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SPECTRAL PROPERTIES OF ESSENTIAL PSEUDOSPECTRA
UNDER POLYNOMIALLY NON-STRICT SINGULAR

PERTURBATIONS

BILEL ELGABEUR

Abstract. This paper investigates the essential pseudospectra of closed linear opera-
tors in Banach spaces, focusing on perturbations induced by polynomially non-strictly
singular operators, a class that extends the concept of polynomially strictly singular
operators. New results are presented regarding the behavior of the essential pseu-
dospectra under these perturbations. In particular, we explore the impact on the left
(resp. right) Weyl and Fredholm essential pseudospectra. Additionally, we examine
the essential pseudospectra of the sum of two bounded linear operators and apply the
results to characterize the pseudo-Fredholm spectra of 2\times 2 block operator matrices.

1. Introduction

Let X and Y be two Banach spaces. By an operator A from X into Y we mean
a linear operator with domain \scrD (A) \subseteq X and range contained in Y . We denote by
\scrC (X,Y ) (resp., \scrL (X,Y )) the set of all closed, densely defined (resp., bounded) linear
operators from X to Y . The subset of all compact operators of \scrL (X,Y ) is designated by
\scrK (X,Y ). If A \in \scrC (X,Y ), we write N(A) \subset X and R(A) \subset Y for the null space and the
range of A. We set \alpha (A) := \mathrm{d}\mathrm{i}\mathrm{m}N(A) and \beta (A) := \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}R(A). Let A \in \scrC (X,Y ) with
closed range. Then A is a \Phi +-operator (A \in \Phi +(X,Y )) if \alpha (A) < \infty , and then A is a
\Phi  - -operator (A \in \Phi  - (X,Y )) if \beta (A) < \infty .\Phi (X,Y ) = \Phi +(X,Y ) \cap \Phi  - (X,Y ) is the class
of Fredholm operators while \Phi \pm (X,Y ) denotes the set \Phi \pm (X,Y ) = \Phi +(X,Y )\cup \Phi  - (X,Y ).
For A \in \Phi (X,Y ), the index of A is defined by i(A) = \alpha (A)  - \beta (A). If X = Y , then
\scrL (X,Y ),\scrK (X,Y ), \scrC (X,Y ),\Phi +(X,Y ),\Phi \pm (X,Y ) and \Phi (X,Y ) are replaced, respectively,
by \scrL (X),\scrK (X), \scrC (X),\Phi +(X),\Phi \pm (X) and \Phi (X). Let A \in \scrC (X), the spectrum of A
will be denoted by \sigma (A). The resolvent set of A, \rho (A), is the complement of \sigma (A)
in the complex plane. A complex number \lambda is in \Phi +A,\Phi  - A,\Phi \pm A or \Phi A if \lambda  - A
is in \Phi +(X),\Phi  - (X),\Phi \pm (X) or \Phi (X), respectively. Let F \in \scrL (X,Y ).F is called a
Fredholm perturbation if U + F \in \Phi (X,Y ) whenever U \in \Phi (X,Y ). F is called an upper
(resp., lower) Fredholm perturbation if U + F \in \Phi +(X,Y ) (resp., U + F \in \Phi  - (X,Y ) )
whenever U \in \Phi +(X,Y ) (resp., U \in \Phi  - (X,Y ) ). The set of Weyl operators is defined
as \scrW (X,Y ) = \{ A \in \Phi (X,Y ) : i(A) = 0\} . Sets of left and right Fredholm operators,
respectively, are defined as:

\Phi l(X) := \{ A \in \scrL (X) : R(A) is a closed and complemented subspace of X, \alpha (A) < \infty \} .

\Phi r(X) := \{ A \in \scrL (X) : N(A) is a closed and complemented subspace of X, \beta (A) < \infty \} .

An operator A \in \scrL (X) is left (right) Weyl if A is left (right) Fredholm operator and
i(A) \leq 0(i(A) \geq 0). We use \scrW l(X)(\scrW r(X)) to denote the set of all left(right) Weyl
operators. It is Known that the sets \Phi l(X) and \Phi r(X) are open satisfying the following
inclusions:
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\Phi (X) \subset \scrW l(X) \subset \Phi l(X) and \Phi (X) \subset \scrW r(X) \subset \Phi r(X).

The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturbations are
denoted by \scrF (X,Y ),\scrF +(X,Y ) and \scrF  - (X,Y ), respectively. In general, we have

\scrK (X,Y ) \subseteq \scrF +(X,Y ) \subseteq \scrF (X,Y )

\scrK (X,Y ) \subseteq \scrF  - (X,Y ) \subseteq \scrF (X,Y ).

If X = Y we write \scrF (X),\scrF +(X) and \scrF  - (X) for \scrF (X,X),\scrF +(X,X) and \scrF  - (X,X),
respectively. Let \Phi b(X,Y ),\Phi b

+(X,Y ) and \Phi b
 - (X,Y ) denote the sets \Phi (X,Y ) \cap \scrL (X,Y ),

\Phi +(X,Y )\cap \scrL (X,Y ) and \Phi  - (X,Y )\cap \scrL (X,Y ), respectively. If in Definition 1.1 we replace
\Phi (X,Y ),\Phi +(X,Y ) and \Phi  - (X,Y ) by \Phi b(X,Y ),\Phi b

+(X,Y ) and \Phi b
 - (X,Y ) we obtain the

sets \scrF b(X,Y ),\scrF b
+(X,Y ) and \scrF b

 - (X,Y ). These classes of operators were introduced and
investigated in [6]. In particular, it is shown that \scrF b(X,Y ) is a closed subset of \scrL (X,Y )
and \scrF b(X) is a closed two-sided ideal of \scrL (X). In general we have

\scrK (X,Y ) \subseteq \scrF b
+(X,Y ) \subseteq \scrF b(X,Y )

\scrK (X,Y ) \subseteq \scrF b
 - (X,Y ) \subseteq \scrF b(X,Y )

