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INEQUALITY OF RIEMANN-STIELTJES-\Delta -INTEGRAL FOR
HILBERT SPACES ON TIME SCALES

BOSEDE ALFRED O., AFARIOGUN DAVID A., AND AYENI ELIZABETH O.

Abstract. In this paper, the inequality of Riemann-Stieltjes integral is defined for
functions of Hilbert space. The concept of time scales is introduced to unify both
discrete and continuous problems. Also, the definition and properties of Riemann-
Stieltjes integral are used in the application of self-adjoint and unitary operators in
Hilbert spaces. Thees results are obtained on time scales.

1. Introduction and Preliminaries

The theory of Riemann integration finds application in almost every aspect of math-
ematical analysis. Lebesgue integral seems to be more difficult to handle because of
its measure theory. The definition and properties of Riemann integral are more easier
than that of Lebesgue integral, and therefore used in this paper. Riemann-Stieltjes
integral is widely used everywhere especially in the cases when the integrand and the
integrator have no common discontinuous points. For more details on Riemann and
Stieltjes integrals, see ([2], [3], [4], [5], [7], [8] and [9]). The theory of time scale is
introduced to unify discrete and continuous problems. Bohner and Guseinov [3], worked
on Riemann and Lebesgue integration which gives advances in dynamic equations on
time scales. See ([1], [3], [8], [10] and [11]) for more researchers that worked on calculus
of time scales. The aim of this paper is to apply the properties of the Riemann–Stieltjes-
\Delta -integral to the study of selfadjoint and unitary operators in Hilbert spaces on time scales.

Let I = [a, b] be a real closed interval. A partition of I is any finite ordered subset
P = t0, t1, ..., tn \subset [a, b], where a = t0 < t1 < ... < tn = b. Each partition P = t0, t1, ..., tn
of I decomposes I into subintervals I\Delta j = [tj - 1, tj ], j = 1, 2, ..., n such that I\bigtriangleup j \cap I\bigtriangleup k

= \emptyset 
for any k \not = j. By \bigtriangleup tj = tj  - tj - 1, we denote the length of the jth subinterval in the
partition P ; by P (I) the set of all partitions of I (see [8]).

Let Pm, Pn \in P (I). If Pm \subset Pn, we call Pn a refinement of Pm. If Pm, Pn are inde-
pendently chosen, then the partition Pm \cup Pn is a common refinement of Pm and Pn. Let
us now consider a strictly increasing real-valued function g on the interval I. Then, for
the partition P of I, we define
g(P ) = \{ g(a) = g(t0), g(t1), ..., g(tn - 1), g(tn) = g(b) \subset g(I)\} and \bigtriangleup gj = g(tj) - g(tj - 1).
We note that \bigtriangleup gj is positive and

\sum n
j=1 \bigtriangleup gj = g(b) - g(a).

Moreover, g(P ) is a partition of [g(a), g(b)]\BbbR . In what follows, for the particular case
g(t) = t, we obtain the Riemann sums for delta integrals studied by Mozyrska, Pawlusze-
wicz, and Torres [8].

Definition 1.1. Let f : [a, b]  - \rightarrow \BbbR and let P = \{ (ti, [tj - 1, tj ]) : 1 \leq i \leq n\} be a tagged
partition of [a, b]. The Riemann sum S(P, f) of f on P is defined by
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S(P, f) =

n\sum 
i=1

f(ti)(tj  - tj - 1). (1.1)

A positive \delta : [a, b]  - \rightarrow \BbbR i.e. \delta > 0 for all t in [a, b]) is known as a gauge on [a, b].

Definition 1.2. A function f : [a, b]  - \rightarrow \BbbR is Riemann integrable on [a, b] if there exists a
number L such that for each \varepsilon > 0 there exists a constant \delta > 0 such that | S(P, f) - L| < \varepsilon 
for all tagged partitions P of [a, b] with norm of P less than \delta .

Definition 1.3. [8] Let f be a real-valued and bounded function on the interval I and
P = t0, t1, ..., tn of I. Denote I\bigtriangleup j

= [tj  - tj - 1], j = 1, 2, ..., n and

m\bigtriangleup j
= \mathrm{i}\mathrm{n}\mathrm{f}

t\in I\bigtriangleup j

f(t) (1.2)

and
M\bigtriangleup j

= \mathrm{s}\mathrm{u}\mathrm{p}
t\in I\bigtriangleup j

f(t) (1.3)

The upper Riemann-Stieltjes-\bigtriangleup -sum of f with respect to a monotone increasing function
g with the partition P , denoted by U\bigtriangleup (P, f, g) is defined by

U\bigtriangleup (P, f, g) =

n\sum 
j=1

M\bigtriangleup j
\Delta gj , (1.4)

while the lower Riemann-Stieltjes-\bigtriangleup -sum of f with respect to a monotone increasing
function g with the partition P , denoted by L\bigtriangleup (P, f, g), is defined by

L\bigtriangleup (P, f, g) =

n\sum 
j=1

m\bigtriangleup j
\Delta gj (1.5)

Definition 1.4. [8] Let I = [a, b], where a, b \in I. The upper Riemann-Stieltjes -\bigtriangleup -
integral from a to b with respect to function g is defined by\int b

a

f(t)\bigtriangleup g(t) = \mathrm{i}\mathrm{n}\mathrm{f}
t\in P (I)

