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ON THE CLASSES OF NULL ALMOST L-WEAKLY COMPACT AND
NULL ALMOST M-WEAKLY COMPACT OPERATORS

SAFAE EL FILALI AND KHALID BOURAS

Abstract. In this paper, we establish conditions under which each positive Null
almost L-weakly compact operator is Null almost M-weakly compact and conversely.
Moreover, we provide the necessary and sufficient conditions under which any positive
Null almost L-weakly compact operator T : E \rightarrow F admits a Null almost M-weakly
compact adjoint T \prime : F \prime \rightarrow E\prime . Finally, we give some connections between the class
of Null almost L-weakly compact (resp. Null almost M-weakly compact) operators
and the class of L-weakly compact (resp. M-weakly compact).

1. Introduction

The classes of L- and M-weakly compact operators are two special classes of weakly
compact operators and were introduced and studied by P. Meyer-Nieberg [5].

– An operator T from a Banach lattice E into a Banach space X is M-weakly
compact if for each disjoint bounded sequence (xn) of E, we have \| T (xn)\| \rightarrow 0.

– An operator T from a Banach space X into a Banach lattice E is called L-weakly
compact if for each disjoint bounded sequence (yn) in the solid hull of T (BE), we
have \| yn\| \rightarrow 0.

In [4] Bouras and El aloui introduced two classes of operators:
\bullet An operator T from a Banach space X into a Banach lattice F is called Null

almost L-weakly compact if for every weakly null sequence (xn) of X and every
disjoint sequence (fn) of BF \prime , we have fn(T (xn)) \rightarrow 0.

\bullet An operator T from a Banach lattice E into a Banach space Y is called Null
almost M-weakly compact if fn(T (xn)) \rightarrow 0 for every disjoint sequence (xn) of
BE and every weakly null sequence (fn) of Y \prime .

It should be noted that the class of Null almost L-weakly compact (resp. Null almost M-
weakly compact) operators contains that of L-weakly compact (resp. M-weakly compact)
operators, but the converse is not true in general. For instance, the identity Id\ell 1 : \ell 1 \rightarrow \ell 1

(resp. Id\ell \infty : \ell \infty \rightarrow \ell \infty ) is Null almost L-weakly compact (resp. Null almost M-weakly
compact) operator since \ell 1 has the positive Schur property. But it is not L-weakly
compact (resp. M-weakly compact) as (en) is a norm bounded disjoint sequence of \ell 1
(resp. \ell \infty ) satisfying \| en\| 1 = \| en\| \infty = 1 \not \rightarrow 0.

A Null almost L-weakly compact operator between Banach lattices is not necessarily
Null almost M-weakly compact and conversely. For instance, according to Proposition
2.2 and Corollary 2.1 of [4], let the identity operator Id\ell 1 : \ell 1 \rightarrow \ell 1 (resp. Idc0 : c0 \rightarrow c0)
is Null almost L-weakly compact (resp. Null almost M-weakly compact) as \ell 1 = (c0)

\prime has
the positive Schur property. But it is not Null almost M-weakly compact (resp. Null
almost L-weakly compact) because (\ell 1)\prime (resp. (c0)) does not have the positive Schur
property.

Contrary to L- and M-weakly compact operators, which are in duality with each other,
the situation is different for Null almost L-weakly compact and Null almost M-weakly
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compact operators. Recently, the authors in [4] proved that an operator T : E \rightarrow Y , its
adjoint T \prime is Null almost L-weakly compact, if and only if T is Null almost M-weakly
compact, and for an operator T : X \rightarrow F , if its adjoint T \prime is Null almost M-weakly
compact, then T is Null almost L-weakly compact. However, in general, the adjoint of
Null almost L-weakly compact operator need not be Null almost M-weakly compact.