Let A \in \scrC (X). It follows from the closeness of A that \scrD (A) endowed with the graph norm
\| \cdot \| A (\| x\| A = \| x\| + \| Ax\| ) is a Banach space denoted by XA. Clearly, for x \in \scrD (A) we
have \| Ax\| \leqslant \| x\| A, so A \in \scrL (XA, X) . Furthermore, we have the obvious relations\left\{   

\alpha ( \^A) = \alpha (A), \beta ( \^A) = \beta (A), R( \^A) = R(A)

\alpha ( \^A+ \^B) = \alpha (A+B),

\beta ( \^A+ \^B) = \beta (A+B) and R( \^A+ \^B) = R(A+B)

(1.1)

In this paper we are concerned with the following essential spectra of A \in C(X):

\sigma e(A) := \{ \lambda \in \bfC : A - \lambda /\in \Phi (X)\} : the Fredholm spectrum of A.

\sigma l
e(A) := \{ \lambda \in \bfC : A - \lambda /\in \Phi l(X)\} : the left Fredholm spectrum of A.

\sigma r
e(A) := \{ \lambda \in \bfC : A - \lambda /\in \Phi r(X)\} : the right Fredholm spectrum of A.

\sigma w(A) := \{ \lambda \in \bfC : A - \lambda /\in \scrW (X)\} : the Weyl spectrum of A.

\sigma l
w(A) := \{ \lambda \in \bfC : A - \lambda /\in \scrW l(X)\} : the left Weyl spectrum of A.

\sigma r
w(A) := \{ \lambda \in \bfC : A - \lambda /\in \scrW r(X)\} : the right Weyl spectrum of A.

\sigma eap (A) := \mathrm{C}\setminus \rho eap (A) : the essential approximate point spectrum of A.

\sigma e\delta (A) := \mathrm{C}\setminus \rho e\delta (T ) : the essential defect spectrum of A.
where

\rho eap (A) := \{ \lambda \in \mathrm{C} such that \lambda  - A \in \Phi +(X) and i(\lambda  - A) \leq 0\} ,

and
\rho e\delta (A) := \{ \lambda \in \mathrm{C} such that \lambda  - A \in \Phi  - (X) and i(\lambda  - A) \geq 0\} 

The definition of pseudo spectrum of a closed densely linear operator A for every \varepsilon > 0
is given by:

\sigma \varepsilon (A) := \sigma (A) \cup 
\biggl\{ 
\lambda \in \BbbC :

\bigm\| \bigm\| (\lambda  - A) - 1
\bigm\| \bigm\| >

1

\varepsilon 

\biggr\} 
. (1.2)

By convention, we write
\bigm\| \bigm\| (\lambda  - A) - 1

\bigm\| \bigm\| = \infty if (\lambda  - A) - 1 is unbounded or nonexistent,
i.e., if \lambda is in the spectrum \sigma (A). In [8], Davies defined another equivalent of the pseudo
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spectrum, one that is in terms of perturbations of the spectrum. In fact for A \in C(X),
we have

\sigma \varepsilon (A) :=
\bigcup 

\| D\| <\varepsilon 

\sigma (A+D). (1.3)

Inspired by the notion of pseudospectra, Ammar and Jeribi in their works [5, 6], aimed
to extend these results for the essential pseudo-spectra of bounded linear operators on
a Banach space and give the definitions of pseudo-Fredholm operator as follows: for
A \in \scrL (X) and for all D \in \scrL (X) such that \| D\| < \varepsilon we have A is called a pseudo-upper
(resp. lower) semi-Fredholm operator if A+D is an upper (resp. lower) semi-Fredholm
operator and it is called a pseudo semi-Fredholm operator if A+D is a semi-Fredholm
operator. A is called a pseudo-Fredholm operator if A + D is a Fredholm operator.
They are noted by \Phi \varepsilon (X) the set of pseudo-Fredholm operators, by \Phi \varepsilon 

\pm (X) the set of
pseudo-semi-Fredholm operator and by \Phi \varepsilon 

+(X) (resp. \Phi \varepsilon 
 - (X)

\bigr) 
the set of pseudo-upper

semi-Fredholm (resp. lower semi-Fredholm) operator. A complex number \lambda is in \Phi \varepsilon 
\pm A,

\Phi \varepsilon 
+A,\Phi 

\varepsilon 
 - A or \Phi \varepsilon 

A if \lambda  - A is in \Phi \varepsilon 
\pm (X),\Phi \varepsilon 

+(X),\Phi \varepsilon 
 - (X) or \Phi \varepsilon (X).

F. Abdmouleh and B. Elgabeur in [3] defining the concept of pseudo left (resp. right)-
Fredholm, for A \in \scrL (X) and for all D \in \scrL (X) such that \| D\| < \varepsilon we have A is called a
pseudo left (resp. right) Fredholm operator if A +D is an left (resp. right) Fredholm
operator they are denoted by \Phi \varepsilon 

l (X) (resp. \Phi \varepsilon 
r(X)) . In this paper we are concerned with

the following essential pseudospectra of A \in C(X):

\sigma e1,\varepsilon (A) :=
\bigl\{ 
\lambda \in \BbbC such that \lambda  - A /\in \Phi \varepsilon 

+(X)
\bigr\} 
= \BbbC \setminus \Phi \varepsilon 

+A,

\sigma e2,\varepsilon (A) :=
\bigl\{ 
\lambda \in \BbbC such that \lambda  - A /\in \Phi \varepsilon 

 - (X)
\bigr\} 
= \BbbC \setminus \Phi \varepsilon 

 - A,

\sigma e3,\varepsilon (A) :=
\bigl\{ 
\lambda \in \BbbC such that \lambda  - A /\in \Phi \varepsilon 