U\bigtriangleup (P, f, g); (1.6)

while the upper Riemann-Stieltjes-\bigtriangleup -integral from a to b with respect to function g is
defined by \int b

a

f(t)\bigtriangleup g(t) = \mathrm{s}\mathrm{u}\mathrm{p}
t\in P (I)

L\bigtriangleup (P, f, g). (1.7)

If the upper Riemann-Stieltjes-\bigtriangleup -integral coincides with the lower Darboux-Stieltjes - \bigtriangleup -
integral, we say that f is Riemann-Stieltjes-\bigtriangleup -integrable with respect to g on I, and the
common value of the integrals, denoted by\int b

a

f(t)\bigtriangleup g(t) (1.8)

is called the Riemann-Stieltjes (or simply Stieltjes)-\bigtriangleup -integral of f with respect to g on I.

2. The Main Results

In this section, we shall give some inequalities of Riemann-Stieltjes integral with
applications in Hilbert spaces on time scales.

A time scale is simply a non-empty, closed subset \BbbT of the real numbers. Let denote a
time scales by \BbbT and let a, b \in \BbbT , a < b. We distinguish [a, b] as a real interval and define
I = [a, b]\BbbT = [a, b] \cap \BbbT . In this sense, [a, b] = [a, b]\BbbR . Let I be a nonempty, closed, and
bounded interval consisting points from a time scales \BbbT . Moreover, if I = [a, b]\BbbT , then
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define I\bigtriangleup =[a,\rho (b)]\BbbT and I\bigtriangledown =[\sigma (a),b]\BbbT .
The forward jump operator is the function \sigma : \BbbT \rightarrow \BbbT defined by \sigma (ai) = bi for all i and
\sigma (t) = t for all t \in \BbbT that are not a right-hand endpoint of a contiguous interval. ( Note
that if t0 = sup\BbbT is finite, then definition requires that \sigma (t0) = t0 which is the usual
convention. A function f : \BbbT \rightarrow \BbbR is continuous (continuous at a point) if it is continuous
in the usual relative sense (i.e., using the topology that \BbbT inherits as subset of \BbbR ). The
set of points \{ ai\} from \BbbT is called the right-scattered points. The set of points \{ bi\} from
\BbbT is called the left-scattered points.

Definition 2.1. ([3]). A function f : \BbbT \rightarrow \BbbR is said to have delta derivative f\Delta (t) at a
point t \in \BbbT provided that for every \varepsilon > 0 there is a neighbourhood (t - \delta , t+ \delta ) \cap \BbbT of t
such that

| f(\sigma (t)) - f(s) - f\Delta (t)(\sigma (t) - s)| \leq \varepsilon | \sigma (t) - s| (2.1)
for all s \in (t - \delta , t+ \delta ) \cap \BbbT .

The graininess function \mu : \BbbT \rightarrow [0,\infty ) is defined by \mu (t) = \sigma (t) - t for all t \in \BbbT .

Definition 2.2. A mapping F : \BbbT \rightarrow \BbbR is said to be rd-continuous if:
(i) F is continuous at each right-dense point of \BbbT 
(ii) at each left-dense point t \in \BbbT , \mathrm{l}\mathrm{i}\mathrm{m}s\rightarrow t - g(s) = g(t - ) exists.
Define the time scale interval in \BbbT by

[a, b]\BbbT := \{ t \in \BbbT such that a \leq t \leq b\} . (2.2)

Let \BbbT be a time scale, a, b \in \BbbT , a < b, and we define the closed interval I = [a, b]\BbbT by
[a, b]\BbbT = \{ t \in \BbbT : a \leq t \leq b\} . The open and half-open intervals are defined in a similar
way. A partition of I is any finite ordered subset P = t0, t1, ..., tn \subset [a, b]\BbbT ,
where a = t0 < t1 < ... < tn = b. Each partition P = t0, t1, ..., tn of I decomposes I into
subintervals I\Delta j = [tj - 1, tj ]\Delta , j = 1, 2, ..., n, such that I\Delta j \cap I\Delta k

= \varnothing for any k \not = j. By
\bigtriangleup tj = tj  - tj - 1, we denote the length of the jth subinterval in the partition P ; by P (I)
the set of all partitions of I.

Let us now consider a strictly increasing real-valued function g on the interval I. Then,
for the partition P of I, we define

g(P ) = \{ g(a) = g(t0), g(t1), ..., g(tn - 1), g(tn) = g(b) \subset g(I)\} and \bigtriangleup gj = g(tj) - g(tj - 1).
(2.3)

We note that \bigtriangleup gj is positive and
\sum n

j=1 \bigtriangleup gj = g(b) - g(a).