In this regard, we give some characterizations of Null almost L-weakly compact and
Null almost M-weakly compact operators (Propositions 2.1,2.2 and 2.3). Also, we provide
necessary conditions under which each positive Null almost L- weakly compact operator is
Null almost M-weakly compact. More precisely, we show that every positive Null almost
L-weakly compact operator T : E \rightarrow F is Null almost M-weakly compact, then the norm
of E\prime or F \prime is order continuous (Theorem 2.5). Furthermore, we establish some conditions
on a pair of Banach lattices E and F that tell us when every Null almost M-weakly
compact operator T : E \rightarrow F is Null almost L-weakly compact. Mainly, we prove that
if every positive Null almost M-weakly compact operator T : E \rightarrow F is Null almost
L-weakly compact, then the lattice operations in E are weakly sequentially continuous or
the norm of F is order continuous (Theorem 2.6).

In the second goal of this paper, we investigate sufficient and necessary conditions
under which the adjoint operator of every positive Null almost L-weakly compact operator
is Null almost M-weakly compact (see Theorem 2.10 and Proposition 2.8). Finally, we
present some conditions for which the class Null almost L-weakly compact (resp. Null
almost M-weakly compact) operators coincides with that of L-weakly compact (resp.
M-weakly compact) operators. Specifically, we show that if every positive Null almost
L-weakly compact from E into F is L-weakly compact, then the norm of E\prime is order
continuous or dim F < \infty (see Theorem 2.12). Moreover, we prove that for a Banach
lattice F such that F is Dedekind \sigma -complet, if every positive Null almost M-weakly
compact from E into F is M-weakly compact, then E is finite dimensional or the norm of
F is order continuous (see Theorem 2.15).

In this paper X, Y will denote real Banach spaces and E, F will denote real Banach
lattices. The unit ball of E will be denoted by BE . We will use the term operator for any
T : X \rightarrow Y between two Banach spaces to mean a bounded linear mapping. We refer the
reader to [1, 5, 8] for notation and terminology concerning Banach lattices and operators.

2. Main Results

We start with the following characterizations of Null almost L-weakly compact operator
(resp. Null almost M-weakly compact).
Proposition 2.1. Let X be a Banach space and F be a Banach lattice. If one of the
following statements holds:

(1) F or X has the Schur property.
(2) F \prime \prime has an order continuous norm and X has the Dunford-Pettis property.
(3) F has an order continuous norm and X has the Dunford-Pettis\ast property.

Then each operator T : X \rightarrow F is Null almost L-weakly compact.

Proof. (1) Let (xn) be a weakly null sequence of X and (fn) be a disjoint sequence of BF \prime .
The sequence (T (xn)) converges weakly to zero, as F has the Schur property (resp. X
has the Schur property), then \| T (xn)\| \rightarrow 0 (resp. \| xn\| \rightarrow 0) and hence fn(T (xn)) \rightarrow 0.
(2) Let (xn) be a weakly null sequence of X and (fn) be a disjoint sequence of BF \prime , as

F \prime \prime has an order continuous, then it follows from Theorem 2.4.14 of [5] that fn
\sigma (F \prime ,F \prime \prime )\rightarrow 0,

and so T \prime (fn)
w\rightarrow 0 in X \prime . Since X has the Dunford-Pettis property, then fn(T (xn)) =

T \prime (fn)(xn) \rightarrow 0.
(3) The proof is similar to that of (2).

\square 
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Proposition 2.2. Let E be a Banach lattice and Y be a Banach space. If one of the
following statements holds:

(1) E\prime or Y \prime has the Schur property.
(2) Y has the Dunford-Pettis property and E\prime has an order continuous norm.
(3) E has the weak Dunford-Pettis property and E\prime has an order continuous norm.

Then every operator T : E \rightarrow Y is Null almost M-weakly compact.

Proof. (1) Let (xn) be a disjoint sequence of E and (fn) be a weakly null sequence of Y \prime ,
the sequence (T \prime (fn)) converges weakly to 0. As E\prime has the Schur property (resp. Y \prime has
the Schur property), then \| T \prime (fn)\| \rightarrow 0 (resp. \| fn\| \rightarrow 0) and hence fn(T (xn)) \rightarrow 0.

