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EXISTENCE RESULT FOR SOME COUPLED NONLINEAR
PARABOLIC SYSTEMS IN ORLICZ-SOBOLEV SPACES

JABIR OUAZZANI CHAHDI, MOHAMED BOURAHMA, HASSANE HJIAJ, AND KHALID KAIBA

ABsTrRACT. Consider the nonlinear parabolic system

W —div (A(x,t,ui, Vu;) + ®;(z, ¢, ul)> + fi(z,u1,u2) =0 in Qr

u; =0 onI’

bz(zvul)(t = O) = b,‘(l‘,’bbi’g) in Q7
where 7 = 1,2. In this paper we deal with the renormalized solution for the above
system in Orlicz-Sobolev spaces where f; is a Carathéodory function satisfying some
growth assumptions. The main term which contains the space derivatives and a
non-coercive lower order term are considered in divergence form satisfying only the
original Orlicz growths.

1. INTRODUCTION

The analysis of partial differential equations (PDEs) is one of the main fields of
mathematics, PDEs with nonlinearities involving modular functions have attracted an
increasing amount of attention in recent years. Systems of nonlinear PDEs present some
new and interesting phenomena, which are not present in the study of a single equation.
Let Q be a bounded open subset of RV, N > 2, Q7 = Q x (0,7) where T is a positive
real number and M is an Orlicz function. Let A(u) := —div A(z, t,u, Vu) be a so-called
Leray-Lions type operator whose prototype is the p-Laplacian operator and b; : @ xR — R
is a Carathéodory function such that b;(x,) is a strictly increasing C'-function for any
fixed x € Q with b;(z,0) = 0.

Consider for i = 1, 2, the following parabolic system

M + A(uy) — div®;(z, t,u;) + fi(x,ur,uz) =0  in Qp
% (1.1)
u; =0 on I’
bi(x,ui)(t = O) = bi(l‘,ui,o) in Q,
A model of applications of these operators is the Boussinesq’s system:

% +u-Vu—2div(u(f)e(u)) + Vp=F(0) in Qr
ob(0
u=0, 0=0 on T’
u(t=0)=wup bO)(t=0)=>0b) in Q,

where the first equation is the motion conservation equation, the unknowns are the fields of
1
displacement u : Q7 — RY and temperature 6 : Q7 — R, the field e(Vu) = i(Vu—l—(Vu)t)

is the strain rate tensor. Also, for applications to fluid mechanics models one can see [17].

The problem (1.1), with a single equation, has been investigated in different particular
directions. As example, in the classical Sobolev spaces, i.e M = tP, for & = 0, b is
a maximal monotone graph on R and A(z,t,s,£) is independent of s, existence and
uniqueness of a renormalized solution have been studied by Blanchard and Murat in [5]
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and by Blanchard and Porretta in the case where A(x,t, s, ) is independent of ¢ in [6].
In [1], Bennouna et al. have studied problem (1.1) for a measure p = f — div(F'), with
f €LY Qr), F € (LP (Qr))YN and & satisfies the condition
(e, t,5)] < el D)s]".
+p N +2
dy=——(p-1).
—7 and =+ +p(p )

In what concerns contributions in Orlicz spaces with a single equation, Azroul et al.
have proved in [3] the existence of renormalized solution, where ® depends only on « and
b(z,u) = b(u), the same result has been shown by Redwane in [23] where b(x,u) depends
on z and u. In [21], the authors have proved existence of renormalized solution under the
assumptions, f € L'(Qr) and ® satisfies a growth condition described by an N-function
P that increases essentially less rapidly than the appropriate Orlicz function M,

B(x,t,8)| <P (P(|s])) with P << M. (1.2)

The previous result has been enhanced in [7] under the likely growth condition in the
elliptic case,

N
with ¢(x,t) € L7(Qr) for some 7 =

(@, )| < (@) + T (M(Js])), with v € Eyr(Q). (13)

Turn now to the doubly equation, in the classical Sobolev spaces, the system (1.1) has

been solved by Azroul et al. in [4] in the case where b; and ®; are independent of x. For
the study of (1.1) in some particular cases one can consult [8, 9, 10, 19, 22]|.

The approach of this paper is how to deal with the existence of renormalized solutions

for system (1.1) in Orlicz spaces where ®; satisfies the original Orlicz growth condition

[@i(a,t,5)| < (o, t) + M (M(Js])), where 7 € Exr(Qr), (1.4)

without assuming any restriction on the modular function M neither on its complementary
M, the described problem lives in non reflexive Orlicz spaces. The existence result in this
context generalizes all works mentioned above.

In dealing with this problem, we have encountered some difficulties, essentially, under
the growth condition (1.4), it’s difficult to prove existence of solution for the regularized
problem and proving its convergence, which are the basic results in the proof of such
solutions. The novelty in the main proofs follows thanks to an algebraic trick combined
with the convexity of M and Young’s inequality on a well-chosen positive quantities.

This article is organized as follows, in section 2, we recall some well-known preliminaries,
results and properties of Orlicz-Sobolev spaces and inhomogeneous Orlicz-Sobolev spaces.
Section 3 is devoted to basic assumptions, problem setting and the proof of the main
result.

2. PRELIMINARIES
2.1. Orlicz-Sobolev spaces. Let M : RT — R be a continuous and convex function
with:
M(t) M(t)
t

M(t) >0 for ¢ > 0,lim ——= =0 and lim
t—=0 ¢ t—+oo

The function M is said an N-function or an Orlicz function, the N-function complementary

to M is defined as

= +o00.

M(t) = sup{st —M(s),s > 0}.
We recall that (see [2])
M(t) <M '(M(t)) < 2M(t) forallt>0 (2.5)
and the Young’s inequality: for all s,¢ > 0,
st < M(s)+ M(t).
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We said that M satisfies the As-condition if for some k > 0,
M(2t) < kM(t) for all t> 0, (2.6)

and if (2.6) holds only for ¢ > to, then M is said to satisfy the Ag-condition near infinity.
Let M7 and M5 be two N-functions. The notation M; << M, means that M; grows
essentially less rapidly than Mo, i.e.
M 1(t)

Ve > 0, hm =0,

that is the case if and only if
M. -1
OB
t=oo (My1)~1(t)
Let Q be an open subset of RY. The Orlicz class Kj/(2) (resp. the Orlicz space

L(Q)) is defined as the set of (equivalence class of) real-valued measurable functions u
on {2 such that:

/ M (u(z))dr < oo (resp./ M(@)d:l? < oo for some A\ > 0).
Q

Endowed with the Luxemburg norm

ullar = inf{)\ >0: /QM(“&””))dx < 1},

and the so-called Orlicz norm, that is

lullne = sup [ fute)v(o)] da.
lvllar<
Ly () is a Banach space and K /() is a convex subset of Ls(§2). The closure in Lz (£2)
of the set of bounded measurable functions with compact support in € is denoted by
En(Q).
The Orlicz-Sobolev space WLy (Q) (vesp. WLEy(Q2)) is the space of functions u
such that v and its distributional derivatives up to order 1 lie in Ly (€2) (resp. En(Q2)).
This is a Banach space under the norm

lullior = Y7 1D ully-

| <1

Thus, WLy () and WEp () can be identified with subspaces of the product of
(N +1) copies of Ljs(£2). Denoting this product by IIL,;, we will use the weak topologies
o(TILy, TTEy7) and o (1L s, T L),
The space W Ej(Q) is defined as the norm closure of the Schwartz space D(Q) in
WEN(Q) and the space Wi Ly () as the o(IIL s, [IE;) closure of D(Q) in WL ().
We say that a sequence {u, } converges to u for the modular convergence in WL (Q)
if, for some A > 0,

/M(M) dx — 0 for all |a] < 1;
Q

this implies convergence for o(IILs, ITLyz).