Let \scrC ([a, b]) be the space of continuous functions on [a, b]. Then,

\scrC 0 = \{ f \in \scrC ([a, b]) : f(a) = 0\} . (2.4)

Then \scrC 0 is a Banach space under the Alexiewicz norm

\| f\| = \| f\| \infty = \mathrm{s}\mathrm{u}\mathrm{p}
t\in [a,b]

| f(t)| = \mathrm{m}\mathrm{a}\mathrm{x}
t\in [a,b]

| f(t)| . (2.5)

An inner product space or pre-Hilbert space over a scalar \BbbK is a pair (\scrH , \langle \cdot , \cdot \rangle ) consisting
of a linear space \scrH over K and a functional \langle \cdot , \cdot \rangle : \scrH \times \scrH \rightarrow \BbbK , called the inner product
of \scrH , with the following properties:

(i) \langle f, f\rangle \geq 0, \forall f \in \scrH , and \langle f, f\rangle = 0 iff f = 0;

(ii) \langle f, g\rangle = \langle g, f\rangle , \forall f, g \in \scrH ;

(iii) \langle kf, g\rangle = k\langle f, g\rangle , \forall f, g \in \scrH , k \in \BbbK ;

(iv) \langle f + g, h\rangle = \langle f, h\rangle + \langle g, h\rangle , \forall f, g, h \in \scrH .
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For f, g \in \scrH , then \langle f, g\rangle is called the inner product of f and g. For f \in \scrH , define \| f\| by
\| f\| =

\sqrt{} 
\langle f, f\rangle . Then, \| \cdot \| is a norm on \scrH , where (\scrH , \| \cdot \| ) is a normed space. \| \cdot \| is

called the norm induced by the inner product \langle \cdot , \cdot \rangle . A complete inner product space is
called Hilbert space.

Definition 2.3. Let \scrH be Hilbert space and f : [a, b]\BbbT \rightarrow \scrH . Let g be a non-decreasing
function defined on [a, b]\BbbT and let P = \{ t0, t1, ..., tn\} be a tagged partition of [a, b]\BbbT . The
Riemann-Stieltjes-\Delta -sum \Delta S(P\delta , f, q) of f with respect to g on partition P , is defined by

\Delta S(P\delta , f, g) =

n\sum 
j=1

f(\xi j)[g(tj) - g(tj - 1)]. (2.6)

Since \Delta gj = g(tj) - g(tj - 1), therefore, the Riemann-Stieltjes\Delta -sum can be written as

\Delta S(P\delta , f, g) =

n\sum 
j=1

f(\xi j)\Delta gj . (2.7)

Definition 2.4. Let \scrH be Hilbert space and f : [a, b]\BbbT \rightarrow \scrH . A function f is said to
be Riemann-Stieltjes-\Delta -integrable with respect to a monotone increasing function g on
[a, b]\BbbT if f is continuous f \in \scrC 0 such that the Riemann-Stieltjes-\Delta - derivative of f is \alpha .
We denote the Riemann-Stieltjes-\Delta -integral of f with respect to a monotone increasing
function g on [a, b]\BbbT \int b

a

f(t)\Delta g(t) = \alpha . (2.8)

Let f : [a, b]\BbbT \rightarrow \scrC be continuous on [a, b]\BbbT and g : [a, b]\BbbT \rightarrow \scrC be of bounded variation.
Denote \vee b

a(g) the total variation of g on [a, b]\BbbT , The following sharp inequality holds\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int b

a

f(t)\Delta g(t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq \mathrm{m}\mathrm{a}\mathrm{x}
t\in [a,b]\BbbT 

| f(t)| \vee b
a (g) (2.9)

Let L > 0 be Lipschitzian constant and g be nondecreasing function such that

\| g(t) - g(s)\| \leq L| t - s| 
for any t, s \in [a, b]\BbbT , then we have

\| g(t) - g(s)\| \leq L

\int b

a

| f(t)| \Delta g(t) (2.10)

for any Riemann integrable function f : [a, b]\BbbT \rightarrow \scrC .

Moreover, we have the modular inequality

\| g(t) - g(s)\| \leq 
\int b

a

| f(t)| \Delta g(t) (2.11)

if g : [a, b]\BbbT \rightarrow \scrC is monotone increasing on [a, b]\BbbT .

Theorem 2.5. Let h : [a, b]\BbbT \rightarrow \scrC be Lipschitzian with the constant L > 0, p : [a, b]\BbbT \rightarrow \scrC 
be Lipschitzian with the constant K > 0, f : [a, b]\BbbT \rightarrow \scrC is continuous on [a, b]\BbbT and
g : [a, b]\BbbT \rightarrow \scrC is monotone nondecreasing function on [a, b]\BbbT . Then we have the inequality\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\int b

a

f(t)\Delta g(h(t)p(t))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq K

\int b

a

| f(t)h(t)| \Delta g(t) + L

\int b

a

| f(t)p(t)| \Delta g(t) (2.12)

\leq \mathrm{m}\mathrm{a}\mathrm{x}(K,L)

\int b

a

| f(t)| (| h(t)| + | p(t)| )\Delta g(t). (2.13)
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The inequalities (2.12) and (2.13) are sharp.