(2) and (3) Let (xn) be a disjoint sequence of E and (fn) be a weakly null sequence of
Y \prime . Since E\prime has an order continuous norm, it follows from Theorem 116.1 of [8] that
xn

w\rightarrow 0 in E, then T (xn)
w\rightarrow 0 in Y . On the other hand T \prime (fn)

w\rightarrow 0 in E\prime . As E admits
the weak Dunford-Pettis property (resp. Y admits the Dunford-Pettis property), hence
fn(T (xn)) = T \prime (fn)(xn) \rightarrow 0.

\square 

As per [5] a linear operator T : E \rightarrow F between two vector lattices is said to be
disjointness preserving if T sends disjoint elements in E to disjoint elemnet in F (i.e,
x \bot y in E implies Tx \bot Ty in F ).

Proposition 2.3. Let E and F be two Banach lattices and Y be a Banach space.
Consider the scheme of operators E S\rightarrow Y

R\rightarrow F .
(1) If S is Null almost M-weakly compact operator, then R \circ S is likewise Null almost

M-weakly compact.
(2) If R is Null almost M-weakly compact operator and S is disjointness preserving

then R \circ S is likewise Null almost M-weakly compact.

Proof. (1) Let (xn) be a disjoint sequence of BE and (fn) be a weakly null sequence of F \prime ,

then R\prime (fn)
\sigma (Y \prime ,Y \prime \prime )\rightarrow 0. Since S is Null almost M-weakly compact. So, R\prime (fn)(S(xn)) =

fn(R(S(xn))) = fn(R \circ S(xn)) \rightarrow 0 and hence R \circ S is Null almost M-weakly compact
operator.
(2) Let (xn) be a disjoint sequence of BE and (fn) be a weakly null sequence of F \prime . Since
the operator S is disjointness preserving, then the sequence S(xn) is disjoint of BY . On the
other hand R is Null almost M-weakly compact, then fn(R \circ S(xn)) = fn(R(S(xn))) \rightarrow 0.

\square 

The following lemma establishes the characterization of the order continuity of the
norm of the topological dual of a Banach lattice by a Null almost M-weakly compact
operator.

Lemma 2.4. Let E be a Banach lattice. Then the following assertions are equivalent:
(1) Every positive operator T : E \rightarrow \ell 1 is Null almost M-weakly compact.
(2) The norm of E\prime is order continuous.

Proof. (2) \Rightarrow (1) Follows from Proposition 2.2.
(1) \Rightarrow (2) Suppose that the norm of E\prime is not order continuous, according to Theorem
2.4.14 of [5], E contains a vector sublattice isomorphic to \ell 1, then there is a positive
projection P on E whose range is a lattice isomorphic copy of \ell 1. Clearly, P is not Null
almost M-weakly compact. \square 

Now we are in a position to give necessary conditions under which each positive Null
almost L-weakly compact operator is Null almost M-weakly compact.
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Theorem 2.5. Let E and F be two Banach lattices. If each positive Null almost L-
weakly compact operator from E into F is Null almost M-weakly compact, then one of the
following assertions holds:

(1) The norm of E\prime is order continuous.
(2) The norm of F \prime is order continuous.

Proof. To complete the proof, it suffices to show that if the norm of F \prime is not order
continuous, then the norm of E\prime must be order continuous. By Lemma 2.4, there exists a
positive operator P : F \rightarrow \ell 1 that is not Null almost M-weakly compact. Consider now
the composed operator P \circ T : E \rightarrow F \rightarrow \ell 1.

Assuming that the norm on F \prime is not order continuous, it follows from the proof of
Lemma 2.4 that there exists a sublattice H of F that is isomorphic to \ell 1. Let i : \ell 1 \rightarrow F be
the canonical injection of \ell 1 into F and consider an arbitrary positive operator T : E \rightarrow \ell 1.
Since \ell 1 has the Schur property, then it follows from Proposition 2.1 that T is a Null
almost L-weakly compact operator and hence it is Null almost M-weakly compact by our
assumption. Finally, Lemma 2.4 finishes the proof. \square 

There exist operators which are Null almost M-weakly compact but not Null almost
L-weakly compact. For example, let the identity operator Idc0 : c0 \rightarrow c0 is Null almost
M-weakly compact as (c0)

\prime has the positive Schur property. But it is not Null almost
L-weakly compact because (c0) does not have the positive Schur property.