If M satisfies the As-condition on Rt (near infinity only if  has finite measure), then
the modular convergence coincides with norm convergence. Recall that the norm || Dul|
defined on Wy Ly (Q) is equivalent to (see [13]).

Let W 1Li7(Q) (vesp. W 'E5;(€2)) denotes the space of distributions on € which
can be written as sums of derivatives of order < 1 of functions in L37(Q2) (resp. E57(£2)).
It is a Banach space under the usual quotient norm.
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If the open ) has the segment property then the space () is dense in Wi Ly ()
for the topology o(IILs, IIL77) (see [13]). Consequently, the action of a distribution in
WL37() on an element of Wy Ly (€2) is well defined. For more details one can see for
example [2] or [16].

2.2. Inhomogeneous Orlicz-Sobolev spaces. As in Section 2.1 of Preliminaries, let
Q be a bounded open subset of RN, T > 0 and set Q7 = Q x (0,T). For each a € NV,
denote by DY the distributional derivative on Q7 of order av with respect to the variable
z € §2. The inhomogeneous Orlicz-Sobolev spaces are defined as follows,

W Lar(Qr) = {u € Lar(Qr) : Dfu € Lu(Qr) forall Jo <1},

and
W Bar(@r) = {u € Bu(@r) : Dfu € Ex(Qr) forall |a <1},

The last space is a subspace of the first one, and both are Banach spaces under the norm,

[Jull = Z HD:UHJM,QT'

la<1

We can easily show that they form a complementary system when € satisfies the segment
property. These spaces are considered as subspaces of the product space IIL;(Qr) which
have as many copies as there is a-order derivatives, || < 1. We shall also consider
the weak topologies o(IILy, I1E5;) and o(IILy, ITLg7)). If u € WLy (Qr) then the
function : t +— u(t) = u(t,-) is defined on (0,T) with values in WLy (Q). If, further, u €
W2 Ey(Qr) then the concerned function is a W!Ey(Q)-valued and is strongly measur-
able. Furthermore the following imbedding holds: W1 Ey (Qr) C LY(0,T; WL Ep ()).
The space W% Ly (Q7) is not in general separable, if u € WLy (Q7), we can not
conclude that the function u(t) is measurable on (0,7"). However, the scalar function
t = u(t) ||arq is in L*(0,T). The space Wy " Epr(Qr) is defined as the (norm) closure
in Wh*Ey(Qr) of D(Qr). It is proved that when € has the segment property, then each
element u of the closure of ®(Qr) with respect of the weak™ topology o(ILLas, I1Ey;) is a
limit, in W2 L (Q7), of some subsequence (u,) C ®(Q7) for the modular convergence;
i.e., if, for some A > 0, such that for all || < 1;

/ M(M)dzdtﬂo as n — oo.
Q

This implies that the sequence (u,,) converges to u in WL, (Q7) in the weak topology
o(I1L s, ITE;). Consequently,

————o(IlLy ,I1Ey;)

70-(
D(Qr) =9(Qr)
This space will be denoted by WO1 “Lar(Qr). Furthermore,
Wy  Ext(Qr) = Wy " Ly (Qr) NTLE .

TIL pf T1LG7)

We have then the following complementary system
(WOI’ILM(QT),R Wy Enr(Qr), Fo)

F being the dual space of WO1 T Epm(Qr). Tt is also, except for an isomorphism, the quotient
of TIL5; by the polar set Wy'* Ear(Qr)*, and will be denoted by F = W1 L+(Qr)
and it is shown that,

W Lp(@r) = {7 = 30 Difa fo € Lir(@r) .

la<1
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this space will be equipped with the usual quotient norm
I£1 = inf > Nl fallaror
| <1
where the infimum is taken on all possible decompositions

=" Dfa.fa € Lyr(Qr).

le]<1
The space Fj is then given by,
W L(Qr) = {f = Y Difa: fa € Exl(Qr)}.
ler|<1

and is denoted by Fy = W1 Er(Qr).
2.3. Technical lemmas.

Lemma 2.1. [14] Let M : R™ — R™ be an N-function: continuous and convez function

with,
M(t M(t
M(t)>0f0rt>0,limﬁz() and lim J:Jroo.
t—0 ¢ t

t—+oo

Let ug,u € Lp(Q). If up, — w for the modular convergence, then uy, — u for o(Las, Lyy).
Lemma 2.2. Let M : RT — RT be an N-function: continuous and convexr function with,
M(t M(t
M(t) >0 fort > O,tlir%# =0 and lim M) = 400
—

t——4o00 t

If u, — u for the modular convergence with every A > 0 in Ly (), then u, — u strongly

Proof. We will use the Orlicz norm, for all A > 0 we have / M < w> dr — 0
Q

as k — oo. Thus M (M) tends to 0 strongly in L'(2) and so for a subsequence,
still indexed by k, we can assume that vy — w a.e. in Q. For an arbitrary v € L37(1),
there exists A, > 0 such that M (%) € LY(Q). By Young’s inequality and the convexity

of M we can write

(un(2) — u(e))ole)] < M @Afun(o) — ate)) + 337 (52).

Av

Applying Vitali’s theorem we obtain / |(uk(x) —u(x))v(z)| de — 0 for all v € Lyp(£2)
Q

and so
lluk — ul||mo = sup / |(ug(x) — u(z))v(x)| de — 0 as k — oo,
lvllgr<1/0Q

which yields the result. O

Lemma 2.3. [13] Let F : R — R be uniformly lipschitzian, with F(0) = 0. Let M be
a Orlicz function and let w € WLy (Q) (resp. WIEN(Q)). Then, F(u) € WLy (Q)
(resp. WLEy\(2)). Moreover, if the set of discontinuity points D of F' is finite, then

;o\ Ou

0 Flu) = F(u)ﬁa:i ae. in {xeQ:u(x)¢ D}

Oz; 0 a.e. in {x€Q:u(x)e€ D}.
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Lemma 2.4. [13] Let F': R — R be uniformly lipschitzian, with F(0) = 0. Let M be a
Orlicz function. we assume that the set of discontinuity points D of F' is finite, then the
mapping F : WLy (Q) — WLy (Q) is sequentially continuous with respect to the weak*
topology o (1L, ITES;).

Lemma 2.5. [12] Let Q be a bounded open subset of R, N > 2, satisfying the segment
property, then

. ou 1
{u € Wi Lar(Qr) : 5 € W Lyg(Qr) + Ll(QT)} c c([o,T],Ll(Q)).