Proof : Let q : [a, b]\BbbT \rightarrow \scrC is continuous and v : [a, b]\BbbT \rightarrow \scrC is Lipschitzian with the
constant L > 0, then the Riemann-Stieltjes-\Delta -integral

\int b

a
q(s)\Delta v(s) exists and we have

the inequality \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int b

a

q(s)\Delta v(s)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq L

\int b

a

| q(s)| \Delta v(s). (2.14)

Let h, p : [a, b]\BbbT \rightarrow \scrC be two functions of bounded variation and such that the Riemann-
Stieltjes-\Delta -integral

\int b

a
h(t)\Delta g(t) exists, if f : [a, b]\BbbT \rightarrow \scrC is continuous and g : [a, b]\BbbT \rightarrow \scrC 

is monotone nondecreasing function on [a, b]\BbbT , then the Riemann-Stieltjes-\Delta -integral\int b

a
f(t)\Delta g(h(t)p(t)) exists and\int b

a

f(t)\Delta g(h(t)p(t)) =

\int b

a

f(t)h(t)\Delta g(p(t)) +

\int b

a

f(t)p(t)\Delta g(h(t)). (2.15)

Taking the norm of (2.15), we have\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int b

a

f(t)\Delta g(h(t)p(t))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int b

a

f(t)h(t)\Delta g(p(t))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| +
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int b

a

f(t)p(t)\Delta g(h(t))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq K

\int b

a

| f(t)h(t)| \Delta g(t) + L

\int b

a

| f(t)p(t)| \Delta g(t)

\leq \mathrm{m}\mathrm{a}\mathrm{x}\{ K,L\} 
\int b

a

| f(t)| (| h(t)| + | p(t)| )\Delta g(t).

The inequality (2.12) is proved.
Let the functions f, p : [a, b]\BbbT \rightarrow \BbbR and f(t) = p(t) = | t  - a+b

2 | . The functions f and p
are Lipschizian with the constant L = 1. For any t, s \in [a, b]\BbbT , we have

\| f(t) - f(t)\| =

\bigm\| \bigm\| \bigm\| \bigm\| t - a+ b

2

\bigm\| \bigm\| \bigm\| \bigm\|  - \bigm\| \bigm\| \bigm\| \bigm\| s - a+ b

2

\bigm\| \bigm\| \bigm\| \bigm\| 
\leq | t - s| 

which shows that the function f is Lipschitzian with the constant L = 1.
Now \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\int b

a

f(t)\Delta (h(t)p(t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| =

\int b

a

f(t)\Delta g

\Biggl( \biggl( 
t - a+ b

2

\biggr) 2
\Biggr) 

= 2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int b

a

f(t)

\biggl( 
t - a+ b

2

\biggr) 
\Delta g(t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
and

K

\int b

a

| f(t)h(t)| \Delta g(t) + L

\int b

a

| f(t)p(t)| \Delta g(t) = 2

\int b

a

| f(t)| 
\bigm| \bigm| \bigm| \bigm| t - a+ b

2

\bigm| \bigm| \bigm| \bigm| \Delta g(t) (2.16)

and the inequality (2.12) becomes\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int b

a

f(t)

\biggl( 
t - a+ b

2

\biggr) 
\Delta g(t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq 
\int b

a

| f(t)| 
\bigm| \bigm| \bigm| \bigm| t - a+ b

2

\bigm| \bigm| \bigm| \bigm| \Delta g(t). (2.17)

Equality holds if f : [a.b]\BbbT \rightarrow \BbbR , h(t) = t - a+ b

2
.
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Theorem 2.6. Cauchy-Schwarz Inequality
Let \scrH be Hilbert space. For all vectors x, y in an inner product space \scrH ,

| \langle x, y\rangle | \leq \| x\| \| y\| . (2.18)

Equality holds if and only if x and y are collinear.

Proof. Let x and y be nonzero vectors, by applying positive definite property to x - ty
for t \in \BbbR , we have

0 \leq \langle x - ty, x - ty\rangle = \langle x, x - ty\rangle  - t\langle y, x - ty\rangle 
= \langle x, x\rangle  - t\langle x, y\rangle  - \langle x, y\rangle + t2\langle y, y\rangle 
= \| x\| 2  - 2t\langle x, y\rangle + t2\| y\| 2.

Put t = \langle x, y\rangle /\| y\| 2 to obtain

0 \leq \| x\| 2  - \langle x, y\rangle 2

\| y\| 2
. (2.19)

Therefore,

\langle x, y\rangle 2 \leq \| x\| 2\| y\| 2 (2.20)

Hence the inequality

| \langle x, y\rangle | \leq \| x\| \| y\| 

holds.

Corollary 2.7. Let \scrH be Hilbert space and f, h : [a, b]\BbbT \rightarrow \scrH . f and h are Riemann-
Stieltjes-\Delta -integrable with respect to a monotone increasing function g on [a, b]\BbbT if f and
h are continuous such that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\int b

a

f(t)h(t)\Delta g(t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq 

\Biggl( \int b

a

f(t)2\Delta g(t)

\Biggr) 1
2
\Biggl( \int b

a

h(t)2\Delta g(t)

\Biggr) 1
2

. (2.21)

The L2 norms on \scrC [a, b]\BbbT are indeed norms.

Theorem 2.8. Let f, h : [a, b]\BbbT \rightarrow \BbbC be continuous in [a, b]\BbbT . If g : [a, b]\BbbT \rightarrow \BbbC is a
dominated function with monotonic increasing functions \lambda and \mu . for any continuous
nonnegative function \Psi : [a, b]\BbbT \rightarrow [0,\infty ) we have\bigm| \bigm| \bigm| \bigm| \bigm| 

\int b

a

\Psi fh\Delta g(t)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

\leq 
\int b

a

\Psi | f | 2\Delta \lambda (t)

\int b

a

\Psi | h| 2\Delta \mu (t). (2.22)

Proof. Since the Riemann-Stieltjes-\Delta -integral
\int b

a
\Psi fh\Delta g(t) exists, a partition of I is

any finite ordered subset P = t0, t1, ..., tn \subset [a, b]\BbbT , where I
(n)
n : a = t0 < t1 < ... < tn = b.