\pm (X)
\bigr\} 
= \BbbC \setminus \Phi \varepsilon 

\pm A,

\sigma e,\varepsilon (A) := \{ \lambda \in \BbbC such that \lambda  - A /\in \Phi \varepsilon (X)\} = \BbbC \setminus \Phi \varepsilon 
A,

\sigma eap,\varepsilon (A) := \sigma e1,\varepsilon (A) \cup \{ \lambda \in \BbbC such that i(\lambda  - A - D) > 0,\forall \| D\| < \varepsilon \} ,
\sigma e\delta ,\varepsilon (A) := \sigma e2,\varepsilon (A) \cup \{ \lambda \in \BbbC such that i(\lambda  - A - D) < 0,\forall \| D\| < \varepsilon \} ,

\sigma l
e,\varepsilon (A) := \{ \lambda \in \BbbC such that \lambda  - A /\in \Phi \varepsilon 

l (X)\} ,
\sigma r
e,\varepsilon (A) := \{ \lambda \in \BbbC such that \lambda  - A /\in \Phi \varepsilon 

r(X)\} ,

\sigma l
w,\varepsilon (A) := \sigma l

e,\varepsilon (A) \cup \{ \lambda \in \BbbC such that i(\lambda  - A - D) > 0,\forall \| D\| < \varepsilon \} ,
\sigma r
w,\varepsilon (A) := \sigma r

e,\varepsilon (A) \cup \{ \lambda \in \BbbC such that i(\lambda  - A - D) < 0,\forall \| D\| < \varepsilon \} ,
\sigma w,\varepsilon (A) := \sigma e,\varepsilon (A) \cup \{ \lambda \in \BbbC such that i(\lambda  - A - D) = 0,\forall \| D\| < \varepsilon \} .

Note that if \varepsilon tends to 0, we recover the usual definition of the essential spectra of a closed
operator A. The subsets \sigma e1 and \sigma e2 are the Gustafson and Weidmann essential spectra
[15], \sigma e3 is the Kato essential spectrum,[18] \sigma e is the Wolf essential spectrum [15], \sigma e5 is
the Schechter essential spectrum[25], \sigma eap is the essential approximate point spectrum
[23], \sigma e\delta is the essential defect spectrum [24], \sigma l

e(A)(resp.\sigma r
e(A)) is the left (resp. right)

Fredholm essential spectra and \sigma l
w(A)(resp.\sigma r

w(A)) is the left (resp. right) Weyl essential
spectra [14, 28, 29].
As a concept, pseudospectra and essential pseudospectra are interesting because they offer
more information than spectra, especially about transients rather than just asymptotic
behavior. Moreover, they perform more efficiently than spectra in terms of convergence
and approximation. These include the existence of approximate eigenvalues far from the
spectrum and the instability of the spectrum even under small perturbations. Various
applications of pseudospectra and essential pseudospectra have been developed as a result
of the analysis of pseudospectra and essential pseudospectra.
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In this paper, we extend our study of the essential pseudospectra in Banach spaces,
focusing on a broader class of operators known as polynomially non-strictly singular
operators, which generalize several well-established classes of perturbations, including
Fredholm perturbations, polynomially Fredholm perturbations, and strictly singular op-
erators. These classes have been foundational in the work of K. Latrach et al. [20, 21],
particularly in the context of essential spectra. The study of these operators has attracted
significant attention in spectral theory, with numerous contributions from various authors.
The first objective of this paper is to extend the stability results of essential pseudospectra
obtained in earlier works [1, 2, 3, 5, 6, 10, 11] by considering perturbations from polyno-
mially non-strictly singular operators for densely defined closed linear operators. The
second aim is to describe the essential pseudospectrum of the sum of two bounded linear
operators within the framework of these new perturbations.

Let us now outline the structure of the paper:
Section 2 provides a review of essential definitions and notation related to Fredholm

operators and their essential spectra. Additionally, we investigate the properties of
polynomially non-strictly singular operators, presenting novel results.
Section 3 focuses on stability results and introduces a new characterization of the left
(resp. right) Weyl and left (resp. right) Fredholm essential pseudospectra within the class
of polynomially non-strictly singular operators.
Section 4 presents a key result concerning the essential pseudospectra of the sum of two
bounded linear operators, based on the concept of polynomially non-strictly singular
perturbations.
Finally, in Section 5, we extend the results to define pseudo-left (right)-Fredholm spectra
for 2\rtimes 2 block operator matrices, using polynomially non-strictly singular operators as
the basis for the analysis.

We now list some of the known facts about left and right Fredholm operators in Banach
space which will be used in the sequel.

Proposition 1.1. [17, propositon 2.3] Let X,Y and Z be three Banach spaces.
(i) If A \in \Phi b(Y,Z) and T \in \Phi b

l (X,Y ) (resp. T \in \Phi b
r(X,Y )), then AT \in \Phi b

l (X,Z) (resp.
AT \in \Phi b

r(X,Z)).

(ii) If A \in \Phi b(Y, Z) and T \in \Phi b
l (X,Y ) (resp. T \in \Phi b

r(X,Y )), then TA \in \Phi b
l (X,Z) (resp.

TA \in \Phi b
r(X,Z)). \diamondsuit 

Theorem 1.2. [22, 25] Let X,Y and Z be three Banach spaces, A \in \scrL (Y,Z) and
T \in \scrL (X,Y ). (i) If A \in \Phi b(Y,Z) and T \in \Phi b(X,Y ), then AT \in \Phi b(X,Z) and i(AT ) =
i(A) + i(T ).

(ii) If X = Y = Z, AT \in \Phi b(X) and TA \in \Phi b(X), then A \in \Phi b(X) and T \in \Phi b(X). \diamondsuit 

Lemma 1.3. [14, Theorem 2.3] Let A \in \scrL (X), then

(i) A \in \Phi b
l (X) if and only if, there exist Al \in \scrL (X) and K \in \scrK (X) such that AlA = I - K.

