) — ¢ for all ¢t € T.

Definition 2.2. A mapping F : T — R is said to be rd-continuous if:
(i) F is continuous at each right-dense point of T

(ii) at each left-dense point ¢t € T, lim,_,;- g(s) = g(t™) exists.

Define the time scale interval in T by

[a,b]T := {t € T such that a <t <b}. (2.2)

Let T be a time scale, a,b € T,a < b, and we define the closed interval I = [a, b]T by
[a,b]r = {t € T:a <t <b}. The open and half-open intervals are defined in a similar
way. A partition of I is any finite ordered subset P = tg,t1,...,t, C [a, b]T,
where a =ty < t; < ... < t, = b. Each partition P = tq,t1,...,t, of I decomposes I into
subintervals Ia; = [tj_1,t;]a,j = 1,2,...,n, such that In, N Ia, = @ for any k # j. By
Atj =t; —tj_1, we denote the length of the j* subinterval in the partition P; by P(I)
the set of all partitions of I.

Let us now consider a strictly increasing real-valued function g on the interval I. Then,
for the partition P of I, we define

g(P) = {gla) = g(to),g(t1), .-, g(tn-1), 9(tn) = g(b) C g(I)} and Ag; = g(t;)—g(tj-1).

(2.3)
We note that Ag; is positive and 377, Ag; = g(b) — g(a).
Let C([a,b]) be the space of continuous functions on [a,b]. Then,
Co ={f €C([a,b]) : f(a) = 0}. (2.4)
Then Cy is a Banach space under the Alexiewicz norm
[FIF=1fllec = sup [f(t)] = max [f(#)]. (2.5)
t€la,b] t€[a,b]

An inner product space or pre-Hilbert space over a scalar K is a pair (#, (-,)) consisting
of a linear space H over K and a functional (-,-) : H x H — K, called the inner product
of H, with the following properties:

(@) (f,f)=0,V feH,and (f,f)=0 iff f=0;
(@) (f,9)=1(9,f), ¥V [.g9€H;

(@i) (kf,9) =k{f,9), V¥V f,ge H, k€K

(i) (f+g.h)=(fh)+ (g, 1), Y fg.hEH.
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For f,g € H, then (f,g) is called the inner product of f and g. For f € H, define | f|| by
Ifll = +/(f, f). Then, || - || is a norm on A, where (H, || - ||) is a normed space. || - || is
called the norm induced by the inner product (-,-). A complete inner product space is
called Hilbert space.

Definition 2.3. Let H be Hilbert space and f : [a,b]r — H. Let g be a non-decreasing
function defined on [a, by and let P = {tg,t1,...,t,} be a tagged partition of [a, b]y. The
Riemann-Stieltjes-A-sum Ag(Ps, f, q) of f with respect to g on partition P, is defined by

s(Ps, f.9) Zf (E)Mg(t;) — g(t;—1)]- (2.6)

Since Ay, = g(t;) — g(tj—1), therefore, the Riemann-StieltjesA-sum can be written as

AS(P57f7g):Zf(§j)Agj' (27)
j=1

Definition 2.4. Let H be Hilbert space and f : [a,b]r — H. A function f is said to
be Riemann-Stieltjes-A-integrable with respect to a monotone increasing function g on
[a,b]T if f is continuous f € Cy such that the Riemann-Stieltjes-A- derivative of f is a.
We denote the Riemann-Stieltjes-A-integral of f with respect to a monotone increasing
function g on [a, b|T

b
/ F(H)AG(H) = o (2.8)

Let f : [a, bl — C be continuous on [a,b]r and g : [a, by — C be of bounded variation.
Denote V% (g) the total variation of g on [a, b]t, The following sharp inequality holds

/ng

Let L > 0 be Lipschitzian constant and g be nondecreasing function such that
lg(t) = g(s)ll < Lt — 5|

for any ¢, s € [a, b]t, then we have

lg() - g(s) < L / F(8)|Ag(t) (2.10)

for any Riemann integrable function f : [a, by — C.

< max |f(5)] V5 (9) (29)

Moreover, we have the modular inequality

lo() ~ o)1 < [ 18000 211

if g : [a,b]r — C is monotone increasing on [a, b|.

Theorem 2.5. Let h : [a,b]lr — C be Lipschitzian with the constant L > 0, p : [a,blr — C
be Lipschitzian with the constant K > 0, f : [a,blr — C is continuous on [a,blr and
g : |a, bt — C is monotone nondecreasing function on [a,blr. Then we have the inequality

b
/ FHAG(h(1P(D))

IN

K / FOR®]Ag(E) + T / FOROIAY(E) (212)

IN

maX(KL)/ FOI(R@O]+ p@DAG(E).  (213)
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The inequalities (2.12) and (2.13) are sharp.