Each partition P = t0, t1, ..., tn of I decomposes I into subintervals I\Delta j = [tj - 1, tj ]\Delta , j =
1, 2, ..., n with the norm

\mu 
\Bigl( 
I(n)n

\Bigr) 
:= \mathrm{m}\mathrm{a}\mathrm{x}

j\in \{ 0,\cdot \cdot \cdot ,n - 1\} 

\Bigl( 
tnj+1  - t

(n)
j

\Bigr) 
\rightarrow 0
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as n \rightarrow \infty , and for any intermediate points \xi 
(n)
j \in [t

(n)
j , t

(n)
j+1], j \in \{ 0, \cdot \cdot \cdot , n  - 1\} , we

have \int b

a

\Psi fh\Delta g(t) =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \mathrm{l}\mathrm{i}\mathrm{m}
\mu (I

(n)
n )\rightarrow 0

n - 1\sum 
j=0

\Psi (\xi 
(n)
j )f(\xi 

(n)
j )h(\xi 

(n)
j )[g

\bigl( 
tnj+1

\bigr) 
 - g

\Bigl( 
t
(n)
j

\Bigr) 
]

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| (2.23)

\leq \mathrm{l}\mathrm{i}\mathrm{m}
\mu (I

(n)
n )\rightarrow 0

n - 1\sum 
j=0

\Psi (\xi 
(n)
j )| f(\xi (n)j )| | h(\xi (n)j )| 

\bigm| \bigm| \bigm| g \bigl( tnj+1

\bigr) 
 - g

\Bigl( 
t
(n)
j

\Bigr) \bigm| \bigm| \bigm| (2.24)

\leq \mathrm{l}\mathrm{i}\mathrm{m}
\mu (I

(n)
n )\rightarrow 0

n - 1\sum 
j=0

\Psi (\xi 
(n)
j )| f(\xi (n)j )| | h(\xi (n)j )| (2.25)

\times 
\bigm| \bigm| \bigm| \mu \bigl( tnj+1

\bigr) 
 - \mu 

\Bigl( 
t
(n)
j

\Bigr) \bigm| \bigm| \bigm| 12 \bigm| \bigm| \bigm| \mu \bigl( tnj+1

\bigr) 
 - \mu 

\Bigl( 
t
(n)
j

\Bigr) \bigm| \bigm| \bigm| 12 := I. (2.26)

Applying the weighted Cauchy-Bunyakovsky-Schwarz discrete inequality
n\sum 

k=1

\Psi kakbk \leq 

\Biggl( 
n\sum 

k=1

\Psi ka
2
k

\Biggr) 1
2
\Biggl( 

n\sum 
k=1

\Psi kb
2
k

\Biggr) 1
2

(2.27)

where \Psi k, ak, bk \geq 0 for k \in \{ 1, ..., n\} , we have

I \leq 

\left(  \mathrm{l}\mathrm{i}\mathrm{m}
\mu (I

(n)
n )\rightarrow 0

n - 1\sum 
j=0

\Psi (\xi 
(n)
j )| f(\xi (n)j )| 2

\biggl[ \bigm| \bigm| \bigm| \mu \bigl( tnj+1

\bigr) 
 - \mu 

\Bigl( 
t
(n)
j

\Bigr) \bigm| \bigm| \bigm| 12 \biggr] 2
\right)  1

2

(2.28)

\times 

\left(  \mathrm{l}\mathrm{i}\mathrm{m}
\mu (I

(n)
n )\rightarrow 0

n - 1\sum 
j=0

\Psi (\xi 
(n)
j )| h(\xi (n)j )| 2

\biggl[ \bigm| \bigm| \bigm| \nu \bigl( tnj+1

\bigr) 
 - \nu 

\Bigl( 
t
(n)
j

\Bigr) \bigm| \bigm| \bigm| 12 \biggr] 2
\right)  1

2

(2.29)

=

\left(  \mathrm{l}\mathrm{i}\mathrm{m}
\mu (I

(n)
n )\rightarrow 0

n - 1\sum 
j=0

\Psi (\xi 
(n)
j )| f(\xi (n)j )| 2

\Bigl[ 
\mu 
\bigl( 
tnj+1

\bigr) 
 - \mu 

\Bigl( 
t
(n)
j

\Bigr) \Bigr] \right)  1
2

(2.30)

\times 

\left(  \mathrm{l}\mathrm{i}\mathrm{m}
\mu (I

(n)
n )\rightarrow 0

n - 1\sum 
j=0

\Psi (\xi 
(n)
j )| h(\xi (n)j )| 2

\Bigl[ 
\nu 
\bigl( 
tnj+1

\bigr) 
 - \nu 

\Bigl( 
t
(n)
j

\Bigr) \Bigr] \right)  1
2

(2.31)

=

\Biggl( \int b

a

\Psi | f | 2\Delta \mu (t)

\Biggr) 1

2
\Biggl( \int b

a

\Psi | h| 2\Delta \nu (t)

\Biggr) 1

2
(2.32)

Using the inequalities (2.23)-(2.26) and (2.28)-(2.32), we have the required result (2.21).