The following result gives the conditions under which each positive Null almost M-
weakly compact operator T from E to F is Null almost L-weakly compact.

Theorem 2.6. Let E and F be two Banach lattices. If every positive Null almost M-
weakly compact from E into F is Null almost L-weakly compact, then one of the following
conditions is valid:

(1) The lattice operations in E are weakly sequentially continuous.
(2) The norm of F is order continuous.

Proof. Suppose by way of contradiction that the lattice operations in E are not weakly
sequentially continuous and the norm of F is not order continuous. To finish the proof,
we have to construct a Null almost M-weakly compact operator from E into F that is
not Null almost L-weakly compact.

As the lattice operations of E are not weakly sequentially continuous, there exists a
weakly null sequence (xn) of E, f \in (E\prime )+, h, hn \in [ - f, f ] which satisfy hn \rightarrow h for the
topology \sigma (E\prime , E) and hn(xn) \geq \epsilon for all n and some \epsilon > 0 (see Theorem 2 of [6]).

On the other hand, since the norm of F is not order continuous Theorem 2.4.2 of
[5] implies that there exists a positive order bounded disjoint sequence (yn) \subset F which
does not converge to zero in norm. We may assume that there exist y \in F+ such that
0 \leq yn \leq y and \| yn\| = 1 for all n. Thus, by Lemma 3.4 of [2], there exists a positive
disjoint sequence (fn) of F \prime with \| fn\| \leq 1 such that fn(ym) = 1 for all n = m and
fn(ym) = 0 for n \not = m.

Now, consider the operator S : E \rightarrow c0 defined by

S(x) = (hn(x) - h(x))n

holds for each x \in E. And define the operator R : c0 \rightarrow F by

R(\lambda n) =

\infty \sum 
n=1

\lambda nyn.
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As (c0)\prime has the Schur property, then by Proposition 2.2 and 2.3, S is Null almost M-weaky
compact and hence T = R \circ S defined by

T (x) =

\infty \sum 
n=1

(hn(x) - h(x))yn for all x \in E

is Null almost M-weakly compact operator. But T is not Null almost L-weakly compact.
Otherwise, fn(T (xn)) \rightarrow 0, i.e, by the following equality

fn(T (xn)) = fn(

\infty \sum 
k=1

(hk(xn) - h(xn))yk) = (hn(xn) - h(xn))

hn(xn) \rightarrow 0. This leads to a contradiction. And this finish the proof.
\square 

Remark 2.7. The conditions stated in Theorem 2.6 are insufficient to ensure that each
positive Null almost M-weakly compact operator T : E \rightarrow F is Null almost L-weakly
compact. In fact, if we consider E = F = c0, it is clear that the identity operator
Idc0 : c0 \rightarrow c0 is Null almost M-weakly compact, but it is not Null almost L-weakly
compact. However, c0 has weakly sequentially continuous lattice operations and the norm
of c0 is order continuous.

The authors in [4] gave an example of a Null almost L-weakly compact operator such
that its adjoint is not Null almost M-weakly compact. Noting that the Lorentz space
\wedge (\omega , 1) has the positive Schur property but its bidual does not, they concluded that the
identity operator of the Lorentz space \wedge (\omega , 1) is Null almost L-weakly compact, but its
adjoint is not Null almost M-weakly compact.

In the following result, we present sufficient conditions under which the adjoint of every
Null almost L-weakly compact operator is Null almost M-weakly compact.

Proposition 2.8. Let E and F be two Banach lattices. If one of the following assertions
is valid:

(1) F \prime \prime has the Schur property.
(2) F \prime \prime has an order continuous norm and E\prime has the Dunford-Pettis property.
(3) dim F <\infty .

