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EXISTENCE RESULT FOR SOME COUPLED NONLINEAR
PARABOLIC SYSTEMS IN ORLICZ-SOBOLEV SPACES

JABIR OUAZZANI CHAHDI, MOHAMED BOURAHMA, HASSANE HJIAJ, AND KHALID KAIBA

Abstract. Consider the nonlinear parabolic system\left\{     
\partial bi(x,ui)

\partial t
 - \mathrm{d}\mathrm{i}\mathrm{v}

\Bigl( 
\scrA (x, t, ui,\nabla ui) + \Phi i(x, t, ui)

\Bigr) 
+ fi(x, u1, u2) = 0 in QT

ui = 0 on \Gamma 
bi(x, ui)(t = 0) = bi(x, ui,0) in \Omega ,

where i = 1, 2. In this paper we deal with the renormalized solution for the above
system in Orlicz-Sobolev spaces where fi is a Carathéodory function satisfying some
growth assumptions. The main term which contains the space derivatives and a
non-coercive lower order term are considered in divergence form satisfying only the
original Orlicz growths.

1. Introduction

The analysis of partial differential equations (PDEs) is one of the main fields of
mathematics, PDEs with nonlinearities involving modular functions have attracted an
increasing amount of attention in recent years. Systems of nonlinear PDEs present some
new and interesting phenomena, which are not present in the study of a single equation.
Let \Omega be a bounded open subset of \BbbR N , N \geq 2, QT = \Omega \times (0, T ) where T is a positive
real number and M is an Orlicz function. Let A(u) :=  - div \scrA (x, t, u,\nabla u) be a so-called
Leray-Lions type operator whose prototype is the p-Laplacian operator and bi : \Omega \times \BbbR \rightarrow \BbbR 
is a Carathéodory function such that bi(x, \cdot ) is a strictly increasing C1-function for any
fixed x \in \Omega with bi(x, 0) = 0.

Consider for i = 1, 2, the following parabolic system\left\{     
\partial bi(x, ui)

\partial t
+ A(ui) - \mathrm{d}\mathrm{i}\mathrm{v} \Phi i(x, t, ui) + fi(x, u1, u2) = 0 in QT

ui = 0 on \Gamma 
bi(x, ui)(t = 0) = bi(x, ui,0) in \Omega ,

(1.1)

A model of applications of these operators is the Boussinesq’s system:\left\{             

\partial u

\partial t
+ u \cdot \nabla u - 2 \mathrm{d}\mathrm{i}\mathrm{v}(\mu (\theta )\varepsilon (u)) +\nabla p = F (\theta ) in QT

\partial b(\theta )

\partial t
+ u \cdot \nabla b(\theta ) - \bigtriangleup \theta = 2\mu (\theta )| \varepsilon (u)| 2 in QT

u = 0, \theta = 0 on \Gamma 
u(t = 0) = u0 b(\theta )(t = 0) = b(\theta 0) in \Omega ,

where the first equation is the motion conservation equation, the unknowns are the fields of

displacement u : QT \rightarrow \BbbR N and temperature \theta : QT \rightarrow \BbbR , the field \varepsilon (\nabla u) = 1

2
(\nabla u+(\nabla u)t)

is the strain rate tensor. Also, for applications to fluid mechanics models one can see [17].
The problem (1.1), with a single equation, has been investigated in different particular

directions. As example, in the classical Sobolev spaces, i.e M = tp, for \Phi \equiv 0, b is
a maximal monotone graph on \BbbR and \scrA (x, t, s, \xi ) is independent of s, existence and
uniqueness of a renormalized solution have been studied by Blanchard and Murat in [5]
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and by Blanchard and Porretta in the case where \scrA (x, t, s, \xi ) is independent of t in [6].
In [1], Bennouna et al. have studied problem (1.1) for a measure \mu = f  - \mathrm{d}\mathrm{i}\mathrm{v}(F ), with
f \in L1(QT ), F \in (Lp

\prime 

(QT ))
N and \Phi satisfies the condition

| \Phi (x, t, s)| \leq c(x, t)| s| \gamma ,

with c(x, t) \in L\tau (QT ) for some \tau =
N + p

p - 1
and \gamma =

N + 2

N + p
(p - 1).

In what concerns contributions in Orlicz spaces with a single equation, Azroul et al.
have proved in [3] the existence of renormalized solution, where \Phi depends only on u and
b(x, u) = b(u), the same result has been shown by Redwane in [23] where b(x, u) depends
on x and u. In [21], the authors have proved existence of renormalized solution under the
assumptions, f \in L1(QT ) and \Phi satisfies a growth condition described by an N -function
P that increases essentially less rapidly than the appropriate Orlicz function M ,

| \Phi (x, t, s)| \leq P
 - 1

(P (| s| )) with P \prec \prec M. (1.2)

The previous result has been enhanced in [7] under the likely growth condition in the
elliptic case,

| \Phi (x, s)| \leq \gamma (x) +M
 - 1

(M(| s| )), with \gamma \in EM (\Omega ). (1.3)
Turn now to the doubly equation, in the classical Sobolev spaces, the system (1.1) has
been solved by Azroul et al. in [4] in the case where bi and \Phi i are independent of x. For
the study of (1.1) in some particular cases one can consult [8, 9, 10, 19, 22].

The approach of this paper is how to deal with the existence of renormalized solutions
for system (1.1) in Orlicz spaces where \Phi i satisfies the original Orlicz growth condition

| \Phi i(x, t, s)| \leq \gamma (x, t) +M
 - 1

(M(| s| )), where \gamma \in EM (QT ), (1.4)

without assuming any restriction on the modular function M neither on its complementary
M , the described problem lives in non reflexive Orlicz spaces. The existence result in this
context generalizes all works mentioned above.

In dealing with this problem, we have encountered some difficulties, essentially, under
the growth condition (1.4), it’s difficult to prove existence of solution for the regularized
problem and proving its convergence, which are the basic results in the proof of such
solutions. The novelty in the main proofs follows thanks to an algebraic trick combined
with the convexity of M and Young’s inequality on a well-chosen positive quantities.

This article is organized as follows, in section 2, we recall some well-known preliminaries,
results and properties of Orlicz-Sobolev spaces and inhomogeneous Orlicz-Sobolev spaces.
Section 3 is devoted to basic assumptions, problem setting and the proof of the main
result.

2. Preliminaries

2.1. Orlicz-Sobolev spaces. Let M : \BbbR + \rightarrow \BbbR + be a continuous and convex function
with:

M(t) > 0 for t > 0, \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow 0

M(t)

t
= 0 and \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow +\infty 

M(t)

t
= +\infty .

The functionM is said an N -function or an Orlicz function, the N -function complementary
to M is defined as

M(t) = \mathrm{s}\mathrm{u}\mathrm{p}
\Bigl\{ 
st - M(s), s \geq 0

\Bigr\} 
.

We recall that (see [2])

M(t) \leq tM
 - 1

(M(t)) \leq 2M(t) for all t \geq 0 (2.5)

and the Young’s inequality: for all s, t \geq 0,

st \leq M(s) +M(t).
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We said that M satisfies the \Delta 2-condition if for some k > 0,

M(2t) \leq kM(t) for all t\geq 0, (2.6)

and if (2.6) holds only for t \geq t0, then M is said to satisfy the \Delta 2-condition near infinity.
Let M1 and M2 be two N -functions. The notation M1 \prec \prec M2 means that M1 grows

essentially less rapidly than M2, i.e.

\forall \epsilon > 0, \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

M1(t)

M2(\epsilon t)
= 0,

that is the case if and only if

\mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

(M2)
 - 1(t)

(M1) - 1(t)
= 0.

Let \Omega be an open subset of \BbbR N . The Orlicz class KM (\Omega ) (resp. the Orlicz space
LM (\Omega )) is defined as the set of (equivalence class of) real-valued measurable functions u
on \Omega such that:\int 

\Omega 

M(u(x))dx <\infty (resp.
\int 
\Omega 

M
\Bigl( u(x)

\lambda 

\Bigr) 
dx <\infty for some \lambda > 0).

Endowed with the Luxemburg norm

\| u\| M = \mathrm{i}\mathrm{n}\mathrm{f}
\Bigl\{ 
\lambda > 0 :

\int 
\Omega 

M
\Bigl( u(x)

\lambda 

\Bigr) 
dx \leq 1

\Bigr\} 
,

and the so-called Orlicz norm, that is

| \| u\| | M,\Omega = \mathrm{s}\mathrm{u}\mathrm{p}
\| v\| M\leq 1

\int 
\Omega 

| u(x) v(x)| dx,

LM (\Omega ) is a Banach space and KM (\Omega ) is a convex subset of LM (\Omega ). The closure in LM (\Omega )
of the set of bounded measurable functions with compact support in \Omega is denoted by
EM (\Omega ).

The Orlicz-Sobolev space W 1LM (\Omega ) (resp. W 1EM (\Omega )) is the space of functions u
such that u and its distributional derivatives up to order 1 lie in LM (\Omega ) (resp. EM (\Omega )).

This is a Banach space under the norm

\| u\| 1,M =
\sum 
| \alpha | \leq 1

\| D\alpha u\| M .

Thus, W 1LM (\Omega ) and W 1EM (\Omega ) can be identified with subspaces of the product of
(N +1) copies of LM (\Omega ). Denoting this product by \Pi LM , we will use the weak topologies
\sigma (\Pi LM ,\Pi EM ) and \sigma (\Pi LM ,\Pi LM ).

The space W 1
0EM (\Omega ) is defined as the norm closure of the Schwartz space \frakD (\Omega ) in

W 1EM (\Omega ) and the space W 1
0LM (\Omega ) as the \sigma (\Pi LM ,\Pi EM ) closure of \frakD (\Omega ) in W 1LM (\Omega ).

We say that a sequence \{ un\} converges to u for the modular convergence in W 1LM (\Omega )
if, for some \lambda > 0, \int 

\Omega 

M
\Bigl( D\alpha un  - D\alpha u

\lambda 

\Bigr) 
dx\rightarrow 0 for all | \alpha | \leq 1;

this implies convergence for \sigma (\Pi LM ,\Pi LM ).
If M satisfies the \Delta 2-condition on \BbbR + (near infinity only if \Omega has finite measure), then

the modular convergence coincides with norm convergence. Recall that the norm \| Du\| M
defined on W 1

0LM (\Omega ) is equivalent to \| u\| 1,M (see [13]).
Let W - 1LM (\Omega ) (resp. W - 1EM (\Omega )) denotes the space of distributions on \Omega which

can be written as sums of derivatives of order \leq 1 of functions in LM (\Omega ) (resp. EM (\Omega )).
It is a Banach space under the usual quotient norm.
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If the open \Omega has the segment property then the space \frakD (\Omega ) is dense in W 1
0LM (\Omega )

for the topology \sigma (\Pi LM ,\Pi LM ) (see [13]). Consequently, the action of a distribution in
W - 1LM (\Omega ) on an element of W 1

0LM (\Omega ) is well defined. For more details one can see for
example [2] or [16].