3. Applications in Self-Adjoint Operators

Let \scrB (\scrH ) be the Banach algebra of all bounded linear operators on a complex Hilbert
space (\scrH ; \langle \cdot , \cdot \rangle ). Let X \in \scrB (\scrH ) be selfadjoint and let \Psi \tau be defined for all \tau \in \BbbR as
follows

\Psi \tau (s) =

\Biggl\{ 
1, for  - \infty < s \leq \tau ,

0, for \tau < s < +\infty .

Then for every \tau \in \BbbR the operator

P\tau := \Psi \tau (X) (3.1)

is a projection which reduces X. The spectral representation of bounded selfadjoint
operators in Hilbert spaces ([6]) show case the properties of the projection (3.1).
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Proposition 3.1. Let X be a selfadjoint operator on Hilbert space \scrH and let m =
\mathrm{m}\mathrm{i}\mathrm{n}\{ \tau | \tau \in Sp(X)\} and M = \mathrm{m}\mathrm{a}\mathrm{x}\{ \tau | \tau \in Sp(X)\} . Let \Psi : [a, b]\BbbT \rightarrow \scrH , and \Psi is
Riemann-Stieltjes-\Delta -integrable with respect to a monotone increasing function g on [a, b]\BbbT .
Then there exists a family of projections \{ P\tau \} \tau \in \BbbR , called the spectral family of X, with
the following properties:
(i) P\tau \leq P\tau , for \tau \leq \tau 

\prime 
;

(ii) Pm - 0 = 0, PM = I and P\tau +0 = P\tau for all \tau \in \BbbR ;
we the representation

X =

\int M

m - 0

\tau \Delta g(P\tau ). (3.2)

Moreover, for every continuous complex-valued function \Psi defined on \BbbR and for every
\varepsilon > 0 there exists a \delta > 0 such that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \Psi (X) - 

n\sum 
k=1

\Psi (\tau 
\prime 

k)[P\tau k  - P\tau k - 1
]

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq \varepsilon (3.3)

whenever \left\{     
\tau 0 < m = \tau 1 < \cdot \cdot \cdot < \tau n - 1 < \tau n = M,

\tau k  - \tau k - 1 \leq \delta for 1 \leq k \leq n,

\tau 
\prime 

k \in [\tau k - 1, \tau k] for 1 \leq k \leq n

which means that

\Psi (X) =

\int M

m - 0

\Psi (\tau )\Delta g(P\tau ), (3.4)

which is the integral of Riemann-Stieltjes type.

Proof. Let X \in \scrB (\scrH ) be selfadjoint operator and P\tau = \Psi \tau (X) be projection which
reduces X. With the assumptions in Proposition 3.1 for X,P\tau and \Psi , we have the
following representations:

\Psi (X)s =

\int M

m - 0

\Psi (\tau )\Delta g(P\tau )s \forall s \in \scrH (3.5)

and

\langle \Psi (X)s, t\rangle =
\int M

m - 0

\Psi (\tau )\Delta g\langle P\tau s, t\rangle \forall s, t \in \scrH . (3.6)

Thus,

\langle \Psi (X)s, s\rangle =
\int M

m - 0

\Psi (\tau )\Delta g\langle P\tau s, s\rangle \forall s \in \scrH . (3.7)

Hence, we obtain the inequality

\| \Psi (X)s\| 2 =

\int M

m - 0

| \Psi (\tau )| 2\Delta g\| P\tau \| 2s \forall s \in \scrH (3.8)

Proposition 3.2. Let X be a selfadjoint operator on Hilbert space \scrH and let m =
\mathrm{m}\mathrm{i}\mathrm{n}\{ \tau | \tau \in Sp(X)\} and M = \mathrm{m}\mathrm{a}\mathrm{x}\{ \tau | \tau \in Sp(X)\} . Let f, h : [a, b]\BbbT \rightarrow \scrH , f and h are
Riemann-Stieltjes-\Delta -integrable with respect to a monotone increasing function g on [a, b]\BbbT 
if f and h are continuous functions on [m,M ], then we have the inequality

| \langle f(X)h(X)x, y\rangle | 2 \leq \langle | f(X)| 2x, x\rangle \langle | h(X)| 2y, y\rangle (3.9)

for any x, y \in \scrH .
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Proof. Let \scrH be Hilbert space and let x, y \in \scrH . For \varepsilon > 0, the functions
u, v, w : [m - \varepsilon ,M ] \rightarrow \scrC are defined by v(t) = \langle Ptx, y\rangle , v(t) = \langle Ptx, x\rangle and w(t) = \langle Pty, y\rangle 
where \{ P\tau \} \tau \in \BbbR is the spectral family of the bounded selfadjoint operator X. Using
Theorem 2.8 for nonnegative operator f and for t, s \in [m - \varepsilon ,M ] with t > s such that

| \langle fx, y\rangle | 2 \leq \langle fx, x\rangle \langle fy, y\rangle , (3.10)

we have

| u(t) - u(s)| 2 = | \langle (Pt  - Ps)x, y\rangle | 2 \leq \langle (Pt  - Ps)x, x\rangle \langle (Pt  - Ps)y, y\rangle 
= (v(t) - v(s))(w(t) - w(s)).