Proof: Let ¢ : [a,b]r — C is continuous and v : [a,b]r — C is Lipschitzian with the
constant L > 0, then the Riemann-Stieltjes-A-integral fab q(s)Av(s) exists and we have

the inequality
b
[ a@ave

Let h,p : [a, bl — C be two functions of bounded variation and such that the Riemann-
Stieltjes-A-integral f; h(t)Ag(t) exists, if f: [a,b]y — C is continuous and g : [a,b]r — C
is monotone nondecreasing function on [a, b]r, then the Riemann-Stieltjes-A-integral

f: F)Ag(h(t)p(t)) exists and

<L [ la)laus) (2.14)

/ F(6)Ag(h / FOMOA() + [ Cfopnsgh). @)
Taking the norm of (2.15), we have
’ /abfumg(h(t)p(t))H < ‘ (h(t))
< K/ (R Ag() +L/ FOP®IAg(H)
<

max(K, L) / FOIR] + b)) Ag ).

The inequality (2.12) is proved.
Let the functions f,p : [a,blr — R and f(t) = p(t) = |t — “E2|. The functions f and p
are Lipschizian with the constant L = 1. For any ¢, s € [a, by, we have
-+
s =
2

a-+b

5@ - s = |
< ft—s]

which shows that the function f is Lipschitzian with the constant L = 1.

Now
’ /abf(t)Ag<<t—a;b>2>
[0 (1= 50) 2

b
K/ oniag + 2 [ opoisan =2 [ ol son 1o

2

and the inequality (2.12) becomes

‘/abf(t) (1= 257) a0tt)

Equality holds if f : [a.b]y — R, h(t) =t —

g/:|f<t>|\t— “lage. e

a+b
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Theorem 2.6. Cauchy-Schwarz Inequality
Let ‘H be Hilbert space. For all vectors x,y in an inner product space H,

(@, )] < llzllllyll- (2.18)

Equality holds if and only if x and y are collinear.

Proof. Let z and y be nonzero vectors, by applying positive definite property to x —ty
for t € R, we have

0 < (z—tyxz—ty) = (x,z—ty) —t{y,x —ty)
(z,2) — t{x,y) — (z,y) + *(y, )
= |l = 2t(z, y) + t*|ly]*.

Put t = (x,y)/|ly||* to obtain

2
0 < ol — $AE (2.19)
Therefore,
(@, 9)* < ll2lly]* (2.20)
Hence the inequality
[z, 9| < llz[llyll

holds.

Corollary 2.7. Let H be Hilbert space and f,h : [a,bly — H. f and h are Riemann-
Stieltjes-A-integrable with respect to a monotone increasing function g on [a,b|r if f and

h are continuous such that
b b/ ;
s( / f<t>2Ag<t>> ( / h(t)%(t)) . e

The L? norms on Cla, b]r are indeed norms.

b
/ F()h(t) Ag ()

Theorem 2.8. Let f,h : [a,blrc be continuous in [a,bly. If g : [a,b]T — C is a
dominated function with monotonic increasing functions A and p. for any continuous
nonnegative function U : [a, bt — [0, 00) we have

b 2 b b
[ umage| < [CwirEare [ enae) (2.22)

Proof. Since the Riemann-Stieltjes-A-integral f; U fhAg(t) exists, a partition of I is

any finite ordered subset P = ¢g, t1,...,t, C [a, b]T, where I g = to<t; <..<t,="0
Each partition P = tg,t1, ..., t, of I decomposes I into subintervals Ia; = [tj—1,%;]a,j =
1,2,...,n with the norm

n ,_ n (n)
o (IT(L )) = je{or’r.l.gﬁil} <tj+1 —t; ) —0
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as n — oo, and for any intermediate points §§n) € [t(n),tﬁ)l] j€{0,---,n—1}, we
have
b
[umage = | tw S (e (65,0) —a (47))] 229

/L(I )—>O j=0

< lm Z\P ENFEMIIRE™) g (t42) = 9 (£7)|(2:20)

n(I5)=0
< G RNHGRILGE 2.25
< im Z (& I IRE™ ) (2.25)
p(I5)=0 =5
1 1
o) = (67)2 e ) = (57)[2 =2 220)

Applying the weighted Cauchy-Bunyakovsky-Schwarz discrete inequality

1 1
n n 2 n 2

Z Wiarbe < <Z \Ifkai) (Z \I/kbi> (2.27)

k=1 k=1 k=1

where Wy, ay, by > 0 for k € {1,...,n}, we have

[N

n—1

I < | im W@“Nﬂéwﬂ{M@LJ#@TU

(I(")) j i

é] 2 (2.28)

N

w1

X lim pr Gk U (;l+1)_u(t§”>) T (2.29)

_ : () . »

B ;L(I}I"I)I)IHOJZO\II |f )|2[ (1) — M(tj )}) (2.30)
n—1 %

<L, i RCRLL )2 v (#40) = v (4 )}) (2.31)

DN =

b b 9
</uwvmm0 (/wmmw@>2 (232)

Using the inequalities (2.23)-(2.26) and (2.28)-(2.32), we have the required result (2.21).