2.2. Inhomogeneous Orlicz-Sobolev spaces. As in Section 2.1 of Preliminaries, let
\Omega be a bounded open subset of \BbbR N , T > 0 and set QT = \Omega \times (0, T ). For each \alpha \in \BbbN N ,
denote by D\alpha 

x the distributional derivative on QT of order \alpha with respect to the variable
x \in \Omega . The inhomogeneous Orlicz-Sobolev spaces are defined as follows,

W 1,xLM (QT ) =
\Bigl\{ 
u \in LM (QT ) : D

\alpha 
xu \in LM (QT ) for all | \alpha | \leq 1

\Bigr\} 
,

and
W 1,xEM (QT ) =

\Bigl\{ 
u \in EM (QT ) : D

\alpha 
xu \in EM (QT ) for all | \alpha | \leq 1

\Bigr\} 
.

The last space is a subspace of the first one, and both are Banach spaces under the norm,

\| u\| =
\sum 
| \alpha | \leq 1

\| D\alpha 
xu\| M,QT

.

We can easily show that they form a complementary system when \Omega satisfies the segment
property. These spaces are considered as subspaces of the product space \Pi LM (QT ) which
have as many copies as there is \alpha -order derivatives, | \alpha | \leq 1. We shall also consider
the weak topologies \sigma (\Pi LM ,\Pi EM ) and \sigma (\Pi LM ,\Pi LM )). If u \in W 1,xLM (QT ) then the
function : t \mapsto \rightarrow u(t) = u(t, \cdot ) is defined on (0, T ) with values in W 1LM (\Omega ). If, further, u \in 
W 1,xEM (QT ) then the concerned function is a W 1EM (\Omega )-valued and is strongly measur-
able. Furthermore the following imbedding holds: W 1,xEM (QT ) \subset L1(0, T ;W 1EM (\Omega )).
The space W 1,xLM (QT ) is not in general separable, if u \in W 1,xLM (QT ), we can not
conclude that the function u(t) is measurable on (0, T ). However, the scalar function
t \mapsto \rightarrow \| u(t) \| M,\Omega is in L1(0, T ). The space W 1,x

0 EM (QT ) is defined as the (norm) closure
in W 1,xEM (QT ) of \frakD (QT ). It is proved that when \Omega has the segment property, then each
element u of the closure of \frakD (QT ) with respect of the weak* topology \sigma (\Pi LM ,\Pi EM ) is a
limit, in W 1,xLM (QT ), of some subsequence (un) \subset \frakD (QT ) for the modular convergence;
i.e., if, for some \lambda > 0, such that for all | \alpha | \leq 1;\int 

QT

M
\Bigl( D\alpha 

xun  - D\alpha 
xu

\lambda 

\Bigr) 
dx dt  - \rightarrow 0 as n  - \rightarrow \infty .

This implies that the sequence (un) converges to u in W 1,xLM (QT ) in the weak topology
\sigma (\Pi LM ,\Pi EM ). Consequently,

\frakD (QT )
\sigma (\Pi LM ,\Pi EM )

= \frakD (QT )
\sigma (\Pi LM ,\Pi LM )

.

This space will be denoted by W 1,x
0 LM (QT ). Furthermore,

W 1,x
0 EM (QT ) =W 1,x

0 LM (QT ) \cap \Pi EM .

We have then the following complementary system\Bigl( 
W 1,x

0 LM (QT ), F,W
1,x
0 EM (QT ), F0

\Bigr) 
F being the dual space of W 1,x

0 EM (QT ). It is also, except for an isomorphism, the quotient
of \Pi LM by the polar set W 1,x

0 EM (QT )
\bot , and will be denoted by F = W - 1,xLM (QT )

and it is shown that,

W - 1,xLM (QT ) =
\Bigl\{ 
f =

\sum 
| \alpha | \leq 1

D\alpha 
xf\alpha : f\alpha \in LM (QT )

\Bigr\} 
,



176JABIR OUAZZANI CHAHDI, MOHAMED BOURAHMA, HASSANE HJIAJ, AND KHALID KAIBA

this space will be equipped with the usual quotient norm

\| f\| = \mathrm{i}\mathrm{n}\mathrm{f}
\sum 
| \alpha | \leq 1

\| f\alpha \| M,QT
,

where the infimum is taken on all possible decompositions

f =
\sum 
| \alpha | \leq 1

D\alpha 
xf\alpha , f\alpha \in LM (QT ).

The space F0 is then given by,

W - 1,xLM (QT ) =
\Bigl\{ 
f =

\sum 
| \alpha | \leq 1

D\alpha 
xf\alpha : f\alpha \in EM (QT )

\Bigr\} 
,

and is denoted by F0 =W - 1,xEM (QT ).

2.3. Technical lemmas.

Lemma 2.1. [14] Let M : \BbbR + \rightarrow \BbbR + be an N -function: continuous and convex function
with,

M(t) > 0 for t > 0, \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow 0

M(t)

t
= 0 and \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow +\infty 

M(t)

t
= +\infty .

Let uk, u \in LM (\Omega ). If uk \rightarrow u for the modular convergence, then uk \rightarrow u for \sigma (LM , LM ).

Lemma 2.2. Let M : \BbbR + \rightarrow \BbbR + be an N -function: continuous and convex function with,

M(t) > 0 for t > 0, \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow 0

M(t)

t
= 0 and \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow +\infty 

M(t)

t
= +\infty .

If un \rightarrow u for the modular convergence with every \lambda > 0 in LM (\Omega ), then un \rightarrow u strongly
in LM (\Omega ).

Proof. We will use the Orlicz norm, for all \lambda > 0 we have
\int 
\Omega 

M

\biggl( 
| uk(x) - u(x)| 

\lambda 

\biggr) 
dx\rightarrow 0

as k \rightarrow \infty . Thus M
\Bigl( 

| uk(x) - u(x)| 
\lambda 

\Bigr) 
tends to 0 strongly in L1(\Omega ) and so for a subsequence,

still indexed by k, we can assume that uk  - \rightarrow u a.e. in \Omega . For an arbitrary v \in LM (\Omega ),
there exists \lambda v > 0 such that M

\Bigl( 
v
\lambda v

\Bigr) 
\in L1(\Omega ). By Young’s inequality and the convexity

of M we can write

| (uk(x) - u(x))v(x)| \leq M (2\lambda v| uk(x) - u(x)| ) + 1

2
M

\biggl( 
v(x)

\lambda v

\biggr) 
.

Applying Vitali’s theorem we obtain
\int 
\Omega 

| (uk(x)  - u(x))v(x)| dx \rightarrow 0 for all v \in LM (\Omega )

and so

| \| uk  - u\| | M,\Omega = \mathrm{s}\mathrm{u}\mathrm{p}
\| v\| M\leq 1

\int 
\Omega 

| (uk(x) - u(x))v(x)| dx\rightarrow 0 as k \rightarrow \infty ,

which yields the result. \square 

Lemma 2.3. [13] Let F : \BbbR \rightarrow \BbbR be uniformly lipschitzian, with F (0) = 0. Let M be
a Orlicz function and let u \in W 1LM (\Omega ) (resp. W 1EM (\Omega )). Then, F (u) \in W 1LM (\Omega )
(resp. W 1EM (\Omega )). Moreover, if the set of discontinuity points D of F \prime is finite, then

\partial 

\partial xi
F (u) =

\left\{   F \prime (u)
\partial u

\partial xi
a.e. in \{ x \in \Omega : u(x) /\in D\} 

0 a.e. in \{ x \in \Omega : u(x) \in D\} .
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Lemma 2.4. [13] Let F : \BbbR \rightarrow \BbbR be uniformly lipschitzian, with F (0) = 0. Let M be a
Orlicz function. we assume that the set of discontinuity points D of F \prime is finite, then the
mapping F :W 1LM (\Omega ) \rightarrow W 1LM (\Omega ) is sequentially continuous with respect to the weak*
topology \sigma (\Pi LM ,\Pi EM ).

Lemma 2.5. [12] Let \Omega be a bounded open subset of \BbbR N , N \geq 2, satisfying the segment
property, then\Bigl\{ 

u \in W 1,x
0 LM (QT ) :

\partial u

\partial t
\in W - 1,xLM (QT ) + L1(QT )

\Bigr\} 
\subset \scrC 

\Bigl( 
[0, T ], L1(\Omega )

\Bigr) 
.

Lemma 2.6. [13] (Integral Poincaré’s type inequality in inhomogeneous Orlicz spaces)
Let \Omega be a bounded open subset of \BbbR N and M is an Orlicz function, then there exists two
positive constants \delta , \lambda > 0 such that\int 

QT

M(\delta | u(x, t)| ) dx dt \leq 
\int 
QT

\lambda M(| \nabla u(x, t)| ) dx dt \forall u \in W 1
0LM (QT ).

Lemma 2.7. [20, Lemma 2.4] If fn \subset L1(\Omega ) with fn \rightarrow f \in L1(\Omega ) a.e. in \Omega , fn, f \geq 0

a. e. in \Omega and
\int 
\Omega 

fn(x) dx\rightarrow 
\int 
\Omega 

f(x) dx, then fn \rightarrow f in L1(\Omega ).

Lemma 2.8. [14] Suppose that \Omega satisfies the segment property and let u \in W 1
0LM (\Omega ).

Then, there exists a sequence (un) \subset \frakD (\Omega ) such that un \rightarrow u for the modular convergence
in W 1

0LM (\Omega ). Furthermore, if u \in W 1
0LM (\Omega ) \cap L\infty (\Omega ) then

\| un\| \infty \leq (N + 1)\| u\| \infty .

Lemma 2.9. (cf. [11]) Let M be an N -function. Let (un) be a sequence of W 1,xLM (QT )

such that, un \rightharpoonup u weakly in W 1,xLM (QT ) for \sigma (\Pi LM ,\Pi EM ) and
\partial un
\partial t

= hn + kn in

\frakD \prime (QT ) with hn is bounded in W - 1,xLM (QT ) and kn is bounded in L1(QT ). Then,
un \rightarrow u strongly in L1

Loc(QT ). If further, un \in W 1,x
0 LM (QT ) then un \rightarrow u strongly in

L1(QT ).

