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ON THE CLASSES OF NULL ALMOST L-WEAKLY COMPACT AND
NULL ALMOST M-WEAKLY COMPACT OPERATORS

SAFAE EL FILALI AND KHALID BOURAS

ABsTrRACT. In this paper, we establish conditions under which each positive Null
almost L-weakly compact operator is Null almost M-weakly compact and conversely.
Moreover, we provide the necessary and sufficient conditions under which any positive
Null almost L-weakly compact operator T : E — F admits a Null almost M-weakly
compact adjoint T/ : F/ — E’. Finally, we give some connections between the class
of Null almost L-weakly compact (resp. Null almost M-weakly compact) operators
and the class of L-weakly compact (resp. M-weakly compact).

1. INTRODUCTION

The classes of L- and M-weakly compact operators are two special classes of weakly
compact operators and were introduced and studied by P. Meyer-Nieberg [5].

— An operator T from a Banach lattice F into a Banach space X is M-weakly
compact if for each disjoint bounded sequence (z,,) of E, we have | T(z,)| — 0.

— An operator T' from a Banach space X into a Banach lattice E is called L-weakly
compact if for each disjoint bounded sequence (y,) in the solid hull of T'(Bg), we
have |ly,| — 0.

In [4] Bouras and El aloui introduced two classes of operators:

e An operator T from a Banach space X into a Banach lattice F' is called Null
almost L-weakly compact if for every weakly null sequence (z,,) of X and every
disjoint sequence (f,,) of Bp/, we have f,,(T(z,)) — 0.

e An operator T from a Banach lattice F into a Banach space Y is called Null
almost M-weakly compact if f,(T(zy,)) — 0 for every disjoint sequence (x,) of
Bpg and every weakly null sequence (f,) of Y.

It should be noted that the class of Null almost L-weakly compact (resp. Null almost M-
weakly compact) operators contains that of L-weakly compact (resp. M-weakly compact)
operators, but the converse is not true in general. For instance, the identity Id, : 1 — £*
(resp. Idyeo : £°° — ¢*°) is Null almost L-weakly compact (resp. Null almost M-weakly
compact) operator since ¢! has the positive Schur property. But it is not L-weakly
compact (resp. M-weakly compact) as (e,) is a norm bounded disjoint sequence of ¢!
(resp. £°) satistying |len |1 = |lenlloo =1 4 0.

A Null almost L-weakly compact operator between Banach lattices is not necessarily
Null almost M-weakly compact and conversely. For instance, according to Proposition
2.2 and Corollary 2.1 of [4], let the identity operator Idy : ¢* — ¢* (vesp. Id., : co — co)
is Null almost L-weakly compact (resp. Null almost M-weakly compact) as £* = (cg)’ has
the positive Schur property. But it is not Null almost M-weakly compact (resp. Null
almost L-weakly compact) because (¢1)" (resp. (cp)) does not have the positive Schur
property.

Contrary to L- and M-weakly compact operators, which are in duality with each other,
the situation is different for Null almost L-weakly compact and Null almost M-weakly
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compact operators. Recently, the authors in [4] proved that an operator T : E — Y, its
adjoint 7" is Null almost L-weakly compact, if and only if T" is Null almost M-weakly
compact, and for an operator T : X — F, if its adjoint 7" is Null almost M-weakly
compact, then 7" is Null almost L-weakly compact. However, in general, the adjoint of
Null almost L-weakly compact operator need not be Null almost M-weakly compact.

In this regard, we give some characterizations of Null almost L-weakly compact and
Null almost M-weakly compact operators (Propositions 2.1,2.2 and 2.3). Also, we provide
necessary conditions under which each positive Null almost L- weakly compact operator is
Null almost M-weakly compact. More precisely, we show that every positive Null almost
L-weakly compact operator T': E — F' is Null almost M-weakly compact, then the norm
of E' or F' is order continuous (Theorem 2.5). Furthermore, we establish some conditions
on a pair of Banach lattices E and F' that tell us when every Null almost M-weakly
compact operator T': E — F' is Null almost L-weakly compact. Mainly, we prove that
if every positive Null almost M-weakly compact operator T : E — F' is Null almost
L-weakly compact, then the lattice operations in F are weakly sequentially continuous or
the norm of F is order continuous (Theorem 2.6).