Then the adjoint of every Null almost L-weakly compact T : E \rightarrow F is Null almost
M-weakly compact.

Proof. (1) Let T be a Null almost L-weakly compact operator , as F \prime \prime has the Schur
property then T \prime \prime is Null almost L-weakly compact and Theorem 2.1 (1) of [4] follows
that T \prime is Null almost M-weakly compact operator.
(2) To show that T \prime is Null almost M-weakly compact. Let (fn) be a disjoint sequence of
BF \prime and (\psi n) be a weakly null sequence in E\prime \prime , we have to prove that \psi n(T

\prime (fn)) \rightarrow 0.
Since F \prime \prime has an order continuous norm, then it follows from Theorem 2.4.14 of [5] that
fn \rightarrow 0 for \sigma (F \prime , F \prime \prime ) and hence T \prime (fn) \rightarrow 0 for \sigma (E\prime , E\prime \prime ), as E\prime has Dunford-Pettis
property then \psi n(T

\prime (fn)) \rightarrow 0, as desired.
(3) In this case, every operator is L-weakly compact, then its adjoint T \prime is M-weakly
compact, and hence T \prime is Null almost M-weakly compact. \square 

The assertions (1) and (2) in the previous proposition are not necessary as shown in
the following example.

Example 2.9. An operator T : \ell 1 \rightarrow \ell \infty is Null almost L-weakly compact if and only
if it adjoint T \prime is Null almost M-weakly compact. In fact, let T : \ell 1 \rightarrow \ell \infty defined
by T ((\lambda n)n) = (

\sum \infty 
n=1 \lambda n)e, where e = (1, 1, 1, ...) is Null almost L-weakly compact as
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compact (it rank one). Hence, it is clear that its adjoint T \prime : \ell 1 \rightarrow \ell \infty is Null almost
M-weakly compact.

The next result tells us when the adjoint of every positive Null almost L-weakly compact
operator, between two Banach lattices, is Null almost M-weakly compact.

Theorem 2.10. Let E and F be two Banach lattices such that F \prime \prime has an order continuous
norm. If each positive Null almost L-weakly compact operator T : E \rightarrow F admits a Null
almost M-weakly compact adjoint T \prime : F \prime \rightarrow E\prime , then one of the following properties is
valid:

(1) E\prime has the weak Dunford-Pettis property.
(2) F is KB-space.

Proof. Assume by way of contradiction that E\prime does not have weak Dunford-Pettis
property and F is not a KB-space. We need to construct a positive Null almost L-weakly
compact operator from E into F such that its adjoint is not Null almost M-weakly
compact.
Since the Banach lattice F is not a KB-space, then by Theorem 4.61 of [1] c0 is lattice
embeddable in F . By virtue of Proposition 0.5.1 [7] we have F = \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n} \{ yn : n \in \BbbN \} for
some sequence (yn) \subset F of positive disjoint elements. We may assume that \| yn\| = 1 and
c = \mathrm{s}\mathrm{u}\mathrm{p}k

\bigm\| \bigm\| \bigm\| \sum k
n=1 yk

\bigm\| \bigm\| \bigm\| <\infty . Hence, the operator S : c0 \rightarrow F defined by

S ((\lambda n)n) =

\infty \sum 
n=1

\lambda nyn

is a linear homomorphism from c0 onto F . On the other hand, according to Theorem
116.3 of [8] there exists a disjoint sequence (fn) of positive elements in the unit ball of F \prime 

such that fn (yn) = 1 for all n and fn (ym) = 0 for m \not = n.
As E\prime does not have weak Dunford-Pettis property, there exist a weakly null sequence

(\psi n) in E\prime \prime and a disjoint weakly null sequence (\phi n) in (E\prime )+ such that (\psi n(\phi n)) does
not converge to zero. Then, by passing to a subsequence, we can assume that for some
\epsilon > 0 we have

| \psi n(\phi n)| > \epsilon 

for all n. Consider the operator R : E \rightarrow c0 defined by R(x) = (\phi n(x))
\infty 
n=1.