3. Basic assumptions and main result

Through this paper \Omega is a bounded open subset of \BbbR N , N \geq 2, satisfying the segment
property. Let QT = (0, T )\times \Omega be the cylinder of \BbbR N , \Gamma := (0, T )\times \partial \Omega and M is an Orlicz
function. Consider a Carathéodory function bi : \Omega \times \BbbR \rightarrow \BbbR such that for every x \in \Omega ,
bi(x, s) is a strictly increasing C1-function with bi(x, 0) = 0 and for any k > 0, there
exists a constant \lambda ik > 0, a function Ai

k \in L\infty (\Omega ) and a function \widetilde Ai
k \in L\varphi (\Omega ) such that,

\lambda ik \leq \partial bi(x, s)

\partial s
\leq Ai

k(x) and
\bigm| \bigm| \bigm| \nabla x

\Bigl( \partial bi(x, s)
\partial s

\Bigr) \bigm| \bigm| \bigm| \leq \widetilde Ai
k(x). (3.7)

Let A : D(A) \subset W 1,x
0 LM (QT ) \rightarrow W - 1,xLM (QT ) an operator of Leray-Lions type of the

form:
\mathrm{A}(u) :=  - \mathrm{d}\mathrm{i}\mathrm{v} \scrA (x, t, u,\nabla u),

This work aims to prove the existence of renormalized solutions in the setting of Orlicz
spaces to the nonlinear parabolic system\left\{     

\partial bi(x,ui)
\partial t  - \mathrm{d}\mathrm{i}\mathrm{v}

\Bigl( 
\scrA (x, t, ui,\nabla ui) + \Phi i(x, t, ui)

\Bigr) 
+ fi(x, u1, u2) = 0 in QT

ui = 0 on \Gamma 
bi(x, ui)(t = 0) = bi(x, ui,0) in \Omega ,

(3.8)

where i = 1, 2. The vector \scrA : QT \times \BbbR \times \BbbR N \rightarrow \BbbR N is a Carathéodory function satisfying,
for almost every (x, t) \in QT and for all s \in \BbbR , \xi , \eta \in \BbbR N (\xi \not = \eta ) the following conditions
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(H1): There exists a function c(x, t) \in EM (QT ) and some positive constants k1, k2,
k3 and an Orlicz function P \prec \prec M such that

| \scrA (x, t, s, \xi )| \leq \beta 
\Bigl[ 
c(x, t) + k1M

 - 1
(P (k2| s| )) +M

 - 1
(M(k3| \xi | ))

\Bigr] 
.

(H2): \scrA is strictly monotone,\Bigl( 
\scrA (x, t, s, \xi ) - \scrA (x, t, s, \eta )

\Bigr) 
\cdot 
\Bigl( 
\xi  - \eta 

\Bigr) 
> 0.

(H3): \scrA is coercive,
\scrA (x, t, s, \xi ) \cdot \xi \geq \alpha M(| \xi | ).

For the lower order term, we assume \Phi i : QT \times \BbbR \rightarrow \BbbR N be a Carathéodory function
satisfying:

(H4): For all s \in \BbbR and for almost every x \in \Omega ,

| \Phi i(x, t, s)| \leq \gamma (x, t) +M
 - 1

(M(| s| )) where \gamma \in EM (QT ).

Moreover, we suppose that for i = 1, 2, bi : \Omega \times \BbbR \rightarrow \BbbR is a strictly increasing C1-function
with bi(x, 0) = 0 and fi : \Omega \times \BbbR \times \BbbR \rightarrow \BbbR is a Carathéodory function with

f1(x, 0, s) = f2(x, s, 0) = 0 a.e. x \in \Omega ,\forall s \in \BbbR . (3.9)

and for almost every x \in \Omega , for every s1, s2 \in \BbbR ,

sign(si)fi(x, s1, s2) \geq 0. (3.10)

The growth assumptions on fi are as follows: For each k > 0, there exists \sigma k > 0 and a
function Fk in L1(\Omega ) such that

| f1(x, s1, s2)| \leq Fk(x) + \sigma k | b2(x, s2)| (3.11)

a.e. in \Omega , for all s1 such that | s1| \leq k, for all s2 \in \BbbR . For each k > 0, there exists \lambda k > 0
and a function Gk in L1(\Omega ) such that

| f2(x, s1, s2)| \leq Gk(x) + \lambda k | b1(x, s1)| (3.12)

for almost every x \in \Omega , for every s2 such that | s2| \leq k, and for every s1 \in \BbbR . Finally, we
assume the following condition on the initial data ui,0:

ui,0 is a measurable function such that bi(x, ui,0) \in L1(\Omega ), for i = 1, 2. (3.13)

Definition 3.1. A couple of functions (u1, u2) defined on QT is called a renormalized
solution of system (3.8) if for i = 1, 2 the function ui satisfies

Tk(ui) \in W 1,x
0 LM (QT ) and bi(x, ui) \in L\infty (0, T ;L1(\Omega )), (3.14)

\mathrm{l}\mathrm{i}\mathrm{m}
m\rightarrow \infty 

\int 
\{ m\leq | ui(x,t)| \leq m+1\} 

\scrA (x, t, ui,\nabla ui)\nabla ui dx dt = 0, (3.15)

and if, for every function r in W 1,\infty (\BbbR ) such that r\prime has a compact support, we have
\partial Bi,r(x,ui)

\partial t  - div (r\prime (ui)\scrA (x, t, ui,\nabla ui)) + r\prime \prime (ui)\scrA (x, t, ui,\nabla ui)\nabla ui
 - div (r\prime (ui)\Phi i(x, t, ui)) + r\prime \prime (ui)\Phi i(x, t, ui)\nabla ui + fi(x, u1, u2)r

\prime (ui) = 0
(3.16)

in \frakD \prime (QT ), and
Bi,r(x, ui)(t = 0) = Bi,r(x, ui,0) in \Omega , (3.17)

where Bi,r(x, \tau ) =

\int \tau 

0

\partial bi(x, s)

\partial s
r\prime (s) ds in \Omega .

Remark 3.2. [21, 23] For every nondecreasing function r \in W 2,\infty (\BbbR ) such that \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mathrm{r}\prime )
\subset [ - k, k] and (3.7), we have

\lambda ik| r(s1) - r(s2)| \leq | Bi,r(x, s1) - Bi,r(x, s2)| \leq \| Ai
k\| L\infty (\Omega )| r(s1) - r(s2)| ,

for almost every x \in \Omega and for every s1, s2 \in \BbbR .
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Lemma 3.3. [18] Under assumptions (H1)-(H3), let (Zn) be a sequence in W 1,x
0 LM (QT )

such that
Zn \rightharpoonup Z in W 1,x

0 LM (QT ) for \sigma (\Pi LM (QT ),\Pi EM (QT )), (3.18)\Bigl( 
\scrA (x, t, Zn,\nabla Zn)

\Bigr) 
n

is bounded in
\Bigl( 
LM (QT )

\Bigr) N

, (3.19)

\mathrm{l}\mathrm{i}\mathrm{m}
n,s\rightarrow \infty 

\int 
QT

\Bigl( 
\scrA (x, t, Zn,\nabla Zn) - \scrA (x, t, Zn,\nabla Z\chi s)

\Bigr) 
\cdot 
\Bigl( 
\nabla Zn  - \nabla Z\chi s

\Bigr) 
dxdt = 0, (3.20)

where \chi s is the characteristic function of the set \Omega s =
\Bigl\{ 
x \in \Omega : | \nabla Z| \leq s

\Bigr\} 
. Then,

\nabla Zn \rightarrow \nabla Z a.e. in QT , (3.21)

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
QT

\scrA (x, t, Zn,\nabla Zn)\nabla Zn dx =

\int 
QT

\scrA (x, t, Z,\nabla Z)\nabla Z dxdt, (3.22)

M(| \nabla Zn| )  - \rightarrow M(| \nabla Z| ) in L1(QT ). (3.23)

In what follows, we will use the following real function of a real variable, called the
truncation at height k > 0,

Tk(s) = \mathrm{m}\mathrm{a}\mathrm{x}
\Bigl( 
 - k,\mathrm{m}\mathrm{i}\mathrm{n}(k, s)

\Bigr) 
=

\Biggl\{ 
s if | s| \leq k

k
s

| s| 
if | s| > k,

and its primitive is defined by

\widetilde Tk(s) = \int s

0

Tk(t) dt.

Note that \widetilde Tk has the properties: \widetilde Tk(s) \geq 0 and \widetilde Tk(s) \leq k| s| .
The following theorem is our main result.

Theorem 3.4. Assume that the assumptions (H1)  - (H4) and (3.9)-(3.13) hold true,
then there exists at least one solution (u1, u2) for the parabolic system (3.8) in sense of
Definition 3.1.

The proof of the above theorem is divided into four steps.
Step 1: Approximate problems. For each n \in \BbbN \ast , put

bi,n(x, s) = bi(x, Tn(s)) +
1

n
s, (3.24)

\scrA n(x, t, s, \xi ) = \scrA (x, t, Tn(s), \xi ) a.e (x, t) \in QT ,\forall s \in \BbbR ,\forall \xi \in \BbbR N ,

and
\Phi i,n(x, t, s) = \Phi i(x, t, Tn(s)) a.e (x, t) \in QT ,\forall s \in \BbbR ,

f1,n(x, s1, s2) = f1(x, Tn(s1), s2) a.e in \Omega ,\forall s1, s2 \in \BbbR , (3.25)

f2,n(x, s1, s2) = f2(x, s1, Tn(s2)) a.e in \Omega ,\forall s1, s2 \in \BbbR . (3.26)
And let ui,0n \in C\infty 

0 (\Omega ) such that

\| bi,n(x, ui,0n) \| L1\leq \| bi(x, ui,0) \| L1 and bi,n(x, ui,0n)  - \rightarrow bi(x, ui,0) in L1(\Omega ).

Consider the following regularized problem\left\{         
\partial bi,n(x,ui,n)

\partial t  - \mathrm{d}\mathrm{i}\mathrm{v}
\Bigl( 
\scrA n(x, t, ui,n,\nabla ui,n) + \Phi i,n(x, t, ui,n)

\Bigr) 
+fi,n(x, u1,n, u2,n) = 0 in QT

ui,n = 0 on \Gamma 
bi,n(x, ui,n)(t = 0) = bi,n(x, ui,0n) in \Omega .