In the second goal of this paper, we investigate sufficient and necessary conditions
under which the adjoint operator of every positive Null almost L-weakly compact operator
is Null almost M-weakly compact (see Theorem 2.10 and Proposition 2.8). Finally, we
present some conditions for which the class Null almost L-weakly compact (resp. Null
almost M-weakly compact) operators coincides with that of L-weakly compact (resp.
M-weakly compact) operators. Specifically, we show that if every positive Null almost
L-weakly compact from E into F' is L-weakly compact, then the norm of E’ is order
continuous or dim F' < oo (see Theorem 2.12). Moreover, we prove that for a Banach
lattice F' such that F' is Dedekind o-complet, if every positive Null almost M-weakly
compact from FE into F' is M-weakly compact, then F is finite dimensional or the norm of
F is order continuous (see Theorem 2.15).

In this paper X, Y will denote real Banach spaces and E, F' will denote real Banach
lattices. The unit ball of E will be denoted by Bg. We will use the term operator for any
T : X — Y between two Banach spaces to mean a bounded linear mapping. We refer the
reader to [1, 5, 8] for notation and terminology concerning Banach lattices and operators.

2. MAIN RESULTS

We start with the following characterizations of Null almost L-weakly compact operator
(resp. Null almost M-weakly compact).

Proposition 2.1. Let X be a Banach space and F be a Banach lattice. If one of the
following statements holds:

(1) F or X has the Schur property.

(2) F" has an order continuous norm and X has the Dunford-Pettis property.

(3) F has an order continuous norm and X has the Dunford-Pettis* property.

Then each operator T : X — F is Null almost L-weakly compact.

Proof. (1) Let (x,) be a weakly null sequence of X and (f,,) be a disjoint sequence of Bp-.
The sequence (T'(z,)) converges weakly to zero, as F' has the Schur property (resp. X
has the Schur property), then | T(zy)|| — 0 (resp. ||z,|| — 0) and hence f,,(T'(z,)) — 0.

(2) Let (z,,) be a weakly null sequence of X and (f,,) be a disjoint sequence of Bp, as

F" has an order continuous, then it follows from Theorem 2.4.14 of [5] that f, oL 0,

and so T'(f,) = 0 in X’. Since X has the Dunford-Pettis property, then f,(T(z,)) =

T'(fn)(xn) = 0.
(3) The proof is similar to that of (2).
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Proposition 2.2. Let E be a Banach lattice and Y be a Banach space. If one of the
following statements holds:

(1) E' orY’ has the Schur property.
(2) Y has the Dunford-Pettis property and E' has an order continuous norm.
(3) E has the weak Dunford-Pettis property and E' has an order continuous norm.

Then every operator T : E — 'Y is Null almost M-weakly compact.

Proof. (1) Let (x,) be a disjoint sequence of E and (f,) be a weakly null sequence of Y,
the sequence (T"(f,)) converges weakly to 0. As E’ has the Schur property (resp. Y’ has
the Schur property), then ||T77(f,)|| = 0 (resp. || fx|| = 0) and hence f,,(T(x,)) — 0.

(2) and (3) Let (z,,) be a disjoint sequence of E and (f,) be a weakly null sequence of
Y’. Since E’ has an order continuous norm, it follows from Theorem 116.1 of [8] that
z, 5 0in E, then T(z,) = 0in Y. On the other hand 7’(f,) = 0 in E'. As F admits
the weak Dunford-Pettis property (resp. Y admits the Dunford-Pettis property), hence

fn(T(xn» = T/(fn)(xn) — 0.
O

As per [5] a linear operator T : E — F between two vector lattices is said to be
disjointness preserving if T sends disjoint elements in F to disjoint elemnet in F' (i.e,
x L yin E implies Tz L Ty in F).

Proposition 2.3. Let E and F be two Banach lattices and Y be a Banach space.
Consider the scheme of operators E Sy &P

(1) If S is Null almost M-weakly compact operator, then Ro S is likewise Null almost
M-weakly compact.