(ii) A \in \Phi b
r(X) if and only if, there exist Ar \in \scrL (X) and K \in \scrK (X) such that AAr =

I  - K. \diamondsuit 

Lemma 1.4. [14, Theorem 2.7] Let A \in \scrL (X).

If A \in \Phi b
l (X)(resp.\Phi b

r(X)) and K \in \scrK (X), then A + K \in \Phi b
l (X)(resp.\Phi b

r(X)) and
i(A+K) = i(A). \diamondsuit 

Lemma 1.5. [14, Theorem 2.5] Let A,B \in \scrL (X).
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If A \in \Phi b
l (X)(resp.\Phi b

r(X)) and B \in \Phi b
l (X)(resp.\Phi b

r(X)) then AB \in \Phi b
l (X)(resp.\Phi b

r(X))
and

i(A+B) = i(A) + i(B). \diamondsuit 

We close with the following Lemma.

Lemma 1.6. [7, Lemma 3.4] Let A \in \scrL (X).

(i) If AB \in \Phi b
l (X) then B \in \Phi b

l (X).

(ii) If AB \in \Phi b
r(X) then A \in \Phi b

r(X).

Definition 1.7. Let X be a Banach space.

(i) An operator A \in \scrL (X) is said to have a left Fredholm inverse if there exists Al \in \scrL (X)
such that I  - AlA \in \scrK (X).

(ii) An operator A \in \scrL (X) is said to have a right Fredholm inverse if there exists
Ar \in \scrL (X) such that I  - AAr \in \scrK (X). \diamondsuit 

We know by the classical theory of Fredholm operators, see for example [18], that A
belong to \Phi (X) if it possesses a left, right or two-sided Fredholm inverse, respectively.

We define these sets \scrI nvF l
A(X) and \scrI nvF r

A(X) by:

\scrI nvFA,l(X) := \{ Al \in \scrL (X) : Al is a left Fredholm inverse of A\} ,

\scrI nvFA,r(X) := \{ Ar \in \scrL (X) : Ar is a right Fredholm inverse of A\} .

2. Polynomially Non-Strictly Singular Perturbations

In this section, we introduce the class of polynomially non-strictly singular perturbations
associated with a closed linear operator T on a Banach space X. This class generalizes
the notion of polynomially strictly singular perturbations by relaxing the strict singularity
condition through two complementary sets of perturbations characterized by their resolvent
behavior and polynomial bounds. These perturbations play a crucial role in understanding
the stability properties of the essential pseudospectrum under polynomially controlled
perturbations.

Definition 2.1. An operator S \in \scrL (X,Y ) is to be strictly singular if for every infinite
dimensional subspace M of X, the restriction of S to M is not a homeomorphism.

Let \scrS (X,Y ) denote the set of strictly singular operators from X into Y . Note that
\scrS (X,Y ) is a closed subspace of \scrL (X,Y ). In general, strictly singular operators are not
compact (see [12, 13]) and if X = Y,\scrS (X) is a closed two-sided ideal of \scrL (X) containing
\scrK (X). If X is a Hilbert space, then \scrK (X) = \scrS (X). For basic properties of strictly
singular operators we refer to [13, 18].

Definition 2.2. An minimal polynomial P is the unitary polynomial of smaller degree
which cancels an endomorphism, that is to say a linear application of a vector space in
itself.

In the following, we define the set of polynomially strict singular operators will denote
by \scrP \scrS as follow:

\scrP \scrS = \{ A \in \scrL (X), such that there exists a nonzero complex polynomial P (z) :=\sum p
k=0 akz

k, satisfying P
\bigl( 
1
n

\bigr) 
\not = 0,\forall n \in \BbbZ \ast and P (A) \in \scrS (X)\} .



SPECTRAL PROPERTIES OF ESSENTIAL PSEUDOSPECTRA... 209

In the following \scrE \scrP \scrS (X) is a subset of \scrP \scrS as follow:

\scrE \scrP \scrS (X)

:= \{ A \in \scrP \scrS (X) such that the minimal polynomial p(.) of A satisfies p( - 1) \not = 0\} .
Let us recall the following results which are fundamental for the proofs of the main results.

Definition 2.3. Let T be a closed linear operator on a Banach space X. We define the
class of polynomially non-strictly singular perturbations associated with T as the set of
bounded perturbations R \in \scrC (X) satisfying either of the following conditions:

(1) The type \scrA T perturbations:

\scrA T (X)

:=
\bigl\{ 
R \in \scrC (X) : R is T -bounded, and R(\lambda I  - T  - R) - 1 \in \scrP \scrS , \forall \lambda \in \rho (T +R)

\bigr\} 
,

where \scrP \scrS denotes the class of polynomially strictly singular operators, and \rho (T+R)
is the resolvent set of T +R.

(2) The type \scrB T perturbations:

\scrB T (X) :=

\left\{     
R \in \scrB (X) : R is T -bounded,
\exists Q \in \BbbC [X] \setminus \{ 0\} , Q( - 1) \not = 0,

such that \| Q\| g
\bigl( 
R(\lambda I  - T  - R) - 1

\bigr) 
< | Q( - 1)| , \forall \lambda \in \rho (T +R)

\right\}     ,

where \| Q\| g(\cdot ) is a polynomially controlled norm or measure defined on opera-
tors.

The class of polynomially non-strictly singular perturbations for T is then defined by
the union

\scrP \scrN \scrS \scrS T (X) := \scrA T (X) \cup \scrB T (X).

Proposition 2.4. [4, Proposition 3.1]
Let A \in \scrP \scrN \scrS \scrS T (X),Then \lambda  - A is a Fredholm operator of index zero.

3. Stability of essential pseudospectra by means of polynomially
non-strict singular perturbations operators

The following theorem provides a practical criterion for the stability of some
essential pseudospectra for perturbed linear operators.