(3.27)
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From (3.24), for i = 1, 2, we have

\partial bi,n(x, s)

\partial s
\geq 1

n
, | bi,n(x, s)| \leq \mathrm{m}\mathrm{a}\mathrm{x}

| s| \leq n
| bi(x, s)| + 1 \forall s \in \BbbR ,

thanks to (3.11) and (3.12) , f1,n and f2,n satisfy: there exists Fn, Gn \in L1(\Omega ) and
\sigma n > 0, \lambda n > 0 such that

| f1,n(x, s1, s2)| \leq Fn(x) + \sigma n \mathrm{m}\mathrm{a}\mathrm{x}
| s| \leq n

| bi(x, s)| a.e. in \Omega ,\forall s1, s2 \in \BbbR ,

| f2,n(x, s1, s2)| \leq Gn(x) + \lambda n \mathrm{m}\mathrm{a}\mathrm{x}
| s| \leq n

| bi(x, s)| a.e. in \Omega ,\forall s1, s2 \in \BbbR ,

Let zn(x, t, ui,n,\nabla ui,n) = \scrA n(x, t, ui,n,\nabla ui,n) +\Phi i,n(x, t, ui,n), which satisfies the quoted
assumptions (A1), (A2), (A3) and (A4) of [15]. Indeed, it remains to prove (A4) (the
others assumptions follow immediately from the hypothesis of our problem), to this end,
we use Young’s inequality as follows

| \Phi i,n(x, t, ui,n)\nabla ui,n| \leq | \gamma (x, t)| | \nabla ui,n| +M
 - 1

(M(| Tn(ui,n)| ))| \nabla ui,n| 

=
\alpha 2

\alpha + 2

\alpha + 2

\alpha 2
| \gamma (x, t)| | \nabla ui,n| 

+
\alpha + 1

\alpha 
M

 - 1
(M(| Tn(ui,n)| ))

\alpha 

\alpha + 1
| \nabla ui,n| 

\leq \alpha 2

\alpha + 2

\Bigl( 
M

\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
+M

\Bigl( 
| \nabla ui,n| 

\Bigr) \Bigr) 
+M

\Bigl( \alpha + 1

\alpha 
M

 - 1
(M(| Tn(ui,n)| ))

\Bigr) 
+M

\Bigl( \alpha 

\alpha + 1
| \nabla ui,n| 

\Bigr) 
.

While
\alpha 

\alpha + 1
< 1, using the convexity of M and since M and M

 - 1 \circ M are increasing
functions, one has

| \Phi i,n(x, t, ui,n)\nabla ui,n| \leq \alpha 2

\alpha + 2
M

\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
+

\alpha 2

\alpha + 2
M

\Bigl( 
| \nabla ui,n| 

\Bigr) 
+M

\Bigl( \alpha + 1

\alpha 
M

 - 1
(M(n))

\Bigr) 
+

\alpha 

\alpha + 1
M

\Bigl( 
| \nabla ui,n| 

\Bigr) 
.

Then we get

\Phi i,n(x, t, ui,n)\nabla ui,n \geq  - 
\Bigl( \alpha 2

\alpha + 2
+

\alpha 

\alpha + 1

\Bigr) 
M

\Bigl( 
| \nabla ui,n| 

\Bigr) 
 - M

\Bigl( \alpha + 1

\alpha 
M

 - 1
(M(n))

\Bigr) 
 - \alpha 2

\alpha + 2
M

\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
.

Using this last inequality and (H3) we obtain

zn(x, t, ui,n,\nabla ui,n)\nabla ui,n \geq 
\Bigl( 
\alpha  - \alpha 2

\alpha + 2
 - \alpha 

\alpha + 1

\Bigr) 
M

\Bigl( 
| \nabla ui,n| 

\Bigr) 
 - M

\Bigl( \alpha + 1

\alpha 
M

 - 1
(M(n))

\Bigr) 
 - \alpha 2

\alpha + 2
M

\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
\geq \alpha 2

(\alpha + 1)(\alpha + 2)
M

\Bigl( 
| \nabla ui,n| 

\Bigr) 
 - M

\Bigl( \alpha + 1

\alpha 
M

 - 1
(M(n))

\Bigr) 
 - \alpha 2

\alpha + 2
M

\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
.

Since \gamma \in EM (QT ), M
\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
\in L1(QT ). Thus, from [12], the approximate

problem (3.27) has at least one weak solution ui,n \in W 1,x
0 LM (QT ).

Step 2: A Priori Estimates.
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Proposition 3.5. Suppose that the assumptions (H1) - (H4), (3.9)-(3.13) hold true and
let ui,n be a solution of the approximate problem (3.27). Then, for all k > 0, there exists
a constant Ci,k, \widehat Ck (not depending on n), such that:

\| Tk(ui,n) \| W 1,x
0 LM (QT )\leq Ci,k, (3.28)

\int 
\Omega 

Bn
i,k(x, ui,n)(\sigma ) dx \leq \widehat Ck + k\| bi(x, ui,0\| L1(\Omega ), (3.29)

for almost any \sigma \in (0, T ) where Bn
i,k(x, \tau ) =

\int \tau 

0

Tk(s)
\partial bi,n(x, s)

\partial s
ds, and

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

meas
\Bigl\{ 
(x, t) \in QT : | ui,n| > k

\Bigr\} 
= 0. (3.30)

Proof. Let us take the test function Tk(ui,n)\chi (0,\sigma ) in the approximate problem (3.27),
one has for every \sigma \in (0, T )\int 

\Omega 

Bn
i,k(x, ui,n)(\sigma ) dx+

\int 
Q\sigma 

\scrA n(x, t, ui,n,\nabla ui,n)\nabla Tk(ui,n) dx dt

+

\int 
Q\sigma 

\Phi i,n(x, t, ui,n)\nabla Tk(ui,n) dx dt+
\int 
Q\sigma 

fi,n(x, u1,n, u2,n)Tk(ui,n) dx dt

=

\int 
\Omega 

Bn
i,k(x, ui,0n) dx.

(3.31)
First, let us remark that \Phi i,n(x, t, ui,n)\nabla Tk(ui,n) is different from zero only on the set
\{ | ui,n| \leq k\} where Tk(ui,n) = ui,n. Thanks to (H4) and Young’s inequality with an
algebraic trick for the constant of coercivity \alpha > 0, we have\int 

Q\sigma 

\Phi i,n(x, t, ui,n)\nabla Tk(ui,n) dx dt

\leq 
\int 
Q\sigma 

| \gamma (x, t)| | \nabla Tk(ui,n)| dx dt

+

\int 
Q\sigma 

M
 - 1

(M(| Tk(ui,n)| ))| \nabla Tk(ui,n)| dx dt

=
\alpha 2

\alpha + 2

\int 
Q\sigma 

\alpha + 2

\alpha 2
| \gamma (x, t)| | \nabla Tk(ui,n)| dx dt

+

\int 
Q\sigma 

\alpha + 1

\alpha 
M

 - 1
(M(| Tk(ui,n)| ))

\alpha 

\alpha + 1
| \nabla Tk(ui,n)| dx dt

\leq \alpha 2

\alpha + 2

\Bigl( \int 
Q\sigma 

M
\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
dx dt+

\int 
Q\sigma 

M
\Bigl( 
| \nabla Tk(ui,n)| 

\Bigr) 
dx dt

\Bigr) 
+

\int 
Q\sigma 

M
\Bigl( \alpha + 1

\alpha 
M

 - 1
(M(| Tk(ui,n)| ))

\Bigr) 
dx dt

+

\int 
Q\sigma 

M
\Bigl( \alpha 

\alpha + 1
| \nabla Tk(ui,n)| 

\Bigr) 
dx dt.

Since \gamma \in EM (Q\sigma ), then
\alpha 2

\alpha + 2

\int 
Q\sigma 

M
\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
dx dt = \gamma 0 < +\infty and while

\alpha 

\alpha + 1
< 1, using the convexity of M and the fact that M and M

 - 1 \circ M are increasing
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functions, we get \int 
Q\sigma 

\Phi i,n(x, t, ui,n)\nabla Tk(ui,n) dx dt

\leq \gamma 0 +
\alpha 2

\alpha + 2

\int 
Q\sigma 

M
\Bigl( 
| \nabla Tk(ui,n)| 

\Bigr) 
dx dt

+

\int 
Q\sigma 

M
\Bigl( \alpha + 1

\alpha 
M

 - 1
(M(k))

\Bigr) 
dx dt

+
\alpha 

\alpha + 1

\int 
Q\sigma 

M
\Bigl( 
| \nabla Tk(ui,n)| 

\Bigr) 
dx dt.

(3.32)

Since \Omega is bounded, there exists some constant Ck,\alpha such that\int 
Q\sigma 

M
\Bigl( \alpha + 1

\alpha 
M

 - 1
(M(k))

\Bigr) 
dx dt = Ck,\alpha .

Which gives the estimate\int 
Q\sigma 

\Phi i,n(x, t, ui,n)\nabla Tk(ui,n) dx dt

\leq \gamma 0 +
\alpha 2

\alpha + 2

\int 
Q\sigma 

M
\Bigl( 
| \nabla Tk(ui,n)| 

\Bigr) 
dx dt

+Ck,\alpha +
\alpha 

\alpha + 1

\int 
Q\sigma 

M
\Bigl( 
| \nabla Tk(ui,n)| 

\Bigr) 
dx dt.

(3.33)

On the other hand, due to (3.10), we have\int 
Q\sigma 

fi,n(x, u1,n, u2,n)Tk(ui,n) dx dt \geq 0. (3.34)

Concerning the first integral in (3.31), we have by construction of Bn
i,k(x, ui,n),\int 

\Omega 

Bn
i,k(x, ui,n)(\sigma ) dx \geq 0 (3.35)

and

0 \leq 
\int 
\Omega 

Bn
i,k(x, ui,0n) dx \leq k

\int 
\Omega 

| bi,n(x, ui,0n)| dx \leq k\| bi(x, ui,0)\| L1(\Omega ). (3.36)

Combining (3.31), (3.33), (3.34), (3.35) and (3.36) we get\int 
Q\sigma 

\scrA (x, t, Tk(ui,n),\nabla Tk(ui,n))\nabla Tk(ui,n) dx dt

\leq \gamma 0 + kC + Ck,\alpha +
\alpha 2

\alpha + 2

\int 
Q\sigma 

M
\Bigl( 
| \nabla Tk(ui,n)| 

\Bigr) 
dx dt

+
\alpha 

\alpha + 1

\int 
Q\sigma 

M
\Bigl( 
| \nabla Tk(ui,n)| 

\Bigr) 
dx dt,

(3.37)

where C = \| bi(x, ui,0)\| L1(\Omega ). Thanks to (H3), we deduce\int 
Q\sigma 

\Bigl( 
\alpha  - \alpha 2

\alpha + 2
 - \alpha 

\alpha + 1

\Bigr) 
M

\Bigl( 
| \nabla Tk(ui,n)| 

\Bigr) 
dx dt \leq \gamma 0 + kC + Ck,\alpha . (3.38)

Since
\Bigl( 
\alpha  - \alpha 2

\alpha + 2
 - \alpha 

\alpha + 1

\Bigr) 
=

\alpha 2

(\alpha + 1)(\alpha + 2)
> 0, finally we have\int 

QT

M
\Bigl( 
| \nabla Tk(ui,n)| 

\Bigr) 
dx dt \leq (\gamma 0 + kC + Ck,\alpha )

(\alpha + 1)(\alpha + 2)

\alpha 2
= Ci,k. (3.39)
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To prove (3.29), we combine (3.31), (3.33), (3.34), (3.36), (3.37) and (3.39) with \widehat Ck =

\gamma 0 + Ck,\alpha + ( \alpha 2

\alpha +2 + \alpha 
\alpha +1 )Ci,k. Finally, we prove (3.30), to this end, since Tk(ui,n) is

bounded in W 1,x
0 LM (QT ) there exists \lambda > 0 and a constant Ci,0(k) such that\int 

QT

M
\Bigl( | Tk(ui,n)| 

\lambda 

\Bigr) 
dx dt \leq Ci,0(k)

Case 1: if Ci,0(k) \leq 1. By using Young’s inequality, we obtain

meas
\Bigl\{ 
| ui,n| > k

\Bigr\} 
=

1

k

\int 
\{ | ui,n| >k\} 

k dx dt \leq 1

k

\int 
QT

| Tk(ui,n)| dx dt

\leq \lambda 

k

\Bigl( \int 
QT

M
\Bigl( | Tk(ui,n)| 

\lambda 

\Bigr) 
dx dt+

\int 
QT

M(1) dx dt
\Bigr) 

\leq \lambda 

k

\Bigl( 
1 +M(1)| QT | 

\Bigr) 
\forall n, \forall k > 0,

 - \rightarrow 0 as k  - \rightarrow \infty .