(2) If R is Null almost M-weakly compact operator and S is disjointness preserving
then Ro S is likewise Null almost M-weakly compact.

Proof. (1) Let (z,,) be a disjoint sequence of Bg and (f,,) be a weakly null sequence of F”,

then R'(fn) 707 0. Since  is Null almost M-weakly compact. So, R'(fn)(S(z,)) =

fa(R(S(2r))) = fn(Ro S(x,)) — 0 and hence Ro .S is Null almost M-weakly compact

operator.

(2) Let (x,,) be a disjoint sequence of Br and (f,,) be a weakly null sequence of F’. Since

the operator S is disjointness preserving, then the sequence S(z,,) is disjoint of By. On the

other hand R is Null almost M-weakly compact, then f,(RoS(x,)) = fn(R(S(x,))) — 0.
O

The following lemma establishes the characterization of the order continuity of the
norm of the topological dual of a Banach lattice by a Null almost M-weakly compact
operator.

Lemma 2.4. Let E be a Banach lattice. Then the following assertions are equivalent:

(1) Ewery positive operator T : E — (' is Null almost M-weakly compact.
(2) The norm of E' is order continuous.

Proof. (2) = (1) Follows from Proposition 2.2.

(1) = (2) Suppose that the norm of E’ is not order continuous, according to Theorem
2.4.14 of [5], E contains a vector sublattice isomorphic to ¢!, then there is a positive
projection P on E whose range is a lattice isomorphic copy of ¢!. Clearly, P is not Null
almost M-weakly compact. O

Now we are in a position to give necessary conditions under which each positive Null
almost L-weakly compact operator is Null almost M-weakly compact.
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Theorem 2.5. Let E and F be two Banach lattices. If each positive Null almost L-
weakly compact operator from E into F is Null almost M-weakly compact, then one of the
following assertions holds:

(1) The norm of E' is order continuous.
(2) The norm of F' is order continuous.

Proof. To complete the proof, it suffices to show that if the norm of F’ is not order
continuous, then the norm of E’ must be order continuous. By Lemma 2.4, there exists a
positive operator P : FF — ¢! that is not Null almost M-weakly compact. Consider now
the composed operator PoT : E — F — (.

Assuming that the norm on F’ is not order continuous, it follows from the proof of
Lemma 2.4 that there exists a sublattice H of F' that is isomorphic to ¢'. Let i : ! — F be
the canonical injection of ¢! into F' and consider an arbitrary positive operator T : E — £1.
Since ¢! has the Schur property, then it follows from Proposition 2.1 that T is a Null
almost L-weakly compact operator and hence it is Null almost M-weakly compact by our
assumption. Finally, Lemma 2.4 finishes the proof. O

There exist operators which are Null almost M-weakly compact but not Null almost
L-weakly compact. For example, let the identity operator Id., : co — co is Null almost
M-weakly compact as (cg)’ has the positive Schur property. But it is not Null almost
L-weakly compact because (¢g) does not have the positive Schur property.

The following result gives the conditions under which each positive Null almost M-
weakly compact operator T' from E to F' is Null almost L-weakly compact.

Theorem 2.6. Let E and F' be two Banach lattices. If every positive Null almost M-
weakly compact from E into F is Null almost L-weakly compact, then one of the following
conditions is valid:

(1) The lattice operations in E are weakly sequentially continuous.
(2) The norm of F is order continuous.

Proof. Suppose by way of contradiction that the lattice operations in E are not weakly
sequentially continuous and the norm of F' is not order continuous. To finish the proof,
we have to construct a Null almost M-weakly compact operator from E into F' that is
not Null almost L-weakly compact.

As the lattice operations of E are not weakly sequentially continuous, there exists a
weakly null sequence (z,,) of E, f € (E')*", h, h,, € [—f, f] which satisfy h,, — h for the
topology o(E', E) and hy,(x,) > € for all n and some ¢ > 0 (see Theorem 2 of [6]).