Lemma 2.6. [13]| (Integral Poincaré’s type inequality in inhomogeneous Orlicz spaces)
Let Q be a bounded open subset of RN and M is an Orlicz function, then there exists two
positive constants 6, A > 0 such that

M (S|u(z, t)|) da dt g/ AM (|Vu(z,t)|) dedt Yu € Wi Ly (Qr).
Qr Qr
Lemma 2.7. |20, Lemma 2.4] If f,, C L*(Q) with f, — f € LY(Q) a.e. in Q, fo,f>0
a. e. in < and/ fn(z)de — / f(x) dx, then f, — f in LY(Q).

Q o

Lemma 2.8. [14] Suppose that Q satisfies the segment property and let u € Wi Ly ().
Then, there exists a sequence (u,) C D(Q) such that u,, — u for the modular convergence
in Wi Ly (). Furthermore, if u € Wg Ly () N L(Q) then

[unlloo < (N + 1)[[ulloo
Lemma 2.9. (cf. [11]) Let M be an N-function. Let (uy,) be a sequence of W% Ly (Qr)
such that, u, — u weakly in WYLy (Qr) for o(IlLa, I1ES;) and 88% = hp+ ky in

D'(Qr) with hy, is bounded in W~1*Liz(Qr) and ky, is bounded in L*(Qr). Then,
un — u strongly in L, (Qr). If further, u, € Wol’xLM(QT) then w, — u strongly in

LYQr).

3. BASIC ASSUMPTIONS AND MAIN RESULT

Through this paper € is a bounded open subset of RY, N > 2, satisfying the segment
property. Let Q7 = (0,7) x Q be the cylinder of RY, T':= (0,7) x 9Q and M is an Orlicz
function. Consider a Carathéodory function b; : 2 x R — R such that for every x € ,
bi(x,s) is a strictly increasing C!'-function with b;(x,0) = 0 and for any k£ > 0, there
exists a constant \i > 0, a function A% € L>(2) and a function A% € L, () such that,

;. Obila,s) Wles))| < Ay (o). (37)

b T S AL e [V (T
Let A: D(A) C Wy" Ly (Qr) — W1 Li+(Qr) an operator of Leray-Lions type of the
form:
A(u) == —div Az, t,u, Vu),
This work aims to prove the existence of renormalized solutions in the setting of Orlicz
spaces to the nonlinear parabolic system

% — div (A(x,tui, Vu;) + @, (z,t, ui)) + filz,ur,u2) =0 in Qpr
u; =0 onTI (3.8)
bi(x,ui)(t = O) = bi(x,ui,o) in Q,
where i = 1,2. The vector A: Qr x R x RV — R¥ is a Carathéodory function satisfying,
for almost every (x,t) € Qr and for all s € R, &, € RN (€ # 1) the following conditions
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(H1): There exists a function ¢(z,t) € Eg;(Qr) and some positive constants kq, ko,
k3 and an Orlicz function P << M such that

A, t,5,)| < Ble(a.t) + kDT (Plkols])) + 3 (M (kse]))] -
(Hz2): A is strictly monotone,
(Al,t,5,6) = Ala,t,s,m) - (€= 1) > 0.

(Hs): A is coercive,
Alx,t,5,8) - € = aM([E]).
For the lower order term, we assume ®; : Q7 x R — R be a Carathéodory function
satisfying:
(Hy4): For all s € R and for almost every x € €,
(@i, t,5)| < Y(z,t) + M (M(|s])) where v € Exz(Qr).

Moreover, we suppose that for i = 1,2, b; : Q@ x R — R is a strictly increasing C'-function
with b;(2,0) =0 and f; : 2 x R x R = R is a Carathéodory function with

f1(z,0,8) = fa(x,5,0) =0 a.e. x€Q,VseR. (3.9)
and for almost every = € €2, for every s1,s2 € R,
sign(s;) fi(z, s1,82) > 0. (3.10)

The growth assumptions on f; are as follows: For each k£ > 0, there exists o > 0 and a
function Fy in L*(£) such that

|f1(x, 81,82)| < Fi(x) + o [ba2(z, 52)] (3.11)

a.e. in Q, for all s such that |s1| <k, for all s, € R. For each k > 0, there exists Ay > 0
and a function G}, in L!(Q) such that

|fa(, 51,52)] < Gr(x) + A |bi(z,51)] (3.12)

for almost every x € Q, for every ss such that |so| < k, and for every s; € R. Finally, we
assume the following condition on the initial data wu; o:

u;,0 is a measurable function such that b;(z,u; ) € L*(Q), for i = 1,2. (3.13)

Definition 3.1. A couple of functions (u1, us) defined on Qr is called a renormalized
solution of system (3.8) if for i = 1,2 the function u; satisfies

Ti(us) € Wy " Lag(Qr)  and  b(x,u;) € L(0,T; L1(Q)), (3.14)
lim Az, t,u;, Vuy)Vu,; de dt = 0, (3.15)

Mo m<ui(,t)| <m+1}
and if, for every function r in W1*°(R) such that 7’ has a compact support, we have

83”37(;”’1“) —div (v’ (u;) Az, t, us, Vug)) + 7”7 (w;) Az, t, ui, Vu; ) Vg,
—div (7' (u; )@ (z, t,u;)) + 77 (wi) @i (2, t,u) Vuy + fiz, ur,u)r’(u;) =0

in ©'(Qr), and

(3.16)

Biﬂ.(a:, ul)(t = O) = Bi,r($7 ui,o) in Q, (317)

where B; ,(x,T) :/ b, s)
0 s
Remark 3.2. [21, 23] For every nondecreasing function r € W2°°(R) such that supp(1’)
C [k, k] and (3.7), we have
Nelr(s1) = r(s2)] < |Biw(@,51) = Biw(@, 52) < [| ARl Lo () Ir(s1) = r(s2)]

for almost every z € ) and for every s1, s9 € R.

r'(s) ds in Q.
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Lemma 3.3. [18] Under assumptions (Hy)-(Hs), let (Z,) be a sequence in Wy Ly (Qr)
such that

Zp —Z in Wy Ly(Qr) for o(TLy(Qr), TE(Q7)), (3.18)
(A(m, Zn,VZn)) is bounded in (LM(QT))N, (3.19)
lim (A(:m t, 20, N Z0) — Al t, Zn, VZXS)> : (vzn - VZXS)dxdt =0, (3.20)

n,5— 00 Qr

where xs is the characteristic function of the set Qs = {CE eN:|VZ| < s} Then,

VZ, —VZ a.ce. inQr, (3.21)

1Lm Az, t, 20,V Z,)V Z,, d = Az, t, 2,V Z)\V Z dadt, (3.22)
T JQr Qr

M(|VZ,|) — M(|VZ]) in LY(Q7). (3.23)

In what follows, we will use the following real function of a real variable, called the
truncation at height k£ > 0,

s if ‘8‘ <k
Ty (s) = max ( — k,min(k,s)) =3 k> if|s| > k&

5]

and its primitive is defined by

Ti(s) = /O | Ty (t) dt.