It shows that u is dominated by the nondecreasing functions (v, w) on [m - \varepsilon ,M ].
By using Theorem 2.8 for f, h, u, v on [m - \varepsilon ,M , we have\bigm| \bigm| \bigm| \bigm| \bigm| 

\int M

m - \varepsilon 

f(t)\Delta g(\langle Ptx, y\rangle )

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

\leq 
\int M

m - \varepsilon 

| f(t)| \Delta g(\langle Ptx, x\rangle )
\int M

m - \varepsilon 

| f(t)| \Delta g(\langle Pty, y\rangle ) (3.11)

for any x, y \in \scrH .
By using the representation of continuous functions of selfadjoint operators and letting
\varepsilon \rightarrow 0+, we have the required result (3.9).

Proposition 3.3. Let X be a selfadjoint operator on Hilbert space \scrH and let m =
\mathrm{m}\mathrm{i}\mathrm{n}\{ \tau | \tau \in Sp(X)\} and M = \mathrm{m}\mathrm{a}\mathrm{x}\{ \tau | \tau \in Sp(X)\} . Let f, h : [a, b]\BbbT \rightarrow \scrH , f and h are
Riemann-Stieltjes-\Delta -integrable with respect to a monotone increasing function g on [a, b]\BbbT 
if f and h are continuous functions on [m,M ]. Then for any x, y \in \scrH with x, y \not = 0, we
have the inequality

| C(f, h;X,x, y)| 2 \leq C(f ;X,x)C(h;X, y) (3.12)

Proof. The proof of proposition 3.3 follows from a similar argument of proposition
3.2. Therefore, it is omitted.

The continuous functions f, h : [a, b]\BbbT \rightarrow \scrC and the selfadjoint operator X have the
following functionals:

F (f, h;X,x, y) = \langle x, y\rangle \langle f(X)h(X)x, y\rangle  - \langle f(X)x, y\rangle \langle h(X)x, y\rangle , (3.13)

G(f ;x) = \| x\| 2\langle | f(X)| 2x, x\rangle  - | \langle f(X)x, x\rangle | 2(\geq 0) (3.14)

and

G(f ;x, y) = \| y\| 2\langle | f(X)| 2x, x\rangle + \| x\| 2\langle | f(X)| 2y, y\rangle  - 2Re((f(X)x, x)\langle f(X)y, y\rangle )(\geq 0),
(3.15)

for any x, y \in \scrH .

Corollary 3.4. Let X be a selfadjoint operator on Hilbert space \scrH and let m = \mathrm{m}\mathrm{i}\mathrm{n}\{ \tau | 
\tau \in Sp(X)\} and M = \mathrm{m}\mathrm{a}\mathrm{x}\{ \tau | \tau \in Sp(X)\} . Let f, h : [a, b]\BbbT \rightarrow \scrH , f and h are Riemann-
Stieltjes-\Delta -integrable with respect to a monotone increasing function g on [a, b]\BbbT if f and
h are continuous functions on [m,M ]. Then for any x, y \in \scrH with x, y \not = 0, we have the
inequality

| F (f, h;X,x, y)| 2 \leq 1

2
[G(f, x)G(f ;x, y)G(h;x, y)G(h; y)]. (3.16)



170 BOSEDE ALFRED O,, AFARIOGUN DAVID A,, AND AYENI ELIZABETH O.

4. Applications for Unitary Operators

Let (\scrH , \langle , , .\rangle ) be a complex Hilbert space. The bounded linear operator T : \scrH \rightarrow \scrH on
the Hilbert space \scrH is unitary if and only if T \ast = T - 1. If T is a unitary operator, then
there exists a family of projections \{ P\tau \} \tau \in [0,2\pi ]

, called the spectral family of T with the
following properties:
(i) P\tau \leq P\nu for 0 \leq \tau \leq \nu \leq 2\pi 
(ii) P0 = 0 and P2\pi = I, the identity operator on \scrH .
(iii) P\tau +0 = P\tau for 0 \leq \tau \leq 2\pi ;
(iv) T =

\int 2\pi 

0
ei\tau \Delta g(P\tau ) where the integral is of Riemann-Stieltjes-\Delta -type.

Let \{ \scrF \tau \} \tau \in [0,2\pi ]
be family of projections satisfying the above properties (i)-(iv), for

the operator T such that \scrF \tau = P\tau for all \tau \in [0, 2\pi ].
Thus, for every continuous complex-valued function F : \scrC (0, 1) \rightarrow \scrC on the complex unit
circle \scrC (0, 1), we have

F (T ) =

\int 2\pi 

0

F (ei\tau )\Delta g(P\tau ) (4.1)

where the integral is of the Riemann-Stieltjes-\Delta -type.
The following inequalities follow from (4.1):

F (T )x =

\int 2\pi 

0

F (ei\tau )\Delta g(P\tau x), (4.2)

\langle F (T )x, y\rangle =
\int 2\pi 

0

F (ei\tau )\Delta g\langle P\tau x, y\rangle (4.3)

and

| F (T )x| 2 =

\int 2\pi 

0

| F (ei\tau )| 2\Delta g\| P\tau x\| 2 (4.4)

for any x, y \in \scrH .