On the other hand, since the norm of F' is not order continuous Theorem 2.4.2 of
[5] implies that there exists a positive order bounded disjoint sequence (y,,) C F which
does not converge to zero in norm. We may assume that there exist y € F* such that
0 < yn <yand ||ys|| =1 for all n. Thus, by Lemma 3.4 of [2], there exists a positive
disjoint sequence (fy,) of F’ with || f.|| < 1 such that f,(y.m) = 1 for all n = m and
frn(ym) = 0 for n # m.

Now, consider the operator S : E — ¢y defined by

holds for each x € E. And define the operator R : ¢yg — F by

n=1
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As (cg)’ has the Schur property, then by Proposition 2.2 and 2.3, S is Null almost M-weaky
compact and hence T'= R o S defined by
T(x) = Z(hn(x) —h(x))y, forall zeF
n=1
is Null almost M-weakly compact operator. But 7" is not Null almost L-weakly compact.
Otherwise, f,(T(z,)) — 0, i.e, by the following equality
FulT@a) = Ful> (hilwn) = hwn))ye) = (b () = h(zn))
k=1

hn(xy) — 0. This leads to a contradiction. And this finish the proof.

O

Remark 2.7. The conditions stated in Theorem 2.6 are insufficient to ensure that each
positive Null almost M-weakly compact operator T : E — F' is Null almost L-weakly
compact. In fact, if we consider E = F = ¢y, it is clear that the identity operator
Id., : co — co is Null almost M-weakly compact, but it is not Null almost L-weakly
compact. However, ¢y has weakly sequentially continuous lattice operations and the norm
of ¢g is order continuous.

The authors in [4] gave an example of a Null almost L-weakly compact operator such
that its adjoint is not Null almost M-weakly compact. Noting that the Lorentz space
A(w, 1) has the positive Schur property but its bidual does not, they concluded that the
identity operator of the Lorentz space A(w,1) is Null almost L-weakly compact, but its
adjoint is not Null almost M-weakly compact.

In the following result, we present sufficient conditions under which the adjoint of every
Null almost L-weakly compact operator is Null almost M-weakly compact.

Proposition 2.8. Let E and F be two Banach lattices. If one of the following assertions
is valid:

(1) F" has the Schur property.

(2) F" has an order continuous norm and E' has the Dunford-Pettis property.

(3) dim F < oo.
Then the adjoint of every Null almost L-weakly compact T : E — F is Null almost
M-weakly compact.

Proof. (1) Let T be a Null almost L-weakly compact operator , as F’' has the Schur
property then 7" is Null almost L-weakly compact and Theorem 2.1 (1) of [4] follows
that 7" is Null almost M-weakly compact operator.

(2) To show that 7" is Null almost M-weakly compact. Let (f,,) be a disjoint sequence of
Bp: and (¢,,) be a weakly null sequence in E”, we have to prove that ¢, (T'(f,)) — 0.
Since F” has an order continuous norm, then it follows from Theorem 2.4.14 of [5] that
fn — 0 for o(F',F") and hence T'(f,) — 0 for o(E’', E"), as E’ has Dunford-Pettis
property then ¥, (T"(f,)) — 0, as desired.

(3) In this case, every operator is L-weakly compact, then its adjoint 7" is M-weakly
compact, and hence T is Null almost M-weakly compact. O

The assertions (1) and (2) in the previous proposition are not necessary as shown in
the following example.

Example 2.9. An operator T : ¢* — ¢* is Null almost L-weakly compact if and only
if it adjoint T’ is Null almost M-weakly compact. In fact, let T : ¢' — /> defined
by T((An)n) = .07, An)e, where e = (1,1, 1, ...) is Null almost L-weakly compact as

n=1
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compact (it rank one). Hence, it is clear that its adjoint 7" : £! — ¢°° is Null almost
M-weakly compact.

The next result tells us when the adjoint of every positive Null almost L-weakly compact
operator, between two Banach lattices, is Null almost M-weakly compact.

Theorem 2.10. Let E and F be two Banach lattices such that F" has an order continuous
norm. If each positive Null almost L-weakly compact operator T : E — F admits a Null
almost M-weakly compact adjoint T' : F' — E’, then one of the following properties is
valid:

(1) E' has the weak Dunford-Pettis property.
(2) F is KB-space.