Theorem 3.1. Let \varepsilon > 0 and consider A,B \in \scrC (X). Assume that there are A0, B0 \in 
\scrL (X) and S1, S2 \in \scrP \scrN \scrS \scrS T (X) such that

AA0 = I  - S1, (3.4)

BB0 = I  - S2. (3.5)
(i) If 0 \in \Phi A \cap \Phi B , A0  - B0 \in \scrF +(X) and i(A) = i(B) then

\sigma \mathrm{e}\mathrm{a}\mathrm{p},\varepsilon (A) = \sigma \mathrm{e}\mathrm{a}\mathrm{p},\varepsilon (B). (3.6)

(ii) If 0 \in \Phi A \cap \Phi B , A0  - B0 \in \scrF  - (X) and i(A) = i(B) then

\sigma e\delta ,\varepsilon (A) = \sigma e\delta ,\varepsilon (B). (3.7)

(iii) If A0  - B0 \in \scrF (X), then
\sigma e,\varepsilon (A) = \sigma e,\varepsilon (B). (3.8)

If, further, 0 \in \Phi A \cap \Phi B such that i(A) = i(B), then

\sigma w,\varepsilon (A) = \sigma w,\varepsilon (B). (3.9)



210 BILEL ELGABEUR

Proof. Let \lambda be a complex number, Equations (3.4) and (3.5) imply

(\lambda  - A - D)A0  - (\lambda  - B  - D)B0 = S1  - S2 + (\lambda  - D)(A0  - B0). (3.10)

(i) Let \lambda /\in \sigma \mathrm{e}\mathrm{a}\mathrm{p},\varepsilon (B), then \lambda \in \Phi \varepsilon 
+B such that i(\lambda  - B  - D) \leq 0, for all D \in \scrL (X) such

that \| D\| < \varepsilon . Since B +D is closed and \scrD (B +D) = \scrD (B) endowed with the graph
norm is a Banach space denoted by XB+D. We can regard B + D an operator from
XB+D into X. This will be denoted by \widehat B +D. Using Equation (1.1) we can show that

\lambda  - \widehat B +D \in \Phi b
+(XB , X) and i(\lambda  - \widehat B +D) \leq 0.

Moreover, since S2 \in \scrE \scrP \scrS (X), applying Proposition 2.4, we obtain I  - S2 \in \Phi (X).
Applying [ [25], Theorem 2.7, p.171] and Equation (3.5), we get B0 \in \Phi b(X,XB). That is
(\lambda  - \widehat B +D)B0 \in \Phi b

+(X). Remembering that A0  - B0 \in \scrF +(X) and taking into account
Equation (3.10), asserts that (\lambda  - \widehat A+D)A0 \in \Phi b

+(X) and

i((\lambda  - \widehat A+D)A0) = i((\lambda  - \widehat B +D)B0). (3.11)

A similar reasoning as before combining Equations (1.1) and (3.4), Proposition 2.4 and
[[25], Corollary 1.6, p. 166], [[25], Theorem 2.6, p. 170] shows that A0 \in \Phi b(X,XA)

where XA := (\scrD (A), \| .\| A). By [[25], Theorem 1.4, p. 108] one sees that

A0S = I  - F on XA,

where S \in \scrL (XA, X) and F \in \scrK (XA), by Equation (3.5) we have

(\lambda  - \widehat B +D)A0S = (\lambda  - \widehat A+D) - (\lambda  - \widehat A+D)F.

Combining the fact that S \in \Phi b(XA, X) with [[25], Theorem 6.6, p. 129], we show that
(\lambda  - \widehat A+D)A0S \in \Phi b

+(XA, X). Following [[25], Theorem 6.3, p. 128], we derive (\lambda  - 
\widehat A+D) \in \Phi b

+(XA, X). Thus, Equation (1.1) asserts that

(\lambda  - A - D) \in \Phi +(X). (3.12)

On the other hand, the assumptions S1, S2 \in \scrP \scrN \scrS \scrS T (X), Equations (3.4), (3.5) and
Proposition 1.1, [[25], Theorem 2.3 , p. 111] reveals that

i(A) + i(A0) = i(I  - S1) = 0 and i(B) + i(B0) = i(I  - S2) = 0,

since i(A) = i(B). That is i(A0) = i(B0).

Using Equation (3.11) and [[22], Theorem 2.3, p. 111], we can write

i(\lambda  - A - D) + i(A0) = i(\lambda  - B  - D) + i(B0).

Therefore
i(\lambda  - A - D) \leq 0,\forall D \in \scrL (X), \| D\| < \varepsilon . (3.13)

Using Equations (3.12) and (3.13), we conclude that

\lambda \not \in \sigma eap,\varepsilon (A).

Therefore we prove the inclusion

\sigma eap,\varepsilon (A) \subset \sigma eap,\varepsilon (B).

The opposite inclusion follows from symmetry and we obtain Equation (3.6).

(ii) The proof of Equation (3.7) may be checked in a similar way to that in (i). It suffices
to replace \sigma eap,\varepsilon (.), \Phi +(.), i(.) \leq 0, [[25], Theorem 6.6, p. 129], [[25], Theorem 6.3, p.
128] by \sigma e\delta ,\varepsilon (.), \Phi  - (.), i(.) \geq 0, [[22], Theorem 5 (i), p. 150], [[25], Theorem 6.7, p. 129]
respectively. The details are therefore omitted.
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(iii) If \lambda /\in \sigma e,\varepsilon (B), then \lambda  - B  - D \in \Phi (X). Since B is closed, its domain \scrD (B)
becomes a Banach space XB for the graph norm \| .\| B . The use of Equation (1.1) leads to
\lambda  - \widehat B +D \in \Phi b(XB , X). Moreover, Equation (3.5), Proposition 1.1 and [[25], Theorem
5.13] reveals that B0 \in \Phi b(X,XB) and consequently (\lambda  - \widehat B +D)B0 \in \Phi b(X). Following
with the assumption, Equation (3.10) and [[25], Theorem 5.13], leads to estimate (\lambda  - 
\widehat A+D)A0 \in \Phi b(X) with

i[(\lambda  - \widehat A+D)A0] = i[(\lambda  - \widehat B +D)B0]. (3.14)

Since A \in \scrC (X), proceeding as above, Equation (3.4) implies that A0 \in \Phi b(X,XA). By
[[25], Theorem 5.4 ] we can write

A0S = I  - F on XA, (3.15)

where S \in \scrL (XA, X) and F \in \scrF (XA). Taking into account Equation (3.15) we infer that

(\lambda  - \widehat A+D)A0S = (\lambda  - \widehat A+D) - (\lambda  - \widehat A+D)F.