3. APPLICATIONS IN SELF-ADJOINT OPERATORS

Let B(H) be the Banach algebra of all bounded linear operators on a complex Hilbert
space (H;(-,)). Let X € B(H) be selfadjoint and let ¥, be defined for all 7 € R as
follows

1, for —oco<s<m,
V. (s) =
0, for 7<s< 4.
Then for every 7 € R the operator
P, :=T.(X) (3.1)

is a projection which reduces X. The spectral representation of bounded selfadjoint
operators in Hilbert spaces ([6]) show case the properties of the projection (3.1).
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Proposition 3.1. Let X be a selfadjoint operator on Hilbert space H and let m =
min{7 | 7 € Sp(X)} and M = max{7 | 7 € Sp(X)}. Let ¥ : [a,b]r — H, and ¥ is
Riemann-Stieltjes-A-integrable with respect to a monotone increasing function g on [a,b]r.
Then there exists a family of projections { Py}, € R, called the spectral family of X, with
the following properties:

(i) Pr < P., for 7 <7

(ii) Pp—o =0,Py =1 and Pryo = Py for all T € R;

we the representation

M
X:/m_omg(a). (3.2)

Moreover, for every continuous complex-valued function ¥ defined on R and for every
e > 0 there exists a 6 > 0 such that

\I’(X) - Z \IJ(TI;)[P'M - PTk—l]
k=1

<e (3.3)

whenever
To<m=11 < <Tpo1 < Tp =M,
T —Th—1 <0 for 1 <k<n,
7',; € [Tho1,7k] for 1<k<n
which means that
M
v = [ wnagp), (3.4)
m—0
which is the integral of Riemann-Stieltjes type.
Proof. Let X € B(H) be selfadjoint operator and P, = ¥, (X) be projection which

reduces X. With the assumptions in Proposition 3.1 for X, P, and ¥, we have the
following representations:

M
U(X)s = / B U(r)Ag(P;)s VseH (3.5)
and .
(T(X)s,t) = / U(T)Ag(Prs,t) Vs, teH. (3.6)
m—0
Thus,
M
(U(X)s,s) = / B U(T)Ag(Prs,s) VseH. (3.1

Hence, we obtain the inequality

M
10 (X)s]2 :/ 0|\Il(7-)|2AgHPT||2s VseH (3.8)

Proposition 3.2. Let X be a selfadjoint operator on Hilbert space H and let m =
min{7 | 7 € Sp(X)} and M = max{7 | 7 € Sp(X)}. Let f,h:[a,blr = H, f and h are
Riemann-Stieltjes-A-integrable with respect to a monotone increasing function g on [a,b]r
if [ and h are continuous functions on [m, M|, then we have the inequality

[(FXOR(X)z,9) > < (| F(X) [Pz, 2)(|W(X)[*y,y) (3.9)
for any x,y € H.
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Proof. Let H be Hilbert space and let xz,y € H. For € > 0, the functions
u,v,w: [m—e, M] — C are defined by v(t) = (Px,y), v(t) = (Pz, z) and w(t) = (P, y)
where {P;},cr is the spectral family of the bounded selfadjoint operator X. Using
Theorem 2.8 for nonnegative operator f and for ¢,s € [m — ¢, M| with ¢ > s such that

[(fz. ) < (fz,2){fy,9), (3.10)

we have

u(t) —u(s)? = [(P = Po)z,y)|* < (P — Pz, 2){(P; — Ps)y,y)
= (v(t) —v(s)(w(t) — w(s)).

It shows that u is dominated by the nondecreasing functions (v, w) on [m — e, M].
By using Theorem 2.8 for f,h,u,v on [m — e, M, we have

M

/ f(t>Ag(<th,y>)‘ <[ U@agpea) [ 1fOBg(Pr0) (11

m—eg m—e m—e

for any x,y € H.
By using the representation of continuous functions of selfadjoint operators and letting
e — 0T, we have the required result (3.9).