Proof. Assume by way of contradiction that E’ does not have weak Dunford-Pettis
property and F' is not a KB-space. We need to construct a positive Null almost L-weakly
compact operator from FE into F such that its adjoint is not Null almost M-weakly
compact.

Since the Banach lattice F' is not a KB-space, then by Theorem 4.61 of [1] ¢ is lattice
embeddable in F. By virtue of Proposition 0.5.1 [7] we have F' = span {y, : n € N} for
some sequence (y,) C F of positive disjoint elements. We may assume that ||y,| = 1 and

¢ = supy Hzlzzl ka < 00. Hence, the operator S : ¢ — F' defined by

S () = 3 Autin

is a linear homomorphism from ¢y onto F. On the other hand, according to Theorem
116.3 of [8] there exists a disjoint sequence (f,) of positive elements in the unit ball of F’
such that f, (y,) =1 for all n and f, (ym) = 0 for m # n.

As E’ does not have weak Dunford-Pettis property, there exist a weakly null sequence
(1) in E” and a disjoint weakly null sequence (¢,,) in (E’)* such that (1, (¢,)) does
not converge to zero. Then, by passing to a subsequence, we can assume that for some
€ > 0 we have

[thn(fn)| > €

for all n. Consider the operator R : E — c¢o defined by R(z) = (¢, (2))5 ;.
Next, we consider the operator T'= S o R : E — F' defined by

oo
n=1
holds for all € E. It is clear that its adjoint 7" : F' — E’ defined by
T'(h) = hu(yn)-dn
n=1

for all h € F’'. As F” has an order continuous norm and ¢y has Dunford-Pettis property,
then by Proposition 2.1, S is Null almost L-weakly compact and by Theorem 2.6(i) of [4],
the composed operator T' is Null almost L-weakly compact. But the operator T is not
Null almost M-weakly compact. Indeed, note that (¢,) is a weakly null sequence in E”
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and (f,) a disjoint sequence of F’. From,

wn(T/(fn)) = wn(z In(Yr)-ox)
k=1

= ) Falyr)-tn(o)

n=1

and so, [T (fn)| = |¥n(¢n)| > € for all n. We conclude that ¢, (T"(f,) # 0, then 17" is
not Null almost M-weakly compact. This is a contradiction and the proof is finished.
O

Remark 2.11. The second assertion in the necessary condition of the previous theorem
is not sufficient to guarantee that the adjoint of every positive Null almost L-weakly
compact operator T : E — F is Null almost M-weakly compact. In fact, the identity
operator of the Lorentz space A(w, 1) is Null almost L-weakly compact but its adjoint is
not Null almost M-weakly compact. However, A(w,1) is a KB-space.

We mentioned before that each Null almost L-weakly compact operator is not L-weakly
compact. However, we have the following theorem.

Theorem 2.12. Let E and F be two Banach lattices. If every positive Null almost
L-weakly compact from E into F is L-weakly compact, then one of the following conditions
is valid:

(1) The norm of E’' is order continuous.

(2) F is finite-dimensional.

Proof. Suppose that neither (1) not (2) holds. To finish the proof, we have to construct a
positive Null almost L-weakly compact operator T : E — F' that is not L-weakly compact.

As the norm of E’ is not order continuous, it follows from Theorem 116.1 of [8] that
there is a norm bounded disjoint sequence (uy,,) of positive elements of E which does not
converge weakly to zero. Hence, we may assume that ||u,|| < 1 for all n and also that
for some 0 < ¢ € E’ satistying ¢(u,) = 1 for all n. Then, it follows from Theorem 116.3
of [8] that the components ¢,, of ¢ in the carriers C,,, form an order bounded disjoint
sequence in (E')* such that ¢, (u,) = ¢(uy) for all n and ¢, (uy,) = 0 if n # m.

Define the positive operator R : E — {1 by

R(z) = (Z&(Z;)w for all € E.