Therefore, since S \in \Phi b(XA, X), the use of [[25], Theorem 6.6 ] amounts to

(\lambda  - \widehat A+D)A0S \in \Phi b(XA, X).

Applying [[25],Theorem 6.3], we prove that (\lambda  - \widehat A+D) \in \Phi b(XA, X) and consequently

(\lambda  - A - D) \in \Phi (X).

Thus \lambda /\in \sigma e,\varepsilon (A). This implies that \sigma e,\varepsilon (A) \subset \sigma e,\varepsilon (B). Conversely, if \lambda /\in \sigma e,\varepsilon (A), we can
easily derive the opposite inclusion.

Now, we prove Equation (3.9). If \lambda /\in \sigma w,\varepsilon (B), then, \lambda \in \Phi \varepsilon 
B and i(\lambda  - B - D) = 0, for all

D \in \scrL (X) with \| D\| < \varepsilon . On the other hand, since S1, S2 \in \scrE \scrP \scrS (X) and i(A) = i(B) = 0,
using the Atkinson theorem, we obtain i(A0) = i(B0) = 0. This together with Equation
(3.14) gives i(\lambda  - \widehat A+D) = i(\lambda  - \widehat B +D). Consequently i(\lambda  - A - D) = 0, for all D \in \scrL (X)
with \| D\| < \varepsilon .. Hence \lambda /\in \sigma w,\varepsilon (A), which proves the inclusion \sigma w,\varepsilon (A) \subset \sigma w,\varepsilon (B). The
opposite inclusion follows by symmetry. \square 

In the following theorems we give some perturbation results of the pseudo left, pseudo
right Fredholm and pseudo left, pseudo right Weyl spectra for bounded linear operator in
Banach space.

Theorem 3.2. Let A and B be two operators in \scrL (X) and \lambda \in \BbbC . The following
statements hold:

(i) Assume that \lambda  - A \in \Phi l(X) and for all D \in \scrL (X) with \| D\| < \varepsilon , there exists
Al \in \scrI nvF\lambda  - A - D,l(X) such that BAl \in \scrP \scrN \scrS \scrS T (X), then

\sigma l
e,\varepsilon (A+B) \subseteq \sigma l

e,\varepsilon (A).

(ii) Assume that \lambda  - A \in \Phi r(X) and for all D \in \scrL (X) with \| D\| < \varepsilon , there exists
Ar \in \scrI nvF\lambda  - A - D,r(X) such that ArB \in \scrP \scrN \scrS \scrS T (X), then

\sigma r
e,\varepsilon (A+B) \subseteq \sigma r

e,\varepsilon (A).

Proof.
(i) Let \lambda /\in \sigma left

\mathrm{e},\varepsilon (A), \lambda  - A  - D \in \Phi \varepsilon 
l (X). As Al is a left Fredholm inverse of

\lambda  - A - D, for all D \in \scrL (X) such that \| D\| < \varepsilon . then by Lemma 1.3 there exists
a compact operator K \in \scrK (X) such that

Al(\lambda  - A - D) +K = I.
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Then, we can write

\lambda  - A - B  - D = (I  - BAl) (\lambda  - A - D) - BK. (3.16)

Using the fact that BAl \in \scrP \scrN \scrS \scrS T (X) and according to Proposition 2.4, we have
I  - BAl \in \Phi (X). Consequently, by Lemma 1.5 we get

(I  - BAl) (\lambda  - A - D) \in \Phi l(X), \forall D \in \scrL (X), \| D\| < \varepsilon .

Thus, combining the fact that BK \in \scrK (X) with the use of Equation 3.16 and
Lemma 1.4, we have \lambda  - A - B - D \in \Phi l(X), for all D \in \scrL (X) such that \| D\| < \varepsilon .
Therefore, \lambda /\in \sigma l

\mathrm{e},\varepsilon (A+B) as required.
(ii) Let \lambda /\in \sigma r

\mathrm{e},\varepsilon (A), then \lambda  - A - D \in \Phi r(X), for all D \in \scrL (X) such that \| D\| < \varepsilon .
Since A\mathrm{r} is a right Fredholm inverse of \lambda  - A  - D. From Lemma 1.3 we infer
there exists a compact operator K \in \scrK (X) such that

(\lambda  - A - D)A\mathrm{r} = I  - K \forall D \in \scrL (X), \| D\| < \varepsilon .

Then, we can write \lambda  - A - B  - D with the following form

\lambda  - A - B  - D = (\lambda  - A - D) (I  - A\mathrm{r}B) - KB, \forall D \in \scrL (X), \| D\| < \varepsilon . (3.17)

Since A\mathrm{r}B \in \scrP \scrN \scrS \scrS T (X) then, according to Proposition 2.4, we have I  - A\mathrm{r}B \in 
\Phi (X). Consequently, by Lemma 1.5, we get

(\lambda  - A - D) (I  - A\mathrm{r}B) \in \Phi \mathrm{r}(X), \forall D \in \scrL (X), \| D\| < \varepsilon .