Next, we consider the operator T = S \circ R : E \rightarrow F defined by

T (x) =

\infty \sum 
n=1

\phi n(x).yn

holds for all x \in E. It is clear that its adjoint T \prime : F \prime \rightarrow E\prime defined by

T \prime (h) =

\infty \sum 
n=1

hn(yn).\phi n

for all h \in F \prime . As F \prime \prime has an order continuous norm and c0 has Dunford-Pettis property,
then by Proposition 2.1, S is Null almost L-weakly compact and by Theorem 2.6(i) of [4],
the composed operator T is Null almost L-weakly compact. But the operator T \prime is not
Null almost M-weakly compact. Indeed, note that (\psi n) is a weakly null sequence in E\prime \prime 
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and (fn) a disjoint sequence of F \prime . From,

\psi n(T
\prime (fn)) = \psi n(

\infty \sum 
k=1

fn(yk).\phi k)

=

\infty \sum 
n=1

fn(yk).\psi n(\phi k)

= fn(yn).\psi n(\phi n)

and so, | \psi nT
\prime (fn)| = | \psi n(\phi n)| \geq \epsilon for all n. We conclude that \psi n(T

\prime (fn) \not \rightarrow 0, then T \prime is
not Null almost M-weakly compact. This is a contradiction and the proof is finished.

\square 

Remark 2.11. The second assertion in the necessary condition of the previous theorem
is not sufficient to guarantee that the adjoint of every positive Null almost L-weakly
compact operator T : E \rightarrow F is Null almost M-weakly compact. In fact, the identity
operator of the Lorentz space \wedge (\omega , 1) is Null almost L-weakly compact but its adjoint is
not Null almost M-weakly compact. However, \wedge (\omega , 1) is a KB-space.

We mentioned before that each Null almost L-weakly compact operator is not L-weakly
compact. However, we have the following theorem.

Theorem 2.12. Let E and F be two Banach lattices. If every positive Null almost
L-weakly compact from E into F is L-weakly compact, then one of the following conditions
is valid:

(1) The norm of E\prime is order continuous.
(2) F is finite-dimensional.

Proof. Suppose that neither (1) not (2) holds. To finish the proof, we have to construct a
positive Null almost L-weakly compact operator T : E \rightarrow F that is not L-weakly compact.

As the norm of E\prime is not order continuous, it follows from Theorem 116.1 of [8] that
there is a norm bounded disjoint sequence (un) of positive elements of E which does not
converge weakly to zero. Hence, we may assume that | | un| | \leqslant 1 for all n and also that
for some 0 \leqslant \phi \in E\prime satisfying \phi (un) = 1 for all n. Then, it follows from Theorem 116.3
of [8] that the components \phi n of \phi in the carriers Cun

form an order bounded disjoint
sequence in (E\prime )+ such that \phi n(un) = \phi (un) for all n and \phi n(um) = 0 if n \not = m.

Define the positive operator R : E \rightarrow \ell 1 by

R(x) =

\biggl( 
\phi n(x)

\phi (un)

\biggr) \infty 

n=1

for all x \in E.

Since
\sum \infty 

n=1 | 
\phi n(x)
\phi (un)

| \leqslant 1
\epsilon 

\sum \infty 
n=1 \phi n(| x| ) \leqslant 

1
\epsilon \phi (| x| ) holds for each x \in E the operator R is

well defined. On the other hand, F is infinite-dimensional then there exists a disjoint
sequence (yn) of positive elements in F such that \| yn\| = 1 for all n. Now, consider the
positive operator S : \ell 1 \rightarrow F defined by

S((\lambda n)n) =

\infty \sum 
n=1

\lambda nyn for all (\lambda n) \in \ell 1.

Clearly, the operator S is well defined. Next, we consider the composed operator
T = S \circ R : E \rightarrow \ell 1 \rightarrow F defined by

T (x) =

\infty \sum 
n=1

\phi n(x)

\phi (un)
yn for all x \in E.