Theorem 4.1. Let T be a unitary operator on the Hilbert space \scrH . Let F,H : [a, b]\BbbT \rightarrow \scrH ,
F and H are Riemann-Stieltjes-\Delta -integrable with respect to a monotone increasing function
g on [a, b]\BbbT . Then for every continuous complex-valued function F,H : \scrC (0, 1) \rightarrow \BbbC on
the complex unit circle \scrC (0, 1), we have

| \langle F (T )H(T )x, y\rangle | 2 \leq \langle | F (T )| 2x, x\rangle \langle | H(T )| 2y, y\rangle (4.5)

for any x, y \in \scrH .

Proof. Let \{ P\tau \} \tau \in [0,2\pi ]
be the spectral family of the unitary operator T . Define the

function J,G,H : [0, 2\pi ] \rightarrow \BbbC given by

J(t) = \langle Jtx, y\rangle , G(t) = \langle Ptx, x\rangle and H(t0 = \langle Pty, y\rangle .

for any x, y \in \scrH and for t, s \in [0, 2\pi ].
Applying the Schwarz inequality for nonnegative operator T

| \langle Tx, y\rangle | 2 \leq \langle Tx, x\rangle \langle Ty, y\rangle , (4.6)

we have

| J(t) - J(s)| 2 = | \langle (Pt  - Ps)x, y\rangle | 2 \leq \langle (Pt  - Ps)x, x\rangle \langle (Pt  - Ps)y, y\rangle 
= (G(t) - G(s))(H(t) - H(s)).
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This shows that J is dominated by the monotonic increasing functions (G,H) on [0, 2\pi ].
By utilizing Theorem 2.8 for F (eit), J,G and H on [0, 2\pi ], we have\bigm| \bigm| \bigm| \bigm| \int 2\pi 

0

F (eit)H(eit)\Delta g(\langle Ptx, y\rangle )
\bigm| \bigm| \bigm| \bigm| \leq \int 2\pi 

0

| F (eit)| 2\Delta g(\langle Ptx, x\rangle )
\int 2\pi 

0

| H(eit)| 2\Delta g(\langle Pty, y\rangle ),

(4.7)
for any x, y \in \scrH .
By the representation of continuous function of unitary operators, we have the required
result

| \langle F (T )H(T )x, y\rangle | 2 \leq \langle | F (T )| 2x, x\rangle \langle | H(T )| 2y, y\rangle . (4.8)

5. Conclusion

We used the definition and properties of Riemann-Stieltjes-\Delta -integral to give suitable
applications to self-adjoint and unitary operators in Hilbert spaces. Thees results are
obtained on time scales which unify both discrete and continuous problems.

Conflict of Interests

The authors declare that they have no conflict of interests among them.

Funding

No funding was received to assist with the preparation of this manuscript.

References

[1] D. A. Afariogun, H. O. Olaoluwa. Refinement of Henstock-Kurzweil-Stieltjes-\Diamond -Integral for topological
Vector Space-valued functions on time scales. J. Sci. Research and Develop. (2020), Vol. 19 (2): 1-12.

[2] R. Bartle, Return to the Riemann integral, Amer. Math. Monthly 103 (1996), 625-632.
[3] M. Bohner and G. Guseinov, Riemann and Lebesgue integration, in advances in dynamic equations

on time scales, 117-163, Birkhauser, Boston, (2003).
[4] S. S. Dragomir, Inequalities of Gruss type for the Stieltjes integral and applications, Kragujevac J.

Math. pp 89-122.
[5] S. S. Dragomir, Inequalities for the Riemann-Stieltjes integral of S-dominated Integrators with

Applications (I), Preprint RGMIA Res. Rep. Call. 16(2013).
[6] G. Helmberg, Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc., New York,

(1969), pp. 256-276.
[7] E. McShane, A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic

integrals, vol. 88. Amer. Math. Soc. (1969).
[8] D. Mozyrska, E. Pawluszewicz, and D. F. M. Torres, The Riemann-Stieltjes integral on time scales,

Austr. J. Math. Anal. Appl. (2009).
[9] C. W. Swartz and D. S. Kurtz, Theories of Integration: The integrals of Riemann, Lebesgue,

Henstock-Kurzweil, and McShane, World Scientific, (2004).
[10] B. Thompson, Henstock-Kurzweil integrals on time scales, Panamer. Math. J. No. 1, 18(2008), 1-19.
[11] A. K. Zareen, J. Fahd, K. Aziz, K. Hasib. Derivation of dynamical integral inequalities based on

two-dimensional time scales theory. J. Ineq. Appl. (2020): 209, 1-17.

Bosede Alfred O.: obosede@lasu.edu.ng
Department of Mathematics, Lagos State University, Ojo, Lagos, Nigeria

Afariogun David A.: da.afariogun@acu.edu.ng
Department of Mathematical Sciences, Ajayi Crowther University, Oyo, Oyo State, Nigeria

Ayeni Elizebeth O.: ayenielizabeth0192@gmail.com
Department of Mathematics, Lagos State University, Ojo, Lagos, Nigeria

Received 30/11/2024; Revised 10/12/2025

mailto:obosede@lasu.edu.ng
mailto:da.afariogun@acu.edu.ng
mailto:ayenielizabeth0192@gmail.com

	1. Introduction and Preliminaries
	2. The Main Results
	3. Applications in Self-Adjoint Operators
	4. Applications for Unitary Operators
	5. Conclusion
	Conflict of Interests
	Funding
	References