On the other hand, from Equation 3.17 and Lemma 1.4 and the fact BK \in \scrK (X)
we show that \lambda  - A - B - D \in \Phi \mathrm{r}(X), for all D \in \scrL (X) and \| D\| < \varepsilon . We deduce
that, \lambda /\in \sigma r

\mathrm{e},\varepsilon (A+B).
\square 

Theorem 3.3. Let A and B be two operators in \scrL (X) and \lambda \in \BbbC . The following
statements hold:

(i) Assume that \lambda  - A \in \Phi l(X) and for all D \in \scrL (X) with \| D\| < \varepsilon , there exists
Al \in \scrI nvF\lambda  - A - D,l(X) such that BAl \in \scrP \scrN \scrS \scrS T (X), then

\sigma l
e,\varepsilon (A+B) \subseteq \sigma l

e,\varepsilon (A).

(ii) Assume that \lambda  - A \in \Phi r(X) and for all D \in \scrL (X) with \| D\| < \varepsilon , there exists
Ar \in \scrI nvF\lambda  - A - D,r(X) such that ArB \in \scrP \scrN \scrS \scrS T (X), then

\sigma r
e,\varepsilon (A+B) \subseteq \sigma r

e,\varepsilon (A).

Proof.
(i) Assume that \lambda /\in \sigma l

\mathrm{w},\varepsilon (A), then we have \lambda  - A - D \in \Phi l(X) and i(\lambda  - A - D) \leq 0.
A similar reasoning as above gives \lambda  - A  - B  - D \in \Phi l(X) and it suffices to
prove that i(\lambda  - A - B  - D) \leq 0. Since BK \in \scrK (X) then, Using Equation 3.16
together with Lemmas 1.4 and 1.5, we obtain that

i(\lambda  - A - B  - D) = i (I  - BAl) + i(\lambda  - A - D).

Now, Since BAl \in \scrP \scrN \scrS \scrS T (X), we get by Proposition 2.4, that i (I  - BAl) = 0.
We deduce that

i(\lambda  - A - B  - D) = i (\lambda  - A - D) \leq 0.

Finally, we conclude that \lambda  - A  - B  - D \in \scrW l(X), which entails that \lambda /\in 
\sigma l
\mathrm{w},\varepsilon (A+B).
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(ii) with the same reasoning of (i). Let \lambda /\in \sigma r
\mathrm{w},\varepsilon (A), then we have \lambda  - A  - D \in 

\Phi r(X) and i(\lambda  - A - D) \geq 0. Proceeding as the proof above, we establish that
\lambda  - A - B - D \in \Phi r(X) and i(\lambda  - A - B - D) \geq 0. Therefore, \lambda  - A - B - D \in \scrW r(X)
and we deduce that \lambda /\in \sigma r

\mathrm{w},\varepsilon (A+B).
\square 

Remark 3.4. The results of Theorems 3.1, 3.2 and 3.3 is an extension and an improvement
of the results of in [1, 2, 3, 5, 6] to a large class of polynomially strict singular operators.
\diamondsuit 

4. Characterization essential spectrum of two linares bounded operators

The aim of this section is to carry out a new criterions allowing to investigate some
spectral analysis of sum of two linear bounded operators. We beginning by give the
following lemma when we need in the sequel.

Lemma 4.1. [7, Lemma 4.1] Let A \in \scrL (X).

(i) If C\sigma l
e(A) is connected, then

\sigma l
e(A) = \sigma l

w(A).

(ii) If C\sigma r
e(A) is connected, then

\sigma r
e(A) = \sigma r

w(A).

Theorem 4.2.
Let A, B \in \scrL (X) and \lambda \in \BbbC \ast . For all D \in \scrL (X) with \| D\| < \varepsilon , the following statements

hold:

(i) Assume that the subsets C\sigma l
e(A) and C\sigma l

e(B) are connected, and  - \lambda  - 1ABQl \in 
\scrP \scrN \scrS \scrS T (X),  - \lambda  - 1BAQl \in \scrP \scrN \scrS \scrS T (X), for every Ql \in \scrI nvF\lambda  - A - B - D,l(X), then we
have: \bigl[ 

\sigma l
w(A) \cup \sigma l

w,\varepsilon (B)
\bigr] 
\setminus \{ 0\} \subseteq \sigma l

w,\varepsilon (A+B) \setminus \{ 0\} .

(ii) Assume that the subsets C\sigma r
e(A) and C\sigma r

e(B) are connected, and  - \lambda  - 1QrAB \in 
\scrP \scrN \scrS \scrS T (X),  - \lambda  - 1QrBA \in \scrP \scrN \scrS \scrS T (X), for every Qr \in \scrI nvF\lambda  - A - B - D,r(X), then we
have: \bigl[ 

\sigma r
w(A) \cup \sigma r

w,\varepsilon (B)
\bigr] 
\setminus \{ 0\} \subseteq \sigma r

w,\varepsilon (A+B) \setminus \{ 0\} .

(iii) Assume that the subsets C\sigma l
e(A), C\sigma l

e(B), C\sigma r
e(A) and C\sigma r

e(B) are connected, and
 - \lambda  - 1ABQl \in \scrP \scrN \scrS \scrS T (X),  - \lambda  - 1BAQl \in \scrP \scrN \scrS \scrS T (X),  - \lambda  - 1QrAB \in \scrP \scrN \scrS \scrS T (X) and
 - \lambda  - 1QrBA \in \scrP \scrN \scrS \scrS T (X), for Ql \in \scrI nvF\lambda  - A - B - D,l(X) and Qr \in \scrI nvF\lambda  - A - B - D,r(X),
then we have: \bigl[ 

\sigma w(A) \cup \sigma w,\varepsilon (B)
\bigr] 
\setminus \{ 0\} \subseteq \sigma w,\varepsilon (A+B) \setminus \{ 0\} . \diamondsuit 

Proof. Firstly we note two equality which is used repeatedly

(\lambda  - A)(\lambda  - B  - D) = A(B +D) + \lambda (\lambda  - A - B  - D). (4.18)

(\lambda  - B  - D)(\lambda  - A) = (B +D)A+ \lambda (\lambda  - A - B  - D). (4.19)

(i) Let \lambda /\in \sigma l
w,\varepsilon (A+B)\cup \{ 0\} so we have \lambda  - A - B - D \in \Phi l(X) and i(\lambda  - A - B - D) \leq 0.