Note that T}, has the properties: Ti(s) > 0 and Ti(s) < k|s|.
The following theorem is our main result.

Theorem 3.4. Assume that the assumptions (Hy) — (Hy) and (3.9)-(3.13) hold true,
then there exists at least one solution (uy,us) for the parabolic system (3.8) in sense of
Definition 3.1.

The proof of the above theorem is divided into four steps.
Step 1: Approximate problems. For each n € N*, put
1
bin(z,s) = bi(x,T(s)) + —s, (3.24)
n

An(z,t,5,6) = Az, t,T,(s),€) ae (z,t) € Qr,Vs € R,VE € RY,
and
D, (x,t,8) = Di(x,t,T(s)) ae (z,t) € Qr,Vs € R,

fin(z,s1,52) = fi(z, Tn(s1), s2) a.e in ,Vsy, 52 € R, (3.25)
fan(z,s1,82) = fa(x, 51, Tn(s2)) a.e in Q,Vsy,s0 € R. (3.26)
And let u; 0, € C§°(€2) such that
| bin (2, i.0n) |21 <|| bi(w,ui0) [z and bi (2, uion) — bi(z,ui0) in L ().

Consider the following regularized problem

W —div (.An(x, tyUim, VUin) + ®in(a,t, um)>
+fi,n(x7u1,n7u2,n) =0 in QT (327)
Ui = 0 onI

bi,n(l" ui,n)(t = 0) = bi,n(xa ui,On) in €.
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From (3.24), for ¢ = 1,2, we have

bi n\4, 1
8»87(:‘9) > -~ |bi n(z, )] < g}g}ﬁbi(:r,sﬂ +1 VseR,
thanks to (3.11) and (3.12) , f1, and fo,, satisfy: there exists F,,,G, € L*(Q2) and
o, >0, A, > 0 such that

| f1,n(2, 81, 82)| < Fp(x) + op HEX |bi(z, s)| a.e. in Q,Vs1,82 € R,

| fon(x,s1,82)| < Gn(z) + A ng |bi(z, )| a.e. in Q,Vs1,82 € R,

Let 2 (2, t, wi ny Vi n) = Ap (2, t, Uin, Vg n) + @i 0 (2, t, u; ), which satisfies the quoted
assumptions (Ay), (Az), (A3) and (A4) of [15]. Indeed, it remains to prove (Ay) (the
others assumptions follow immediately from the hypothesis of our problem), to this end,
we use Young’s inequality as follows

1

[Binlitva)Viial < ol t)JJZz;m\ BT (M1 (4.0)) [Vt
e
;T OH_( (1T (Ui,n)l))m| Wi
= a+2<M( (@, t)‘) +M<|v“’7”|)>

+M(iM (T (s )1)) + M(QLHWUM).

While

«
functions, one has

. . . = 51 . .
< 1, using the convexity of M and since M and M = o M are increasing

)

a? a—+2 a?
. . ) <
[Pon(a i) V| < M (25" (b)) + S M (Vs
«

+M(O‘;'1M‘1(M(n))) e M(|Vum|>.
Then we get
D, (@, uin) Vg, > _(aOfZ + ozi 1) (|VU1 n|) (O‘: 1M (M(n)))
2
- (2 e 0)).

Using this last inequality and (Hj3) we obtain
2

2 (X, Uiy VU ) VUG > (a — ao—li— 5~ ai1)M(W“i’"|)
(T ) ()
> WES‘MMQWM ) —M(O‘;‘ 1M*1(M(n)))
- (2 e 0)).

(x,t)|) € L'(Qr). Thus, from [12], the approximate

. —/a+2
Since v € E37(Qr), M( =
problem (3.27) has at least one weak solution u;,, € Wy'" L (Qr).

Step 2: A Priori Estimates.
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Proposition 3.5. Suppose that the assumptions (H1) — (Ha), (3.9)-(3.13) hold true and
let u; n, be a solution of the approxzimate problem (3.27). Then, for all k > 0, there exists

a constant C; i, Ch (not depending on n), such that:

| T (wi,n) ”WOI’ILM(QT)S Cik, (3.28)
[ Blstauin)(0) de < Cu+ klbie. ol o) (3.29)
Q
4 bz n\<,
for almost any o € (0,T) where B} (z,7) = / Tk(s)a’T(srs) ds, and
: o s

lim meas{(x,t) € Qr : |uppn| > k} =0. (3.30)

k—o0

Proof. Let us take the test function T} (u;n)X(0,0) in the approximate problem (3.27),
one has for every o € (0,7T)

/ Bl'(z,uin)(0) do + Ay (@t Ui, V) VT (w ) do dit
Q Qs
4 Bt ) VErluin) dode [ fonun ) Tils,) da de
Qs

o

:/B;‘k(m,umn) dx.
et

(3.31)
First, let us remark that ®;,,(x, ¢, u; n) VI, (u;,) is different from zero only on the set
{lwin| < k} where Ty(u;n) = u;pn. Thanks to (Hy) and Young’s inequality with an
algebraic trick for the constant of coercivity o > 0, we have

/ q)i,n(x7t7ui,n)VTk(ui,n) dx dt

o

S/ [v(x, )|V Tk (wi pn)| da dt

[ MM T (i) )|V T ()| da dt

Qo

o? a2
= [ R 09T
a+1-—-1 o

< ao‘j2</QoM(aC;2|fy(x,t)) da dt—i—/QUM(VTk(Ui,n)) da dt)

* /QG M(a 2; 1M71(M(|Tk(ui,n)|))) dx dt

«
M(—2 VT, (ui .
+/Qg (a+1|v k(u,)|>dxdt

Since v € E37(Qs), then o / M(a+2\ (z t)|> de dt = < 400 and while
Y M o)y O[+2 0. ()[2 YL, = 7 w

« . . -_— ——1 . .
< 1, using the convexity of M and the fact that M and M ~ o M are increasing

a+1
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functions, we get

/ D, (@, Ui ) VI (us0) da di
o2

U a+2 /Q M(|VTk(ui,n)|) dx dt

+/Q M( U;th_l(M(k))) dz dt

< +

«
Oé+1 Qo

Since € is bounded, there exists some constant C}, o such that

+ M(\VTk(ui,nn) dz dt.

_ 1
/ M (SN (M (R)) ) dr db = O
Qo [0

Which gives the estimate
/ q)iﬂl (.’I}, ta ui,n)VT}c (uz,n) dx dt

2

/ M(‘VTk(Ui,n)\) dx dt
Qo

o
+Ck,a + 047—"-1 /Q(y M(|VTk(ul,n)|> dx dt.