Proposition 3.3. Let X be a selfadjoint operator on Hilbert space H and let m =
min{r | 7 € Sp(X)} and M = max{7 | 7 € Sp(X)}. Let f,h: [a,blr — H, f and h are
Riemann-Stieltjes-A-integrable with respect to a monotone increasing function g on [a,b]r
if f and h are continuous functions on [m, M]. Then for any x,y € H with x,y # 0, we
have the inequality

IC(f,h; X, 2, 9)> < C(f; X, 2)C(h; X, y) (3.12)

Proof. The proof of proposition 3.3 follows from a similar argument of proposition
3.2. Therefore, it is omitted.

The continuous functions f,h : [a,b]r — C and the selfadjoint operator X have the
following functionals:

F(f h; X, z,y) = (@, y)(f(X)h(X)z,y) — (f(X)z, y)(M(X)z, 1), (3.13)
G(f;x) = |lz|X(| f(X) P, x) = |(f(X)a, z)[*(> 0) (3.14)

and
G(fs,y) =yl > f(X) Pz, z) + =] £ (X)Py, y) — 2R6((f(X)x,w)<?(X)y,y>)(%301)é)

for any x,y € H.

Corollary 3.4. Let X be a selfadjoint operator on Hilbert space H and let m = min{r |
7€ Sp(X)} and M = max{7 | 7 € Sp(X)}. Let f,h: [a,blr — H, [ and h are Riemann-
Stieltjes-A-integrable with respect to a monotone increasing function g on [a,bly if f and
h are continuous functions on [m, M]. Then for any x,y € H with x,y # 0, we have the
inequality

1

[E(f.h X 2, y)]* < SIG(f,2)G(fr2,9)G (ks 2, y) G (h; y)]. (3.16)

N
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4. APPLICATIONS FOR UNITARY OPERATORS

Let (H,{,,.)) be a complex Hilbert space. The bounded linear operator T': H — H on
the Hilbert space H is unitary if and only if T* = T—1. If T is a unitary operator, then
there exists a family of projections {Pr},_ ,,,, called the spectral family of 7" with the
following properties:

(i) P, <P, for 0<7<v<2r

(ii) Py = 0 and P», = I, the identity operator on #.

(111) T+0 = P, for 0 <7 < 2m;

(iv)

iv f e'"Ag(P;) where the integral is of Riemann-Stieltjes-A-type.

Let {F}rc., be family of projections satisfying the above properties (i)-(iv), for
the operator T such that 7, = P; for all 7 € [0, 27].
Thus, for every continuous complex-valued function F': C(0,1) — C on the complex unit
circle C(0,1), we have
2m
Py = [ Fem)ag(py) (4.1
0

where the integral is of the Riemann-Stieltjes-A-type.
The following inequalities follow from (4.1):

F(T)x = ; ' F(e™)Ag(P,x), (4.2)
27
(F@ya) = [ Pem)agPa) (4.3)
and
MU%P=A |F(em) 2Ag| P (4.4)

for any z,y € H.

Theorem 4.1. Let T be a unitary operator on the Hilbert space H. Let F, H : [a, bl — H,
F and H are Riemann-Stieltjes-A-integrable with respect to a monotone increasing function
g on [a,blr. Then for every continuous complex-valued function F,H : C(0,1) — C on
the complex unit circle C(0,1), we have

(E(T)H(T)z,y)|* < (|F(T)[z, «)(|H(T) [Py, y) (4.5)
for any x,y € H.

Proof. Let {PT}TE[OY%] be the spectral family of the unitary operator T'. Define the
function J, G, H : [0,27] — C given by

J(t) = (Jiw,y), G(t) = (Px,z) and H(t0 = (Py,y).

for any z,y € H and for ¢, s € [0, 27].
Applying the Schwarz inequality for nonnegative operator T’

(Ta,y)|* < (Tz,z)(Ty,y), (4.6)
we have

[ J(8) = I () (P, = Pz, y)|* < (P — Po)a, 2){(P, — P.)y,y)

= (G(t) = G(s))(H(t) — H(s)).
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This shows that J is dominated by the monotonic increasing functions (G, H) on [0, 27].
By utilizing Theorem 2.8 for F(e'), J,G and H on [0,27], we have

/ " F(e“>H<e“>Ag<<Ptx,y>>] </

" PP Ag (P, z)) / " H(E) PAg (P, 1),
(4.7)

for any z,y € H.
By the representation of continuous function of unitary operators, we have the required
result

(E(T)H (T)a,y)|* < (|F(T) e, z)(|H(T) Py, y). (4.8)

5. CONCLUSION

We used the definition and properties of Riemann-Stieltjes-A-integral to give suitable
applications to self-adjoint and unitary operators in Hilbert spaces. Thees results are
obtained on time scales which unify both discrete and continuous problems.
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