Since Y07, i(é:“ < L3 dn(lz]) < Lo(|2]) holds for each z € E the operator R is
well defined. On the other hand, F' is infinite-dimensional then there exists a disjoint
sequence (y,,) of positive elements in F' such that ||y,|| = 1 for all n. Now, consider the

positive operator S : {1 — F' defined by

n=1

S((An)n) = i Anyn  forall (A,) € 4.

n=1
Clearly, the operator S is well defined. Next, we consider the composed operator
T=SoR:FE —{, — F defined by

T(x) = Z j&ig yn, forall z€FE.

Since ¢; has the Schur property, then 7" is a Null almost L-weakly compact operator,
but it is not L-weakly compact. To see this, from T(u,) = y, for all n. Note that (y,,) is

n=1
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a disjoint sequence in the solid hull of T'(Bg). But the L-weak compactness of T implies
that ||y, || — 0, which is a contradiction. O

Corollary 2.13. Let E and F be two Banach lattices such that the norm of F is order
continuous then the following statements are equivalent:

(1) Each positive Null almost L-weakly compact operator T : E — F is L-weakly
compact.

(2) One of the following conditions is valid:
(a) The norm of E’ is order continuous.
(b) F is finite-dimensional.

Proof. (1) = (2) Follows from Theorem 2.12.
(2a) = (1) Follows from Theorem 3.6.17 of [5].
(20) = (1) In this case, every operator T is L-weakly compact.
O

Corollary 2.14. Let F be a Banach lattice. Then the following assertions are equivalent:

(1) Ewery Null almost L-weakly compact from £y into F is L-weakly compact.
(2) dim F < oc.

Note that each M-weakly compact operator is Null almost M-weakly compact but the
converse is not true.

Theorem 2.15. Let E and F' be two Banach lattices such that F is Dedekind o-complet.
If every positive Null almost M-weakly compact from E into F is M-weakly compact, then
one of the following conditions is valid:

(1) E is finite dimensional.
(2) The norm of F is order continuous.

Proof. By way of contradiction, let us assume that F is infinite-dimensional and the norm
of F' is not order continuous. We need to construct an operator from E into F' that is
Null almost M-weakly compact but not M-weakly compact.

Since the Banach lattice F is infinite-dimensional, by Lemma 2.3 and Lemma 2.5 of
[3], there exists a positive disjoint sequence (z,,) of Et with |z,,|| =1 for all n and there
exists a positive disjoint sequence (g,) of E’ with ||g,|| = 1, such that g, (z,) = 1 for all
n and gy (zm,) =0 for n # m.

Consider the positive operator R : E — £>° defined by:

R(z) = (gn(2))n
for each x € E. On the other hand, as the norm of F is not order continuous,
by Theorem 4.14 of [1] there exists some y € F™ and there exists a disjoint sequence
(yn) C [0, y] which does not converge to zero in norm, we can assume that ||y,| = 1 for

all n. As F' is Dedekind o-complet, it can be inferred from the proof of Theorem 117.3 of
[8] that the operator S : > — F defined by:

oo
= Z /\nyn-
n=1
Next, we consider the composed operator T'= S o R : E — {*° — F defined by
2) =Y gnl(2)y
n=1

for each x € F, the operator T is well defined. As (£°°)’ has the Schur property, then it
follows from Propositions 2.2, that T" is Null almost M-weakly compact. But T is not
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M-weakly compact. To see this, since (z,,) is a disjoint sequence of BE we have
1T (xn)]| = llynll = 1

for all n, we conclude that F is a finite-dimensional Banach lattice, and the proof is
complete. O

Remark 2.16. The assumption "F is Dedekind o-complet” is essential. Indeed, if we
take F = (> and F = c. It follows from proposition 2.2 that T : £*° — ¢ is Null almost
M-weakly compact. As £>° is an AM-space, then by Theorem 5.62 of [1], T is M-weakly
compact. Neither of the two possible conditions is holds.

As a consequence, we obtain :

Corollary 2.17. Let E be a Banach lattice. Then the following assertions are equivalent:

(1) Ewvery positive Null almost M-weakly compact operator T : E — £*° is M-weakly
compact.
(2) E is finite dimensional.
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