On the other hand, due to (3.10), we have

fim (@, v n, u2.0)Th (Ui n) do dt > 0.
Qo

Concerning the first integral in (3.31), we have by construction of B (z,uin),

/ B;fk(%ui,n)(a) de >0
Q

and

0< / BI(2, us0n) da < k / 1bi (2 00| d < K1B3(, w1.0) | 1 -
Q Q

Combining (3.31), (3.33), (3.34), (3.35) and (3.36) we get

.A(.’E, t, Tk (uim), VTk (ui,n))VT;g (Uz,n) d.’l? dt

Qo
_ a?
<o+ k o M (VT (i)l ) da dt
<y +kC+ Cy, +04+2/QU VT (uin)|) de
M( T (i )d dt,
oy ) (VT de
where C = [|b;(x, u;,0)|| 2 (0)- Thanks to (Hs), we deduce
/ (a o a )M(|VT( )|) do dt <o+ kC + C
_ — A\ Ui n >~ ,oe
Qo o+ 2 a—+1 k ’ o k,
o? a a?
i - — = finall h
Since (a P a+1) @+ Da+2) > 0, finally we have

(a+1)(a+2)

T (%

/ M(IVTi(uin)l) do dt < (30 + KC + Cia) 22 = G

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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To prove (3.29), we combine (3.31), (3.33), (3.34), (3.36), (3.37) and (3.39) with Cj, =
Y + Cra + (aa—; + 357)Ci k. Finally, we prove (3.30), to this end, since Ty (u;p) is
bounded in Wol’xLM(QT) there exists A > 0 and a constant C; o(k) such that

/QT M(M) dz dt < C;o(k)

Case 1: if C; o(k) < 1. By using Young’s inequality, we obtain

1 1
meas{ |ui ] > k 7/ kde dt < 7/ T ()| da dt
{ } R J{jui >k} kJq

L, s [ W0)

E(1+M(1)\QT|> Vo, Yk >0,
—0 ask— oo.

IN

IA

1
Case 2: if C; (k) > 1, we think to use the convexity of M with Crol®) < 1 and
3,0

Young’s inequality for P << M appearing in assumption (H;) which implies that
Ve > 0, there exist a constant d. : P(t) < M(et) + d. , we obtain for € < Croll) <1
1,0

1 1
measq |ujn| >k =— kdrdt < — [Tk (wi n)| d dt
k] k ’
{|wi,n|>k} Qr

<2 (/Q ('T’“ “””)d dt+/@ ?(1)dxdt)
g%( [ ‘T’“ )|)dxdt+/T(P(1)—|—d€) d di (3.41)
g%(1+ +d)\QT|) Vo, Yk >0,

—0 ask — oco.

Lemma 3.6. Let u;,, be a solution of the approximate problem (3.27), then:

(i) win— u; ae inQr,

(1) bin(x,uin) — bi(z,w;) ae inQr,

(i1i) bi(z,u;) € L°°(0,T; LY(S2)).

Proof. To prove (i) and (ii), we adapt the same way as in [21, Lemma 5.3], we take a

k
C?(R) nondecreasing function T'j, such that I'y(s) = { s forls| <3 9 and multiply the

k  for |s| >k
approximate problem (3.27) by I', (u; ) we obtain

8B (a: Ui n) ) ,
T = div (.An(x,t,uim, Vuim)Fk(uLn))

—An(l‘, t, Uij,n, Vui,n)rg(ui,n)vui,n + div (F;€ (Ui,n)q)i n(x t,u; n))
*F%(Ui,n>¢i,n($7taui,n)vui,n fz n (Uz n)

i T abz n\,
where B (z,7) = / MI‘;@(S) ds.
0 85

Remark that M o M is an increasing function, v € Eg;(Qr), supp(I'y), supp(I'y) C

(3.42)
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[—k, k] and using Young’s inequality we get

‘/ T (win)®in (2, t,u; ) do dt‘
T

< Tl QT| y(x, )| de dt + QTM*(MQT,C(W)D)dxdt) (3.4
< |IT, / M(1y(a 1)) + M(1)) d dit + j N (M(k)) d di)
<Cl,k:7 ’ ’

Also, form Young’s inequality and estimate (3.39) we have
‘ / Fg(ul,n)(bn(xv t, ui,n)vui,n dx dt‘
T

s|uanpm(]g o) dadt+ | N (M1 Tt ) DI VT (11,0)| da i)

Qr
<77 1 [/QT (F( . D) + M (1)) dr it + [ ara

+/ M|V Ty (i 0)]) d i
Qr
< Cg,k,

(3.44)
where C ;, and Cs ), are two positive constants independent of n. Then each term in the
right-hand side of (3.42) is bounded either in L'(Qr) or in W% L7(Qr), which implies
that ‘

GBZF’:(:U, Uin)
ot

Moreover, due to the properties of I'}, and (3.7), we have

is bounded in L'(Q7) + W™ 1* L++(Qr). (3.45)

IV BE (2, wi )| < AL Loe 0 [V T (@) [Tl Lo ) + BIT | oo (0 AR (),
which implies, thanks to (3.28), that
Bf:(x,uln) is bounded in Wy** L (Qr).

Arguing as in [21, 23], we get (7) and (%) of Lemma 3.6.
For (i), use (i) and we pass to the limit-inf in (3.29) as n — 400, we get

1 C
i [ Burteu)(o) do < Gt (I violive)

for almost any o € (0,7"). Thanks to the definition of B; x(x,s) and the convergence of
1
%/ Bi x(z,u;) to b;j(z,u;) as k goes to +oo, this gives that b;(x,u;) € L>(0,T; L*(R)).
Q
O
The next lemma will be used later, proving it now.

Lemma 3.7. Let u; ., be a solution of the approzimate problem (3.27), then:
(i) {A(x,t,Ti(uin), VIk(tin))}tn is bounded in (Lz7(Qr))",

(ii) lim lim Az, t,wi ny, VUi )V de = 0.

m—+-+00 n—-+00 {mS\ui,n|§m+1}

Proof. (i) Let ¢ € (Ear(Q7))N be an arbitrary function. From (Hy) we can write

(A(x, £, To(twin), V(i) — Al, t, T (uin), ¢)) : (VTk(um) - ¢) > 0.
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Which gives:

/ Az, t, T (wi ), VI (win))¢ de dt

< A(m, t, Tk (ui,n), VTk (uz,n))VTk (Uz,n) dx dt (346)
QT
b A T3 0)(6 — V(i) do
Qr

Let us denote by J; and J, the first and the second integral respectively in the right-hand
side of (3.42), so that

Jl = .A(QL‘, t, Tk (ui,n), VTk (ul,n))VTk (uhn) dx dt.
Qr
Going back to (3.37), we obtain

< @ M T @M
J1 < v+ EC + Cy, +0‘+2/QU (|V k(u,)|>dmdt

@ /Qg M (VT (1)) der di.

(3.47)
_|_

a+1
And thanks to (3.28), there exists a positive constant C;, independent of n such that
Ji < Cy,. (3.48)

Now we estimate the integral J,, to this end, remark that

Jy = Az, t, T (win), $) (¢ — VI (u;p)) do dt
Qr

S / |A(.’E, tv Tk(ui,n)7 (b)”(b‘ dx dt + / |A($7 t7 Tk(ui,n)a Qb)HVTk(’Uq’n)‘ dx dt.