(3.40)

Case 2: if Ci,0(k) > 1, we think to use the convexity of M with
1

Ci,0(k)
< 1 and

Young’s inequality for P \prec \prec M appearing in assumption (H1) which implies that

\forall \epsilon > 0, there exist a constant d\epsilon : P (t) \leq M(\epsilon t) + d\epsilon , we obtain for \epsilon <
1

Ci,0(k)
\leq 1

meas
\Bigl\{ 
| ui,n| > k

\Bigr\} 
=

1

k

\int 
\{ | ui,n| >k\} 

k dx dt \leq 1

k

\int 
QT

| Tk(ui,n)| dx dt

\leq \lambda 

k

\Bigl( \int 
QT

P
\Bigl( | Tk(ui,n)| 

\lambda 

\Bigr) 
dx dt+

\int 
QT

P (1) dx dt
\Bigr) 

\leq \lambda 

k

\Bigl( \int 
QT

M
\Bigl( 
\epsilon 
| Tk(ui,n)| 

\lambda 

\Bigr) 
dx dt+

\int 
QT

(P (1) + d\epsilon ) dx dt
\Bigr) 

\leq \lambda 

k

\Bigl( 
1 + (P (1) + d\epsilon )| QT | 

\Bigr) 
\forall n, \forall k > 0,

 - \rightarrow 0 as k  - \rightarrow \infty .

(3.41)

\square 

Lemma 3.6. Let ui,n be a solution of the approximate problem (3.27), then:
(i) ui,n  - \rightarrow ui a.e. in QT ,
(ii) bi,n(x, ui,n)  - \rightarrow bi(x, ui) a.e. in QT ,
(iii) bi(x, ui) \in L\infty (0, T ;L1(\Omega )).

Proof. To prove (\bfi ) and (\bfi \bfi ), we adapt the same way as in [21, Lemma 5.3], we take a

C2(\BbbR ) nondecreasing function \Gamma k such that \Gamma k(s) =

\Biggl\{ 
s for | s| \leq k

2
k for | s| \geq k

and multiply the

approximate problem (3.27) by \Gamma \prime 
k(ui,n) we obtain

\partial Bi,n
\Gamma k

(x, ui,n)

\partial t
= div

\Bigl( 
\scrA n(x, t, ui,n,\nabla ui,n)\Gamma \prime 

k(ui,n)
\Bigr) 

 - \scrA n(x, t, ui,n,\nabla ui,n)\Gamma \prime \prime 
k(ui,n)\nabla ui,n + div

\Bigl( 
\Gamma \prime 
k(ui,n)\Phi i,n(x, t, ui,n)

\Bigr) 
 - \Gamma \prime \prime 

k(ui,n)\Phi i,n(x, t, ui,n)\nabla ui,n  - fi,n\Gamma 
\prime 
k(ui,n),

(3.42)

where Bi,n
\Gamma k

(x, \tau ) =

\int \tau 

0

\partial bi,n(x, s)

\partial s
\Gamma \prime 
k(s) ds.

Remark that M
 - 1 \circ M is an increasing function, \gamma \in EM (QT ), \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\Gamma \prime 

\mathrm{k}), \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\Gamma 
\prime \prime 
\mathrm{k}) \subset 
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[ - \mathrm{k}, \mathrm{k}] and using Young’s inequality we get\bigm| \bigm| \bigm| \int 
QT

\Gamma \prime 
k(ui,n)\Phi i,n(x, t, ui,n) dx dt

\bigm| \bigm| \bigm| 
\leq \| \Gamma \prime 

k\| L\infty 

\Bigl( \int 
QT

| \gamma (x, t)| dx dt+
\int 
QT

M
 - 1

(M(| Tk(ui,n)| )) dx dt
\Bigr) 

\leq \| \Gamma \prime 
k\| L\infty 

\Bigl( \int 
QT

\Bigl( 
M(| \gamma (x, t)| ) +M(1)

\Bigr) 
dx dt+

\int 
QT

M
 - 1

(M(k)) dx dt
\Bigr) 

< C1,k,

(3.43)

Also, form Young’s inequality and estimate (3.39) we have\bigm| \bigm| \bigm| \int 
QT

\Gamma \prime \prime 
k(ui,n)\Phi n(x, t, ui,n)\nabla ui,n dx dt

\bigm| \bigm| \bigm| 
\leq \| \Gamma \prime \prime 

k\| L\infty 

\Bigl( \int 
QT

| \gamma (x, t)| dx dt+
\int 
QT

M
 - 1

(M(| Tk(ui,n)| ))| \nabla Tk(ui,n)| dx dt
\Bigr) 

\leq \| \Gamma \prime \prime 
k\| L\infty 

\Bigl[ \int 
QT

\Bigl( 
M(| \gamma (x, t)| ) +M(1)

\Bigr) 
dx dt+

\int 
QT

M(k) dx dt

+

\int 
QT

M(| \nabla Tk(ui,n)| ) dx dt
\Bigr] 

< C2,k,
(3.44)

where C1,k and C2,k are two positive constants independent of n. Then each term in the
right-hand side of (3.42) is bounded either in L1(QT ) or in W - 1,xLM (QT ), which implies
that

\partial Bi,n
\Gamma k

(x, ui,n)

\partial t
is bounded in L1(QT ) +W - 1,xLM (QT ). (3.45)

Moreover, due to the properties of \Gamma \prime 
k and (3.7), we have

| \nabla Bi,n
\Gamma k

(x, ui,n)| \leq \| Ai
k\| L\infty (\Omega )| \nabla Tk(ui,n)| \| \Gamma \prime 

k\| L\infty (\Omega ) + k\| \Gamma \prime 
k\| L\infty (\Omega )

\widetilde Ai
k(x),

which implies, thanks to (3.28), that

Bi,n
\Gamma k

(x, ui,n) is bounded in W 1,x
0 LM (QT ).

Arguing as in [21, 23], we get (i) and (ii) of Lemma 3.6.
For (iii), use (ii) and we pass to the limit-inf in (3.29) as n  - \rightarrow +\infty , we get

1

k

\int 
\Omega 

Bi,k(x, ui)(\sigma ) dx \leq 
\widehat Ck

k
+

\Bigl( 
\| bi(x, ui,0\| L1(\Omega )

\Bigr) 
,

for almost any \sigma \in (0, T ). Thanks to the definition of Bi,k(x, s) and the convergence of
1

k

\int 
\Omega 

Bi,k(x, ui) to bi(x, ui) as k goes to +\infty , this gives that bi(x, ui) \in L\infty (0, T ;L1(\Omega )).

\square 

The next lemma will be used later, proving it now.

Lemma 3.7. Let ui,n be a solution of the approximate problem (3.27), then:
(i) \{ \scrA (x, t, Tk(ui,n),\nabla Tk(ui,n))\} n is bounded in (LM (QT ))

N ,

(ii) \mathrm{l}\mathrm{i}\mathrm{m}
m\rightarrow +\infty 

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow +\infty 

\int 
\{ m\leq | ui,n| \leq m+1\} 

\scrA (x, t, ui,n,\nabla ui,n)\nabla ui,n dx = 0.

Proof. (i) Let \phi \in (EM (QT ))
N be an arbitrary function. From (H2) we can write\Bigl( 

\scrA (x, t, Tk(ui,n),\nabla Tk(ui,n)) - \scrA (x, t, Tk(ui,n), \phi )
\Bigr) 
\cdot 
\Bigl( 
\nabla Tk(ui,n) - \phi 

\Bigr) 
\geq 0.
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Which gives: \int 
QT

\scrA (x, t, Tk(ui,n),\nabla Tk(ui,n))\phi dx dt

\leq 
\int 
QT

\scrA (x, t, Tk(ui,n),\nabla Tk(ui,n))\nabla Tk(ui,n) dx dt

+

\int 
QT

\scrA (x, t, Tk(ui,n), \phi )(\phi  - \nabla Tk(ui,n)) dx dt.

(3.46)

Let us denote by J1 and J2 the first and the second integral respectively in the right-hand
side of (3.42), so that

J1 =

\int 
QT

\scrA (x, t, Tk(ui,n),\nabla Tk(ui,n))\nabla Tk(ui,n) dx dt.

Going back to (3.37), we obtain

J1 \leq \gamma 0 + kC + Ck,\alpha +
\alpha 2

\alpha + 2

\int 
Q\sigma 

M
\Bigl( 
| \nabla Tk(ui,n)| 

\Bigr) 
dx dt

+
\alpha 

\alpha + 1

\int 
Q\sigma 

M
\Bigl( 
| \nabla Tk(ui,n)| 

\Bigr) 
dx dt,

(3.47)

And thanks to (3.28), there exists a positive constant CJ1
independent of n such that

J1 \leq CJ1
. (3.48)

Now we estimate the integral J2, to this end, remark that

J2 =

\int 
QT

\scrA (x, t, Tk(ui,n), \phi )(\phi  - \nabla Tk(ui,n)) dx dt

\leq 
\int 
QT

| \scrA (x, t, Tk(ui,n), \phi )| | \phi | dx dt+
\int 
QT

| \scrA (x, t, Tk(ui,n), \phi )| | \nabla Tk(ui,n)| dx dt.