Since \ell 1 has the Schur property, then T is a Null almost L-weakly compact operator,
but it is not L-weakly compact. To see this, from T (un) = yn for all n. Note that (yn) is
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a disjoint sequence in the solid hull of T (BE). But the L-weak compactness of T implies
that \| yn\| \rightarrow 0, which is a contradiction. \square 

Corollary 2.13. Let E and F be two Banach lattices such that the norm of F is order
continuous then the following statements are equivalent:

(1) Each positive Null almost L-weakly compact operator T : E \rightarrow F is L-weakly
compact.

(2) One of the following conditions is valid:
(a) The norm of E\prime is order continuous.
(b) F is finite-dimensional.

Proof. (1) \Rightarrow (2) Follows from Theorem 2.12.
(2a) \Rightarrow (1) Follows from Theorem 3.6.17 of [5].
(2b) \Rightarrow (1) In this case, every operator T is L-weakly compact.

\square 

Corollary 2.14. Let F be a Banach lattice. Then the following assertions are equivalent:
(1) Every Null almost L-weakly compact from \ell 1 into F is L-weakly compact.
(2) dim F <\infty .

Note that each M-weakly compact operator is Null almost M-weakly compact but the
converse is not true.

Theorem 2.15. Let E and F be two Banach lattices such that F is Dedekind \sigma -complet.
If every positive Null almost M-weakly compact from E into F is M-weakly compact, then
one of the following conditions is valid:

(1) E is finite dimensional.
(2) The norm of F is order continuous.

Proof. By way of contradiction, let us assume that E is infinite-dimensional and the norm
of F is not order continuous. We need to construct an operator from E into F that is
Null almost M-weakly compact but not M-weakly compact.

Since the Banach lattice E is infinite-dimensional, by Lemma 2.3 and Lemma 2.5 of
[3], there exists a positive disjoint sequence (xn) of E+ with \| xn\| = 1 for all n and there
exists a positive disjoint sequence (gn) of E\prime with \| gn\| = 1, such that gn(xn) = 1 for all
n and gn(xm) = 0 for n \not = m.

Consider the positive operator R : E \rightarrow \ell \infty defined by:

R(x) = (gn(x))n

for each x \in E. On the other hand, as the norm of F is not order continuous,
by Theorem 4.14 of [1] there exists some y \in F+ and there exists a disjoint sequence
(yn) \subset [0, y] which does not converge to zero in norm, we can assume that \| yn\| = 1 for
all n. As F is Dedekind \sigma -complet, it can be inferred from the proof of Theorem 117.3 of
[8] that the operator S : \ell \infty \rightarrow F defined by:

S((\lambda n)n) =

\infty \sum 
n=1

\lambda nyn.

Next, we consider the composed operator T = S \circ R : E \rightarrow \ell \infty \rightarrow F defined by

T (x) =

\infty \sum 
n=1

gn(x)yn

for each x \in E, the operator T is well defined. As (\ell \infty )\prime has the Schur property, then it
follows from Propositions 2.2, that T is Null almost M-weakly compact. But T is not
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M-weakly compact. To see this, since (xn) is a disjoint sequence of B+
E we have

\| T (xn)\| = \| yn\| = 1

for all n, we conclude that E is a finite-dimensional Banach lattice, and the proof is
complete. \square 

Remark 2.16. The assumption ”F is Dedekind \sigma -complet” is essential. Indeed, if we
take E = \ell \infty and F = c. It follows from proposition 2.2 that T : \ell \infty \rightarrow c is Null almost
M-weakly compact. As \ell \infty is an AM-space, then by Theorem 5.62 of [1], T is M-weakly
compact. Neither of the two possible conditions is holds.

As a consequence, we obtain :

Corollary 2.17. Let E be a Banach lattice. Then the following assertions are equivalent:
(1) Every positive Null almost M-weakly compact operator T : E \rightarrow \ell \infty is M-weakly

compact.
(2) E is finite dimensional.
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