T
On the other hand, let n be large enough, from (H;) and the convexity of M, we get:
. T; )
M( |.A(Z‘, t, k(uz,n); ¢)|
1 —1 ——1
(C(Lt) + M (P(ky| Tk (uin)]) + M (M(k2|¢\)))

)da? dt

N S—
s
=

dx dt

IN

1 ——1
(c(x,1)) da dt+n/TM(M (P(k1|Tk(ui,n)|))) dx dt (3.49)

M (M (M(k2|6)))) do dt

‘55\’
~

I =
S—

=

IA
I~ + I~

/

(c(z,t)) dz dt + 1 / P(k1k) dx dt

QT T
1

+*/ M (ka|9|) dz dt.
mJer

Ui

Since ¢ € (Eap(Q7))N, c(z,t) € E4(Qr), we deduce that {A(x,t, Ty (uin),d)} is
bounded in (L37(Qr))" and we have {VTj(u;,)} is bounded in (Lp(Qr))Y, conse-
quently, Jo < Cj,, where C}, is a positive constant not depending on n. And then we
obtain

Az, Ti(win), VT (uin))p de dt < Cy, + Cy,. for all ¢ € (Ex(Qr))N.  (3.50)
QT

By Banach-Steinhaus theorem, {A(z, t, T)(ui n), VI (tin)) }n is bounded in (L37(Q7))Y.
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(i2) Testing (3.27) by 0, (uin) = Tin+1(win) — Tin(uin), we have

/ B (z,u;0)(T) dz + Az, win, Vi n ) V0, (u; ) da dt
Q QT

+/ q)i,n($> t7 ui,n)vem(ui,n) dz dt = / Bm<x7 Ui,On) dz (351)
Qr Q
+/ fz,nem(uz,n) dx dt7
Qr
T Obi(x, 8)
Jds

where By, (z,7) =

(Hy), it follows

O (s) ds. Since By, (x,u;n)(T) > 0, hence from (Hs) and

@ M(|ve7n (Ui,n)D dx dt
Qr

——1
< | M (M(Juin])[VOm(uin)| do dt+/ 1y (@, )]V (uip)| dodt (3.52)
QT T

+/ Bm,(x; Ui,On) dl‘ + fi,nom,(ui,n) de dt
Q Qr

That means, knowing that V8, (u; n) = Vu; nXE,, a.e. in Qr where
By = {(@,t) € Qrim < Jui <m+1},
and following the same argument as in the proof of (3.28) of proposition 3.5, we get

a | M(VOn(uin)) da dt
Qr

S/ M (M(Jui ) Vi nlxE,, dxdt+/ 1y (@, 0)[[V O (win)| da dt
T E

m

+/ B (z, u; 0n) d:ch/ finOm(ui ) dx dt
Q Qr

- 1——
g/ M (SN (M (i) ) s, dxdt+/
T a Qr

+ao‘+2 (/E M(O‘;Qh(x,m) dxdt+/ M (190,11 ) e i)

T

+/ B (z, u 0n) dz —|—/ finOm (wi ) dz dt.

M(aiﬂwom(ui,nn) da dt

Q Q

(3.53)
let C%,,, := max ((a +1), W), it follows
a
M|V, (uip)|) de dt
. a2
<Cfon {/ j\/[(ajL2 |y(z, t)|> dx dt + / B (z, ui 0n) dz (3.54)
J o o Q

— 1——
+/ M(a 17 1(M(|U7,‘,n|)) dx dt + FimOum (wi.0) dz dt|.
L @ Qr

Now, let us concentrate on the convergence as n — oo of each integral in (3.54), which
can be treated by the same way (Lebesgue’s dominated convergence theorem), take for
example the first one:

—/a+2 —ra+2
/ 3“2 ) dedt = [ 3“2 0@ 0) X ey do
{m<|uin|<m+1} « Q a
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— 2
Put g, = ]\/[(OHF2 |")/(l’,t)|)x{m<|ui L|<m+1}, since x is continuous, then
o <luinl<
—ra+2 .
Gn — g = M( e |7(x7t)|>X{m§\ui|§m+l} a.e. in Q.

And we have |g,| < M( (gc,t)\) which is integrable on Qr, since v € Ez7(Qr).

From Lebesgue’s dominated convergence theorem, we obtain

— 2
lim gn dx dt = / lim g, dx dt = / M(a + |y (z, t)|)x{m<|ui|<m+1} dx dt.
Qr Q T h B

n—00 o oo a?

o+ 2
2

Passing to the limit as n — oo in (3.54), we get

lim,, o0 M|V, (uin)|) do dt

Qr
— 2
< C%on [/ M(a—z "y(x)o dz dt + / B, (z, uip) dx
{m<us| <m+1} a +1 Q (3.55)
+ M(O‘a M”(M(mi\)) dz dt

{m<|u;|[<m+1}
n / Fibm (u;) dz dt]
Qr
Now, we will pass to the limit as m — oo, by Lebesgue’s theorem each integral in (3.55)
goes to zero as m goes to co, which gives
lim lim M|V, (uin)|) de dt = 0. (3.56)

m—0o0 N—r00 QT

Our aim here is to prove that lim lim D, o (2,8, Uin) VO (Ui ) de dt = 0, to this

m—0o0 N—00 QT

end, Young’s inequality allows us to get

/ D, (2,8, Ui ) VO (U ) dedt < M|V, (uin)|) do dt
T Qr. (3.57)
+ M(®; n(x,t,uip)) de di.
E.n

We have already proved that the first integral in the right-hand side of (3.57) goes to zero
as m and n go to oo, it remains to show that the second one goes to zero again. Indeed,
note that, for n > m + 1> |u; ,,| we have T}, (w;n) = Trnt1(Uin) = Wi, then, from (Hy)
and the convexity of M we obtain

/ BT (0. ,05,)) o

{m<|ui | <m+1}

= M(|®i 0 (2, t, Trngr (uin))]) da dt
{m<|ug n|<m+1}

< NI (M(| T (uin)]) do dt (3.58)

m<|ug n|<m+1}
< / M(|Tm+1(ui,n)|) dr dt
{m<|ug,n|<m+1}
§/ M(m +1) dz dt.
QT
We deduce that

/ Mﬂ(bi,n(xvtaTm+1(ui7n))‘) d.]f dt
{m<|ujn|<m+1} (3.59)
= [ M(|®in(x,t, Tng1(uin)]) Xgm<|urn|<ms1yde dt < Co .

Qr
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Let us denote G = M(|®; 5 (,t, Trn41(tin)]) X{m<|usn|<m+1} —> G™ a.e. in Q where

G™ = M(|®i(,t, Tony1(i)]) X{m<|us|<m+1}

since M is continuous and ®; is a Carathéodory function. From (3.59), G™ is bounded
independently of n, using Lebesgue’s theorem, it follows, as n —» oo

/ TE(Ds (£, 1s0)|) et —>/ Ty (w,t, us)) da dt.
{m<usnl<m+1) {m<luil<m+1}

(3.60)
And then

lim lim M(|®; (2, t,u;0)]) dedt =0 (3.61)

m— 00 N—00 {m<|us | <m+1}

Combining (3.56), (3.57) and (3.61) we get
lim lim D, o (2,8, Ui ) VO (U ) dz dt =0 (3.62)

m—00 N—00 QT

Finaly, let m,n — oo in (3.51), we obtain
lim lim Az, t, U4, V)V, do dt = 0. (3.63)
O

Step 3: Almost everywhere convergence of the gradients.