On the other hand, let \eta be large enough, from (H1) and the convexity of M , we get:\int 
QT

M
\Bigl( | \scrA (x, t, Tk(ui,n), \phi )| 

\eta 

\Bigr) 
dx dt

\leq 
\int 
QT

M
\Bigl( c(x, t) +M

 - 1
(P (k1| Tk(ui,n)| ) +M

 - 1
(M(k2| \phi | ))

\eta 

\Bigr) 
dx dt

\leq 1

\eta 

\int 
QT

M(c(x, t)) dx dt+
1

\eta 

\int 
QT

M
\Bigl( 
M

 - 1
(P (k1| Tk(ui,n)| ))

\Bigr) 
dx dt

+
1

\eta 

\int 
QT

M
\Bigl( 
M

 - 1
(M(k2| \phi | ))

\Bigr) 
dx dt

\leq 1

\eta 

\int 
QT

M(c(x, t)) dx dt+
1

\eta 

\int 
QT

P (k1k) dx dt

+
1

\eta 

\int 
QT

M(k2| \phi | ) dx dt.

(3.49)

Since \phi \in (EM (QT ))
N , c(x, t) \in EM (QT ), we deduce that \{ \scrA (x, t, Tk(ui,n), \phi )\} is

bounded in (LM (QT ))
N and we have \{ \nabla Tk(ui,n)\} is bounded in (LM (QT ))

N , conse-
quently, J2 \leq CJ2

, where CJ2
is a positive constant not depending on n. And then we

obtain\int 
QT

\scrA (x, Tk(ui,n),\nabla Tk(ui,n))\phi dx dt \leq CJ1 + CJ2 . for all \phi \in (EM (QT ))
N . (3.50)

By Banach-Steinhaus theorem, \{ \scrA (x, t, Tk(ui,n),\nabla Tk(ui,n))\} n is bounded in (LM (QT ))
N .
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(ii) Testing (3.27) by \theta m(ui,n) = Tm+1(ui,n) - Tm(ui,n), we have\int 
\Omega 

Bm(x, ui,n)(T ) dx+

\int 
QT

\scrA (x, t, ui,n,\nabla ui,n)\nabla \theta m(ui,n) dx dt

+

\int 
QT

\Phi i,n(x, t, ui,n)\nabla \theta m(ui,n) dx dt =

\int 
\Omega 

Bm(x, ui,0n) dx

+

\int 
QT

fi,n\theta m(ui,n) dx dt,

(3.51)

where Bm(x, \tau ) =

\int \tau 

0

\partial bi(x, s)

\partial s
\theta m(s) ds. Since Bm(x, ui,n)(T ) \geq 0, hence from (H3) and

(H4), it follows

\alpha 

\int 
QT

M(| \nabla \theta m(ui,n)| ) dx dt

\leq 
\int 
QT

M
 - 1

(M(| ui,n| ))| \nabla \theta m(ui,n)| dx dt+
\int 
QT

| \gamma (x, t)| | \nabla \theta m(ui,n)| dx dt

+

\int 
\Omega 

Bm(x, ui,0n) dx+

\int 
QT

fi,n\theta m(ui,n) dx dt.

(3.52)

That means, knowing that \nabla \theta m(ui,n) = \nabla ui,n\chi Em
a.e. in QT where

Em :=
\Bigl\{ 
(x, t) \in QT : m \leq | ui,n| \leq m+ 1

\Bigr\} 
,

and following the same argument as in the proof of (3.28) of proposition 3.5, we get

\alpha 

\int 
QT

M(| \nabla \theta m(ui,n)| ) dx dt

\leq 
\int 
QT

M
 - 1

(M(| ui,n| ))| \nabla ui,n| \chi Em dx dt+

\int 
Em

| \gamma (x, t)| | \nabla \theta m(ui,n)| dx dt

+

\int 
\Omega 

Bm(x, ui,0n) dx+

\int 
QT

fi,n\theta m(ui,n) dx dt

\leq 
\int 
QT

M
\Bigl( \alpha + 1

\alpha 
M

 - 1
(M(| ui,n| )

\Bigr) 
\chi Em dx dt+

\int 
QT

M
\Bigl( \alpha 

\alpha + 1
| \nabla \theta m(ui,n)| 

\Bigr) 
dx dt

+
\alpha 2

\alpha + 2

\Bigl( \int 
Em

M
\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
dx dt+

\int 
QT

M
\Bigl( 
| \nabla \theta m(ui,n)| 

\Bigr) 
dx dt

\Bigr) 
+

\int 
\Omega 

Bm(x, ui,0n) dx+

\int 
QT

fi,n\theta m(ui,n) dx dt.

(3.53)

let C\alpha 
max := \mathrm{m}\mathrm{a}\mathrm{x}

\Bigl( 
(\alpha + 1),

(\alpha + 1)(\alpha + 2)

\alpha 2

\Bigr) 
, it follows\int 

QT

M(| \nabla \theta m(ui,n)| ) dx dt

\leq C\alpha 
max

\Bigl[ \int 
Em

M
\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
dx dt+

\int 
\Omega 

Bm(x, ui,0n) dx

+

\int 
Em

M
\Bigl( \alpha + 1

\alpha 
M

 - 1
(M(| ui,n| )

\Bigr) 
dx dt+

\int 
QT

fi,n\theta m(ui,n) dx dt
\Bigr] 
.

(3.54)

Now, let us concentrate on the convergence as n\rightarrow \infty of each integral in (3.54), which
can be treated by the same way (Lebesgue’s dominated convergence theorem), take for
example the first one:\int 
\{ m\leq | ui,n| \leq m+1\} 

M
\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
dx dt =

\int 
\Omega 

M
\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
\chi \{ m\leq | ui,n| \leq m+1\} dx dt
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Put gn =M
\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
\chi \{ m\leq | ui,n| \leq m+1\} , since \chi is continuous, then

gn  - \rightarrow g =M
\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
\chi \{ m\leq | ui| \leq m+1\} a.e. in QT .

And we have | gn| \leq M
\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
which is integrable on QT , since \gamma \in EM (QT ).

From Lebesgue’s dominated convergence theorem, we obtain

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
QT

gn dx dt =

\int 
QT

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

gn dx dt =

\int 
QT

M
\Bigl( \alpha + 2

\alpha 2
| \gamma (x, t)| 

\Bigr) 
\chi \{ m\leq | ui| \leq m+1\} dx dt.

Passing to the limit as n\rightarrow \infty in (3.54), we get

\mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty 

\int 
QT

M(| \nabla \theta m(ui,n)| ) dx dt

\leq C\alpha 
max

\Bigl[ \int 
\{ m\leq | ui| \leq m+1\} 

M
\Bigl( \alpha + 2

\alpha 2
| \gamma (x)| 

\Bigr) 
dx dt+

\int 
\Omega 

Bm(x, ui0) dx

+

\int 
\{ m\leq | ui| \leq m+1\} 

M
\Bigl( \alpha + 1

\alpha 
M

 - 1
(M(| ui| )

\Bigr) 
dx dt

+

\int 
QT

fi\theta m(ui) dx dt
\Bigr] 
.

(3.55)

Now, we will pass to the limit as m\rightarrow \infty , by Lebesgue’s theorem each integral in (3.55)
goes to zero as m goes to \infty , which gives

\mathrm{l}\mathrm{i}\mathrm{m}
m\rightarrow \infty 

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
QT

M(| \nabla \theta m(ui,n)| ) dx dt = 0. (3.56)

Our aim here is to prove that \mathrm{l}\mathrm{i}\mathrm{m}
m\rightarrow \infty 

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
QT

\Phi i,n(x, t, ui,n)\nabla \theta m(ui,n) dx dt = 0, to this

end, Young’s inequality allows us to get\int 
QT

\Phi i,n(x, t, ui,n)\nabla \theta m(ui,n) dx dt \leq 
\int 
QT

M(| \nabla \theta m(ui,n)| ) dx dt

+

\int 
Em

M(\Phi i,n(x, t, ui,n)) dx dt.
(3.57)

We have already proved that the first integral in the right-hand side of (3.57) goes to zero
as m and n go to \infty , it remains to show that the second one goes to zero again. Indeed,
note that, for n \geq m+ 1 \geq | ui,n| we have Tn(ui,n) = Tm+1(ui,n) = ui,n, then, from (H4)

and the convexity of M we obtain\int 
\{ m\leq | ui,n| \leq m+1\} 

M(\Phi i,n(x, t, ui,n)) dx dt

=

\int 
\{ m\leq | ui,n| \leq m+1\} 

M(| \Phi i,n(x, t, Tm+1(ui,n))| ) dx dt

\leq 
\int 
\{ m\leq | ui,n| \leq m+1\} 

M(M
 - 1

(M(| Tm+1(ui,n)| )) dx dt

\leq 
\int 
\{ m\leq | ui,n| \leq m+1\} 

M(| Tm+1(ui,n)| ) dx dt

\leq 
\int 
QT

M(m+ 1) dx dt.

(3.58)

We deduce that\int 
\{ m\leq | ui,n| \leq m+1\} 

M(| \Phi i,n(x, t, Tm+1(ui,n))| ) dx dt

=

\int 
QT

M(| \Phi i,n(x, t, Tm+1(ui,n)| ) \chi \{ m\leq | ui,n| \leq m+1\} dx dt \leq C0,m.
(3.59)
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Let us denote Gm
n =M(| \Phi i,n(x, t, Tm+1(ui,n)| ) \chi \{ m\leq | ui,n| \leq m+1\}  - \rightarrow Gm a.e. in \Omega where

Gm =M(| \Phi i(x, t, Tm+1(ui)| ) \chi \{ m\leq | ui| \leq m+1\} ,

since M is continuous and \Phi i is a Carathéodory function. From (3.59), Gm
n is bounded

independently of n, using Lebesgue’s theorem, it follows, as n  - \rightarrow \infty \int 
\{ m\leq | ui,n| \leq m+1\} 

M(| \Phi i,n(x, t, ui,n)| ) dx dt  - \rightarrow 
\int 
\{ m\leq | ui| \leq m+1\} 

M(| \Phi i(x, t, ui)| ) dx dt.

(3.60)
And then

\mathrm{l}\mathrm{i}\mathrm{m}
m\rightarrow \infty 

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
\{ m\leq | ui,n| \leq m+1\} 

M(| \Phi i,n(x, t, ui,n)| ) dx dt = 0 (3.61)

Combining (3.56), (3.57) and (3.61) we get

\mathrm{l}\mathrm{i}\mathrm{m}
m\rightarrow \infty 

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
QT

\Phi i,n(x, t, ui,n)\nabla \theta m(ui,n) dx dt = 0 (3.62)

Finaly, let m,n  - \rightarrow \infty in (3.51), we obtain

\mathrm{l}\mathrm{i}\mathrm{m}
m\rightarrow \infty 

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
\{ m\leq | ui,n| \leq m+1\} 

\scrA (x, t, ui,n,\nabla ui,n)\nabla ui,n dx dt = 0. (3.63)

\square 

Step 3: Almost everywhere convergence of the gradients.