Proposition 3.8. Let u;,, be a solution of the approzimate problem (3.27). Then, for
all k > 0 we have (for a subsequence still denoted by u; p): as n — +oo,

(i) Vu,, — Vu; ae. inQp,

(i) Az, t, T (win), Vi (uin)) = Az, t, Te(ui), VIi(u;))  weakly in (Lz7(Qr))",
(ii1) M(|VTi(uin)]) = M(|VT(u;)|) strongly in L*(Qr).

Proof. Let 6;; € ©(Qr) be a sequence such that 6, ; — u; in Wol’mLM(QT) for the
modular convergence and let ¢; ; € ©(Q) be a sequence which converges strongly to u; o
in L1(Q).

Put Z}'; = Ti(0; ) + e~ " Ti(ti ;) where Ty, (6; ;) is the mollification with respect to
the time of T (0; ;), notice that Zﬁf ; 1s a smooth function having the following properties:
0z}

ot

= w(Ti(0:,5) — Zi;),  Z}';(0) = Ti(¢i;) and |Z};] <k,

Zi — T(ui) + ey (i s), in Wy Ly(Qr) modularly as j —s oo,

Ti(ui)y + e " T (s ) — Ti(u;), in Wol’xLM(QT) modularly as p — oo.
Let now the function h,, defined on R for any m > k by:

1 if |[r] <m
hm(r)=4¢ —lr|+m+1 im<|r|<m+1
0 if [r] >m+ 1.
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Put E,, = {(as, HeQr:m< |un <m+ 1} and let us test the approximate problem
(3.27) by the test function ¢ = (T (u;n) — Z{ ) (uin), we get

n,j,m

n,J7,m

b n in i
<M o > + | A Ui, Vi) (VT (i) = VZE5) i (i) da di
Qr

+/ Aty ui g, Vi o) (T (win) — Zf5) Vi nhy, (win) do dt

T

/ D, o (z,t uln)Vu”l (Wi n) (T (i) — Z;fj) dx dt
Enm

i (2, by i) i (i) (VT (i) — VZ};) doe dt
Qr

== Jin (T, u1 p, uz,n)gon’j m dz dt.
Qr e
(3.64)

For simplicity, denote by €(n, j, u,7) and €(n, j, ) any quantities such that

lim lim lim lim e(n,j,p,i) =0,
i—+00 —>+00 j—+00 n—+00

lim lim lim e(n,j,pu) =0.

H—+00 j—+00 n—+00
We have the following lemma which can be found in [21, 23].
Lemma 3.9. (¢f. [21,23]) Let ¢ == (Ti(uin) — Zi i (i), then for any k >0

n,j,m
we have:

8bl n\T, ui,n 7 . .
<#>¢Z:j,m> > 6(”7]7/%1)7 (365)

where <-, > denotes the duality pairing between L*(Qr) + W 1% Liz(Qr) and L>(Qr) N
Wy Ly (Qr).

To complete the proof of Proposition 3.8, we establish the results below, for any fixed
k > 0, we have:

(r1) o fi,n<x7u1,nau2,n)<pﬁi;',m dx dt = €e(n, j, ).

(r2) o D; (2, U ) (3,0) (VT (w,0) — VZE) dac dt = €(n, j, ).

(rs) /E i (i) Vi, () (T (i) = Z15) do dt = €(n, 3, 1)

(ra) o Al bty Vitg ) (T (i) — 22 Vg bl (i) dae dt < e(n, j, p,m).
(rs) o [A(x, t, T (wi ), VT (win)) — Az, t, Ti(win), VI (ui)Xs)]

X [VTx(uin) — VI (u;)xs) de dt < e(n, j, g, m, s).
The proofs of (1), (r4) and (r5) are the same as in [21, 23].
To prove (r2), to this end, for n > m + 1, we have

q>i n(w t Us n)hm(uz,n) = q)i(xvta Tm+1(ui,n))hm(Tm+1(ui,n)) a.e in QT~

(|‘I) i(@,t, T (Uin)) — Pu(w, thm+1(Ui))\)

n
respect to its third argument and w;,, — w; a.e in Qr, then ®;(x, ¢, Tri1(Uipn)) —

®;(x,t, Tnr1(w;)) a.e in Q as n goes to infinity, besides M (0) = 0, it follows

put P, =M . Since ®; is continuous with

Ppn—0, aeinQasn — . (3.66)
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Using now the convexity of M and (Hy), we have for every > 0 and n > m + 1:
|Di(x, t, Trng1(win)) — Pi(z, €, D1 (us))

I
=

A
=

| (@, t, Tyt (s, n>)| + |4 (w, ¢, Tm+1<ul))‘)

—1

A
3\

( )
( (0l + 20 (M + 1))) (3.67)
7174 T4

(217 )+ 55]\44 (M(m +1)))

(5 V(z, )|)+§M(5M (M(m +1))).

IA Il
NJ\ ,_. i‘

We put C7 (x,t) = %M(%h(:&tﬂ) + %M(%M_l(M(m +1))). Since v € Eg(Qr), we

have C € L'(Qr), Then by Lebesgue’s dominated convergence theorem we get

lim P, dxdt = / lim P; , dxdt =0. (3.68)
QT QT n—r oo

n—roo

This implies that {®;(z, ¢, Typ+1(usn))} converges modularly to ®;(x, ¢, Typt1(u;)) as n —
o0 in (L37(Qr))N. Moreover, both ®;(z,t, Tyyt1(uiy)) and it’s limit ®;(z, ¢, Trg1 (ui))
belong to (E47(Q7))Y, indeed, from (Hy) we have for every n > 0

/ ‘(I) o, b, T (wi, n))|> da di
n

< /Q RUGHCEES N (M (T i) ) dt

/ M ~| )\+77M71(M(m+1))) dz dt

QT 2

<[ Y@ ) da dt+/ 1M(gﬂ‘l(M(nH 1))) dz dt
QT 2 77 T 2 77

< oo since v € Eq7(Qr) and € is bounded,

we use the same arguments for ®;(x, t, Ty,4+1(u;)). Thanks to Lemma 2.2, we deduce that
(p’i(x7 t7 Tm+1(ui,’ﬂ)) — (I)i(mv ta Tm+1(ul)) strongly in (EM(QT))N
On the other hand, VT}(u; ) — VTk(u;) weakly in (La(Qr))Y as n goes to infinity, it
follows that
lim Qi (x,t, i) P (i) [V (0 n) — Vfoj] dz dt

n—r oo QT

- / By (2, 1, ) o (1) [V T (05) — V21 v i
QT

(3.69)

Using the modular convergence of Zﬁj as j — oo and then p — oo, we get (r2). Now
we prove (r3), remark that for n > m + 1, we have

Vuz th (uz n) VTnz+1(ui,n) a.e in Qr.