Proposition 3.8. Let ui,n be a solution of the approximate problem (3.27). Then, for
all k \geq 0 we have (for a subsequence still denoted by ui,n): as n\rightarrow +\infty ,
(i) \nabla ui,n \rightarrow \nabla ui a.e. in QT ,
(ii) \scrA (x, t, Tk(ui,n),\nabla Tk(ui,n))\rightharpoonup \scrA (x, t, Tk(ui),\nabla Tk(ui)) weakly in (LM (QT ))

N ,
(iii) M(| \nabla Tk(ui,n)| ) \rightarrow M(| \nabla Tk(ui)| ) strongly in L1(QT ).

Proof. Let \theta i,j \in \frakD (QT ) be a sequence such that \theta i,j  - \rightarrow ui in W 1,x
0 LM (QT ) for the

modular convergence and let \psi i,j \in \frakD (\Omega ) be a sequence which converges strongly to ui,0
in L1(\Omega ).

Put Z\mu 
i,j = Tk(\theta i,j)\mu + e - \mu tTk(\psi i,j) where Tk(\theta i,j)\mu is the mollification with respect to

the time of Tk(\theta i,j), notice that Z\mu 
i,j is a smooth function having the following properties:

\partial Z\mu 
i,j

\partial t
= \mu (Tk(\theta i,j) - Z\mu 

i,j), Z\mu 
i,j(0) = Tk(\psi i,j) and | Z\mu 

i,j | \leq k,

Z\mu 
i,j  - \rightarrow Tk(ui)\mu + e - \mu tTk(\psi i,j), in W 1,x

0 LM (QT ) modularly as j  - \rightarrow \infty ,

Tk(ui)\mu + e - \mu tTk(\psi i,j)  - \rightarrow Tk(ui), in W 1,x
0 LM (QT ) modularly as \mu  - \rightarrow \infty .

Let now the function hm defined on \BbbR for any m \geq k by:

hm(r) =

\left\{   1 if | r| \leq m
 - | r| +m+ 1 if m \leq | r| \leq m+ 1
0 if | r| \geq m+ 1.
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Put Em =
\Bigl\{ 
(x, t) \in QT : m \leq | ui,n| \leq m+ 1

\Bigr\} 
and let us test the approximate problem

(3.27) by the test function \varphi \mu ,i
n,j,m = (Tk(ui,n) - Z\mu 

i,j)hm(ui,n), we get\Bigl\langle \partial bi,n(x, ui,n)
\partial t

, \varphi \mu ,i
n,j,m

\Bigr\rangle 
+

\int 
QT

\scrA (x, t, ui,n,\nabla ui,n)(\nabla Tk(ui,n) - \nabla Z\mu 
i,j)hm(ui,n) dx dt

+

\int 
QT

\scrA (x, t, ui,n,\nabla ui,n)(Tk(ui,n) - Z\mu 
i,j)\nabla ui,nh

\prime 
m(ui,n) dx dt

+

\int 
Em

\Phi i,n(x, t, ui,n)\nabla ui,nh\prime m(ui,n)(Tk(ui,n) - Z\mu 
i,j) dx dt

+

\int 
QT

\Phi i,n(x, t, ui,n)hm(ui,n)(\nabla Tk(ui,n) - \nabla Z\mu 
i,j) dx dt

=  - 
\int 
QT

fi,n(x, u1,n, u2,n)\varphi 
\mu ,i
n,j,m dx dt.

(3.64)
For simplicity, denote by \epsilon (n, j, \mu , i) and \epsilon (n, j, \mu ) any quantities such that

\mathrm{l}\mathrm{i}\mathrm{m}
i\rightarrow +\infty 

\mathrm{l}\mathrm{i}\mathrm{m}
\mu \rightarrow +\infty 

\mathrm{l}\mathrm{i}\mathrm{m}
j\rightarrow +\infty 

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow +\infty 

\epsilon (n, j, \mu , i) = 0,

\mathrm{l}\mathrm{i}\mathrm{m}
\mu \rightarrow +\infty 

\mathrm{l}\mathrm{i}\mathrm{m}
j\rightarrow +\infty 

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow +\infty 

\epsilon (n, j, \mu ) = 0.

We have the following lemma which can be found in [21, 23].

Lemma 3.9. (cf. [21, 23]) Let \varphi \mu ,i
n,j,m = (Tk(ui,n) - Z\mu 

i,j)hm(ui,n), then for any k \geq 0
we have: \Bigl\langle \partial bi,n(x, ui,n)

\partial t
, \varphi \mu ,i

n,j,m

\Bigr\rangle 
\geq \epsilon (n, j, \mu , i), (3.65)

where
\Bigl\langle 
\cdot , \cdot 
\Bigr\rangle 

denotes the duality pairing between L1(QT ) +W - 1,xLM (QT ) and L\infty (QT )\cap 
W 1,x

0 LM (QT ).

To complete the proof of Proposition 3.8, we establish the results below, for any fixed
k \geq 0, we have:

(r1)

\int 
QT

fi,n(x, u1,n, u2,n)\varphi 
\mu ,i
n,j,m dx dt = \epsilon (n, j, \mu ).

(r2)

\int 
QT

\Phi i,n(x, t, ui,n)hm(ui,n)(\nabla Tk(ui,n) - \nabla Z\mu 
i,j) dx dt = \epsilon (n, j, \mu ).

(r3)

\int 
Em

\Phi i,n(x, t, ui,n)\nabla ui,nh\prime m(ui,n)(Tk(ui,n) - Z\mu 
i,j) dx dt = \epsilon (n, j, \mu ).

(r4)

\int 
QT

\scrA (x, t, ui,n,\nabla ui,n)(Tk(ui,n) - Z\mu 
i,j)\nabla ui,nh

\prime 
m(ui,n) dx dt \leq \epsilon (n, j, \mu ,m).

(r5)

\int 
QT

[\scrA (x, t, Tk(ui,n),\nabla Tk(ui,n)) - \scrA (x, t, Tk(ui,n),\nabla Tk(ui)\chi s)]

\times [\nabla Tk(ui,n) - \nabla Tk(ui)\chi s] dx dt \leq \epsilon (n, j, \mu ,m, s).
The proofs of (r1), (r4) and (r5) are the same as in [21, 23].
To prove (r2), to this end, for n \geq m+ 1, we have

\Phi i,n(x, t, ui,n)hm(ui,n) = \Phi i(x, t, Tm+1(ui,n))hm(Tm+1(ui,n)) a.e in QT .

put Pi,n = M
\Bigl( | \Phi i(x, t, Tm+1(ui,n)) - \Phi i(x, t, Tm+1(ui))| 

\eta 

\Bigr) 
. Since \Phi i is continuous with

respect to its third argument and ui,n  - \rightarrow ui a.e in QT , then \Phi i(x, t, Tm+1(ui,n)) \rightarrow 
\Phi i(x, t, Tm+1(ui)) a.e in \Omega as n goes to infinity, besides M(0) = 0, it follows

Pi,n  - \rightarrow 0, a.e in \Omega as n\rightarrow \infty . (3.66)
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Using now the convexity of M and (H4), we have for every \eta > 0 and n \geq m+ 1:

Pi,n =M
\Bigl( | \Phi i(x, t, Tm+1(ui,n)) - \Phi i(x, t, Tm+1(ui))| 

\eta 

\Bigr) 
\leq M

\Bigl( | \Phi i(x, t, Tm+1(ui,n))| + | \Phi i(x, t, Tm+1(ui))| 
\eta 

\Bigr) 
\leq M

\Bigl( 2
\eta 
| \gamma (x, t)| + 2

\eta 
M

 - 1
(M(m+ 1))

\Bigr) 
=M

\Bigl( 1
2

4

\eta 
| \gamma (x, t)| + 1

2

4

\eta 
M

 - 1
(M(m+ 1))

\Bigr) 
\leq 1

2
M(

4

\eta 
| \gamma (x, t)| ) + 1

2
M(

4

\eta 
M

 - 1
(M(m+ 1))).

(3.67)

We put C\eta 
m(x, t) =

1

2
M(

4

\eta 
| \gamma (x, t)| ) + 1

2
M(

4

\eta 
M

 - 1
(M(m+ 1))). Since \gamma \in EM (QT ), we

have C\eta 
m \in L1(QT ), Then by Lebesgue’s dominated convergence theorem we get

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
QT

Pi,n dx dt =

\int 
QT

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

Pi,n dx dt = 0. (3.68)

This implies that \{ \Phi i(x, t, Tm+1(ui,n))\} converges modularly to \Phi i(x, t, Tm+1(ui)) as n\rightarrow 
\infty in (LM (QT ))

N . Moreover, both \Phi i(x, t, Tm+1(ui,n)) and it’s limit \Phi i(x, t, Tm+1(ui))
belong to (EM (QT ))

N , indeed, from (H4) we have for every \eta > 0\int 
QT

M
\Bigl( | \Phi i(x, t, Tm+1(ui,n))| 

\eta 

\Bigr) 
dx dt

\leq 
\int 
QT

M
\Bigl( 1
\eta 
| \gamma (x, t)| + 1

\eta 
M

 - 1
(M(| Tm+1(ui,n)| ))

\Bigr) 
dx dt

\leq 
\int 
QT

M
\Bigl( 1
2

2

\eta 
| \gamma (x, t)| + 1

2

2

\eta 
M

 - 1
(M(m+ 1))

\Bigr) 
dx dt

\leq 
\int 
QT

1

2
M(

2

\eta 
| \gamma (x, t)| ) dx dt+

\int 
QT

1

2
M

\Bigl( 2
\eta 
M

 - 1
(M(m+ 1))

\Bigr) 
dx dt

<\infty since \gamma \in EM (QT ) and \Omega is bounded,

we use the same arguments for \Phi i(x, t, Tm+1(ui)). Thanks to Lemma 2.2, we deduce that

\Phi i(x, t, Tm+1(ui,n))  - \rightarrow \Phi i(x, t, Tm+1(ui)) strongly in (EM (QT ))
N .

On the other hand, \nabla Tk(ui,n)\rightharpoonup \nabla Tk(ui) weakly in (LM (QT ))
N as n goes to infinity, it

follows that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\int 
QT

\Phi i(x, t, ui,n)hm(ui,n)[\nabla Tk(ui,n) - \nabla Z\mu 
i,j ] dx dt

=

\int 
QT

\Phi i(x, t, ui)hm(ui)[\nabla Tk(ui) - \nabla Z\mu 
i,j ] dx dt.

(3.69)

Using the modular convergence of Z\mu 
i,j as j  - \rightarrow \infty and then \mu  - \rightarrow \infty , we get (r2). Now

we prove (r3), remark that for n \geq m+ 1, we have

\nabla ui,nh\prime m(ui,n) = \nabla Tm+1(ui,n) a.e in QT .

By the almost everywhere convergence of ui,n, we have Tk(ui,n)  - Z\mu 
i,j converges to

Tk(ui) - Z\mu 
i,j in L\infty (QT ) weak-\ast and we have already proved that \Phi i(x, t, Tm+1(ui,n))  - \rightarrow 

\Phi i(x, t, Tm+1(ui)) strongly in (E\varphi (QT ))
N then,

\Phi i(x, t, Tm+1(ui,n))
\bigl( 
Tk(ui,n) - Z\mu 

i,j

\bigr) 
 - \rightarrow \Phi i(x, t, Tm+1(ui))

\bigl( 
Tk(ui) - Z\mu 

i,j

\bigr) 
,
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strongly in E\varphi (QT ) as n  - \rightarrow \infty . Using again the fact that, \nabla Tm+1(ui,n)\rightharpoonup \nabla Tm+1(ui)
weakly in (L\varphi (QT ))

N as n tends to +\infty we obtain\int 
Em,n

\Phi i,n(x, t, ui,n)\nabla ui,nh\prime m(ui,n)(Tk(ui,n) - Z\mu 
i,j) dx dt

 - \rightarrow 
\int 
Em

\Phi i(x, t, ui)\nabla ui(Tk(ui) - Z\mu 
i,j) dx dt as n  - \rightarrow \infty .

Using the modular convergence of Z\mu 
i,j as j  - \rightarrow +\infty and letting \mu tends to infinity, we

get (r3). As a consequence of Lemma 3.3, the results of Proposition 3.8 follow. \square 

Step 4: Passing to the limit.
The limit ui of the approximate solution ui,n of (3.27) satisfies the renormalization
identity,

\mathrm{l}\mathrm{i}\mathrm{m}
m\rightarrow \infty 

\int 
\{ m\leq | ui| \leq m+1\} 

\scrA (x, t, ui,\nabla ui)\nabla ui dx dt = 0. (3.70)

Proof. Fix m > 0 and we can write\int 
\{ m\leq | ui,n| \leq m+1\} 

\scrA (x, t, ui,n,\nabla ui,n)\nabla ui,n dx dt

=
\Bigl( \int 

QT

\scrA (x, t, ui,n,\nabla ui,n)(\nabla Tm+1(ui,n) - \nabla Tm(ui,n)) dx dt
\Bigr) 

=
\Bigl( \int 

QT

\scrA (x, t, Tm+1(ui,n),\nabla Tm+1(ui,n))\nabla Tm+1(ui,n) dx dt

 - 
\int 
QT

\scrA (x, t, Tm(ui,n),\nabla Tm(ui,n))\nabla Tm(ui,n)) dx dt
\Bigr) 
.

From (ii), (iii) of Proposition 3.8 and passing to the limit as n goes to infinity for fixed
m, we get

\mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty 

\int 
\{ m\leq | ui,n| \leq m+1\} 

\scrA (x, t, ui,n,\nabla ui,n)\nabla ui,n dx

=

\int 
\{ m\leq | ui| \leq m+1\} 

\scrA (x, t, ui,\nabla ui)\nabla ui dx.

Finally, we pass to the limit as m goes to infinity and then we use (3.63), it follows

\mathrm{l}\mathrm{i}\mathrm{m}m\rightarrow \infty \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty 

\int 
\{ m\leq | ui,n| \leq m+1\} 

\scrA (x, t, ui,n,\nabla ui,n)\nabla ui,n dx dt

= \mathrm{l}\mathrm{i}\mathrm{m}m\rightarrow \infty 

\int 
\{ m\leq | ui| \leq m+1\} 

\scrA (x, t, ui,\nabla ui)\nabla ui dx dt = 0.

Which give the desired result. \square 

Now, we will pass to the limit. Let us take in the approximate problem (3.27) the test
function r\prime (ui,n) with r \in W 1,\infty (\BbbR ) such that r\prime have a compact support such that for
k > 0, \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mathrm{r}

\prime 
) \subset [ - \mathrm{k}, \mathrm{k}] we get

\partial Bn
i,r(x, ui,n)

\partial t
 - div (r\prime (ui,n)\scrA (x, t, ui,n,\nabla ui,n)) + r\prime \prime (ui,n)\scrA (x, t, ui,n,\nabla ui,n)\nabla ui,n

 - div (r\prime (ui,n)\Phi i,n(x, t, ui,n)) + r\prime \prime (ui,n)\Phi i,n(x, t, ui,n)\nabla ui,n
=  - fi,n(x, u1,n, u2,n)r\prime (ui,n) in \frakD \prime (QT ),

(3.71)

for i = 1, 2, where Bn
i,r(x, \tau ) =

\int \tau 

0

\partial bi,n(x, s)

\partial s
r\prime (s) ds.

Our aim here is to pass to the limit in each term in the previous equality, let us start
by the terms of the left-hand side:
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Limit of the first term
\partial Bn

i,r(x, ui,n)

\partial t
, since r is bounded and Bn

i,r(x, ui,n)  - \rightarrow Bi,r(x, ui)

a.e in QT and in L\infty (QT ) weak*, then

\partial Bn
i,r(x, ui,n)

\partial t
 - \rightarrow \partial Bi,r(x, ui)

\partial t
in \frakD \prime (QT ) as n\rightarrow \infty .

Remark that, since r\prime and r\prime \prime have a compact support in \BbbR , there exists k > 0 such that
\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mathrm{r}\prime ), \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mathrm{r}\prime \prime ) \subset [ - \mathrm{k}, \mathrm{k}]. For n large enough, we have:

r\prime (ui,n)\scrA (x, t, ui,n,\nabla ui,n) = r\prime (ui,n)\scrA (x, t, Tk(ui,n),\nabla Tk(ui,n)) a.e. in QT ,

r\prime \prime (ui,n)\scrA (x, t, ui,n,\nabla ui,n)\nabla ui,n
= r\prime \prime (ui,n)\scrA (x, t, Tk(ui,n),\nabla Tk(ui,n))\nabla Tk(ui,n) a.e. in QT ,

r\prime (ui,n)\Phi i,n(x, t, ui,n) = r\prime (Tk(ui,n))\Phi i,n(x, t, Tk(ui,n)),

r\prime \prime (ui,n)\Phi i,n(x, t, ui,n)\nabla ui,n = r\prime \prime (Tk(ui,n))\Phi i,n(x, t, Tk(ui,n))\nabla Tk(ui,n).
For the second term of (3.71), Since r\prime (ui,n) \rightarrow r\prime (ui) a.e in QT as n\rightarrow \infty , r\prime is bounded
and (ii), (iii) of proposition 3.8 we have

r\prime (ui,n)\scrA (x, t, Tk(ui,n),\nabla Tk(ui,n))\rightharpoonup r\prime (ui)\scrA (x, t, Tk(ui),\nabla Tk(ui))
weakly in (LM (QT ))

N for \sigma (\Pi LM ,\Pi EM ), then

r\prime (ui,n)\scrA (x, t, ui,n,\nabla ui,n)\rightharpoonup r\prime (ui)\scrA (x, t, ui,\nabla ui) weakly in (LM (QT ))
N .

Concerning the third term of (3.71), Since r\prime (ui,n) \rightarrow r\prime \prime (ui) a.e in QT as n\rightarrow \infty , r\prime \prime is
bounded and (ii), (iii) of proposition 3.8 we obtain, as n\rightarrow \infty 

r\prime \prime (ui,n)\scrA (x, t, ui,n,\nabla ui,n)\nabla ui,n \rightharpoonup r\prime \prime (ui)\scrA (x, t, Tk(ui),\nabla Tk(ui))\nabla Tk(ui)
weakly in L1(QT ). And then

r\prime \prime (ui)\scrA (x, t, Tk(ui),\nabla Tk(ui))\nabla Tk(ui) = r\prime \prime (ui)\scrA (x, t, ui,\nabla ui)\nabla ui a.e. in QT .

Arguing similarly, we get the limit of the fourth term of (3.71),

r\prime (ui,n)\Phi i,n(x, t, ui,n) \rightarrow r\prime (ui)\Phi i(x, t, ui) strongly in (EM (QT ))
N .

For the remaining term of the left-hand side, we have r\prime \prime (ui,n) converges to r\prime \prime (ui) and
\nabla Tk(ui,n) \rightharpoonup \nabla Tk(ui) weakly in (LM (QT ))

N as n \rightarrow +\infty , while \Phi i,n(x, Tk(ui,n)) is
uniformly bounded with respect to n and converges a.e. in QT to \Phi i(x, Tk(ui)) as n tends
to +\infty . Therefore

r\prime \prime (ui,n)\Phi i,n(x, t, ui,n)\nabla ui,n \rightharpoonup r\prime \prime (ui)\Phi i(x, t, ui)\nabla ui weakly in LM (QT ).

Concerning the right-hand side of (3.71), due to (3.11),(3.12), (3.25) and (3.26), we have

fi,n(x, u1,n, u2,n)r
\prime (ui,n)  - \rightarrow fi(x, u1, u2)r

\prime (ui) strongly in L1(QT ) as n\rightarrow \infty .

Now, we are ready to pass to the limit as n\rightarrow \infty in each term of (3.71) to conclude that
ui satisfies (3.16). It remains to show that Bi,r(x, ui) satisfies the initial condition of
(3.27). To do this, recall that, r\prime \prime has a compact support, we have Bn

i,r(x, ui,n) is bounded
in L\infty (QT ). Moreover, (3.71) and the above considerations on the behavior of the terms

of this equation show that
\partial Bn

i,r(x, ui,n)

\partial t
is bounded in L1(QT ) +W - 1,xLM (QT ). As a

consequence, an Aubin’s type Lemma (cf [24, Corollary 4] ) and Lemma 2.5 imply that
Bn

i,r(x, ui,n) is in a compact set of C0([0, T ];L1(\Omega )). It follows that, Bn
i,r(x, ui,n)(t = 0)

converges to Bi,r(x, ui)(t = 0) strongly in L1(\Omega ). Due to Remark 3.2 and the fact that
bi,n(x, ui,0n)  - \rightarrow bi(x, ui,0) in L1(\Omega ), we conclude that Bn

i,r(x, ui,n)(t = 0) = Bn
i,r(x, ui,0n)

converges to Bi,r(x, ui)(t = 0) strongly in L1(\Omega ). Then we conclude that Bi,r(x, ui)(t =
0) = Bi,r(x, ui,0) in \Omega , which conclude the full proof of the main result.
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