By the almost everywhere convergence of u; ,, we have Ty (u;n) — Z;fj converges to
Ty (ui) — Zi'; in L>°(Qr) weak-+ and we have already proved that ®;(z,t, Trt1(tin)) —
®,(z,t, Tynt1(ui)) strongly in (Ex(Q7))Y then,

@i, t, Tong1 (win)) (Th(win) — Z15) — @i, t, Toga (u) (Te(us) — Z5),
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strongly in F5(Qr) as n — oo. Using again the fact that, VI, 11 (i n) = Vg1 ()
weakly in (L,(Qr))" as n tends to 400 we obtain

/E D (5, Ui ) Vg oy (i) (Th (win) — Z15) dae dt
— P (2, t,ui) Vi (Ty (wi) — Z}';) de dt as n — oo.
En
Using the modular convergence of Z;fj as j — +oo and letting p tends to infinity, we

get (r3). As a consequence of Lemma 3.3, the results of Proposition 3.8 follow. O

Step 4: Passing to the limit.
The limit u; of the approximate solution w;, of (3.27) satisfies the renormalization
identity,

lim Az, t, u;, Vu;)Vu,; de dt = 0. (3.70)

M0 J im< ug | <m+1}

Proof. Fix m > 0 and we can write

/ Az, t, w pny Vi n) Vg da dt
{

I,
ﬁ A((E7 t, Tm+1(’u,i’n), VTm+1(ui,n))VTm+1(ui’n) dil? dt
Q

— | At T (in), Vi (t5.0)) VT (1i.)) dit dt).
Qr

From (43), (iii) of Proposition 3.8 and passing to the limit as n goes to infinity for fixed
m, we get

hmn_mo / A(xa ta U’i,n) Vu’i,n)vui;n dl‘
{m<|us n|<m+1}

= Az, t,u;, Vu;)Vu,; de.
{m<u; [<m+1}

Finally, we pass to the limit as m goes to infinity and then we use (3.63), it follows

lim,,—y 00 limy,—y 00 / Az, t,ui n, Vi n) Vg, do dt
{m<|ui,pn|<m+1}
= lim,,— 00 Az, t, u;, Vu;)Vu,; de dt = 0.
{m<|ui|<m+1}
Which give the desired result. O

Now, we will pass to the limit. Let us take in the approximate problem (3.27) the test
function 7/ (u; ) with » € WH*(R) such that r’ have a compact support such that for

k>0, supp(r,) C [k, k] we get

OB}, (2, uin) . ’ "
—————= —div (7" (i) AX, t, Uy Vi) + 77 (U ) A, T, U gy VU ) VUi,
—div (r'(wi,n) i (@, t, i n)) + 77 (Wi n) Pin (T, i) Vi g
= 7fi,n(5177ul,n7u2,n)r/(ui,n) in DI(QT)v
(3.71)
i b’L n\<4,
for i = 1,2, where B .(z,7) = / 8’87(335)7"(5) ds.
: s

0
Our aim here is to pass to the limit in each term in the previous equality, let us start
by the terms of the left-hand side:
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. aB:’r(a"? ’u’i;n) . . n
Limit of the first term ——~————= since r is bounded and B”(x, Uim) — Bir(z,u;)
a.e in Qr and in L*>®(Qr) weak*, then
n
aBi,r(l‘7 ui,”) 8B7L,r (*/'E7 uz)
—
ot ot

Remark that, since 7’ and 7" have a compact support in R, there exists £ > 0 such that
supp(r’), supp(r”) C [k, k]. For n large enough, we have:

7 (Wi ) A2, Wi, Vi) = 77 (Ui ) A, , T (Ui n), VT (0i0)) - ace. in Qr,

D'(Qr) as n — oo.

" (Wi ) A(@, ty Wiy Vi 3) Vi g,
= 7" (i) A, t, T (i n), V(Ui ) VTk(uip)  ae. in Qr,
7 (i) i (T, i) = 7" (T (i) Pin (2,1, Th (i),
7" (i) @i (T, by 1) Vs = 1" (Th(win))Pin (T, b, Th(win)) VI k (Ui )

For the second term of (3.71), Since 7/ (u; ) — 7' (u;) a.e in Qr as n — oo, 7’ is bounded
and (#4), (4i¢) of proposition 3.8 we have

(i) A(@, t, Ti(win), VT (uin)) — ' (wi) Az, t, Te(w;), VT (u;))
weakly in (LH(QT))N for o(I1Lyz, I1E)), then
7 (w0 ) ATt Wiy Vi) — 7' (w;) A2, t, ui, V) weakly in (Lgz(Qr)) Y.

Concerning the third term of (3.71), Since r'(u; ) — 7"/ (u;) a.e in Qp as n — oo, r' is
bounded and (i7), (i7i) of proposition 3.8 we obtain, as n — co

" (Wi )A(@, ty Wiy VU0 ) Vg — 7" (ug) Az, t, Ty (ug), VI (u) ) VT ()
weakly in L!'(Qr). And then
" (ui) A, t, T (us), VT (u;))VTk(w;) = v (us) Az, t,ui, Vu)Vu;  ae. in Q.
Arguing similarly, we get the limit of the fourth term of (3.71),
(i 0 )i (2,8, Ui ) — 77 () @i (2, t,u;) strongly in (Ear(Qr))Y.

For the remaining term of the left-hand side, we have r”(u; ) converges to r”(u;) and
VTi(uin) — VTi(u;) weakly in (Ly(Qr))YN as n — +oo, while ®; ,,(z, Tx(ui,)) is
uniformly bounded with respect to n and converges a.e. in Q1 to ®;(x, Tx(u;)) as n tends
to +o00. Therefore

7" (Wi ) @i (T, by i ) Vg — 7" (u) @i (2, ¢, u;) Vu; weakly in Ly (Qr).
Concerning the right-hand side of (3.71), due to (3.11),(3.12), (3.25) and (3.26), we have
fin(@,ut pyuon)r (win) — fi(z,u1,u2)r’(u;) strongly in L'(Qr) as n — oo.

Now, we are ready to pass to the limit as n — oo in each term of (3.71) to conclude that
u; satisfies (3.16). It remains to show that B;,(x,u;) satisfies the initial condition of
(3.27). To do this, recall that, 7" has a compact support, we have B}, (z,u; ) is bounded
in L>°(Qr). Moreover, (3.71) and the above considerations on the behavior of the terms

OB (x,u;n) | )

—=— " is bounded in L'(Qr) + W1 L(Qr). As a
consequence, an Aubin’s type Lemma (cf [24, Corollary 4] ) and Lemma 2.5 imply that
B;"(x,u;,) is in a compact set of C°([0,T]; L'(2)). It follows that, B, (z,uin)(t = 0)
converges to B; ,(z,u;)(t = 0) strongly in L'(Q2). Due to Remark 3.2 and the fact that
bin (T, i 0n) — bi(x,us0) in L1(£2), we conclude that Bgfr(a:, Uin)(t=0) = B{fr(x, Ui,on,)
converges to B; ,.(x,u;)(t = 0) strongly in L!(Q2). Then we conclude that B; ,(x,u;)(t =
0) = B, r(x,u;,0) in £, which conclude the full proof of the main result.

of this equation show that
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