Then following to the Lemma 1.3 there exist Ql \in \scrL (X) and K \in \scrK (X) such that
Ql(\lambda  - A - B  - D) = I  - K.
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So when we use Equation (4.18) we obtain

(\lambda  - A)(\lambda  - B  - D) = A(B +D) + \lambda (\lambda  - A - B  - D).

= AB[Ql(\lambda  - A - B  - D) +K] + \lambda (\lambda  - A - B  - D).

= [ABQl + \lambda I](\lambda  - A - B  - D) +ABK.

= \lambda [\lambda  - 1ABQl + I](\lambda  - A - B  - D) +ABK,

Since \lambda [\lambda  - 1ABQl + I] \in \Phi (X) and (\lambda  - A - B  - D) \in \Phi l(X) it follows from Proposition
1.1 that \lambda [\lambda  - 1ABQl + I](\lambda  - A - B  - D) \in \Phi l(X). Since ABK \in \scrK (X), this implies by
the use of Lemma 1.4 that

\lambda [\lambda  - 1ABQl + I](\lambda  - A - B  - D) +ABQlK \in \Phi l(X).

So (\lambda  - A)(\lambda  - B  - D) \in \Phi l(X) and as a direct consequence of Lemma 1.6 we obtain

\lambda  - B  - D \in \Phi l(X),\forall D \in \scrL (X), \| D\| < \varepsilon . (4.20)

In the other hand, when we use the Equation (4.19) we have

(\lambda  - B  - D)(\lambda  - A) = BA+ \lambda (\lambda  - A - B  - D),

= BA[Ql(\lambda  - A - B  - D) +K] + \lambda (\lambda  - A - B  - D),

= [BAQl + \lambda I](\lambda  - A - B  - D) +BAK,

= \lambda [\lambda  - 1BAQl + I](\lambda  - A - B  - D) +BAK.

Since \lambda [\lambda  - 1BAQl + I] \in \Phi (X) and (\lambda  - A - B  - D) \in \Phi l(X) it follows from Proposition
1.1 that

\lambda [\lambda  - 1BAQl + I](\lambda  - A - B  - D) \in \Phi l(X).

Obviously, since BAK \in \scrK (X) and applying Lemma 1.4, we find that
\lambda [\lambda  - 1BAQl + I](\lambda  - A - B  - D) +BAK \in \Phi l(X).

So (\lambda  - B  - D)(\lambda  - A) \in \Phi l(X). Therefore using Lemma 1.6 we obtain

\lambda  - A \in \Phi l(X). (4.21)

Now, to check the index we must have a discussion according to the sign, thus using the
above we have

i(\lambda  - A) + i(\lambda  - B  - D) = i(\lambda  - A - B  - D) \leq 0.

Case1: If i(\lambda  - A) \leq 0

Using Lemma 4.1 the index i(\lambda  - B - D) must be negative.Therefore adding this condition
to Equations (4.20) and (4.21) we obtain

\lambda /\in 
\bigl[ 
\sigma l
w(A) \cup \sigma l

w,\varepsilon (B)] \cup \{ 0\} .

Case2: If i(\lambda  - B  - D) \leq 0

Following to Lemma 4.1 the index i(\lambda  - A) must be negative.
Then adding this condition to Equations (4.20) and (4.21) we assert

\lambda /\in 
\bigl[ 
\sigma l
w(A) \cup \sigma l

w,\varepsilon (B)] \cup \{ 0\} .

Case3: If i(\lambda  - A) > 0.

Following to Lemma 4.1 the index i(\lambda  - B  - D) should be positive which contradicts the
fact that i(\lambda  - A - B  - D) \leq 0.

Case4: If i(\lambda  - B  - D) > 0

Following to Lemma 4.1 the index i(\lambda  - A) must be positive which contradicts the fact
that i(\lambda  - A - B  - D) \leq 0.
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(ii) Let \lambda /\in \sigma r
w,\varepsilon (A+B)\cup \{ 0\} then \lambda  - A - B - D \in \Phi r(X) and i(\lambda  - A - B - D) \leq 0. So by

Lemma 1.3 there exist Qr \in \scrL (X) and K \in \scrK (X) such that (\lambda  - A - B - D)Qr = I  - K

So following to the Equation (4.18) we have

(\lambda  - A)(\lambda  - B  - D) = AB + \lambda (\lambda  - A - B  - D),

= [(\lambda  - A - B  - D)Qr +K]AB + \lambda (\lambda  - A - B  - D),

= (\lambda  - A - B  - D)[QrAB + \lambda I] +ABK,

= \lambda (\lambda  - A - B  - D)[\lambda  - 1QrAB + I] +ABK.

Since \lambda [\lambda  - 1QrAB + I] \in \Phi (X) and (\lambda  - A - B  - D) \in \Phi r(X) it follows by Proposition
1.1 that

\lambda [\lambda  - 1QrAB + I](\lambda  - A - B  - D) \in \Phi r(X).

Since ABK \in \scrK (X) then
\lambda [\lambda  - 1QrAB + I](\lambda  - A - B  - D) +ABK \in \Phi r(X).

So (\lambda  - A)(\lambda  - B  - D) \in \Phi r(X), following to Lemma 1.6 we infer that

\lambda  - A \in \Phi r(X). (4.22)

In the other hand, the use of Equation (4.19) assert

(\lambda  - B  - D)(\lambda  - A) = BA+ \lambda (\lambda  - A - B  - D),

= BA[(\lambda  - A - B  - D)Qr +K]BA+ \lambda (\lambda  - A - B  - D),

= (\lambda  - A - B  - D)[QrBA+ \lambda I] +KBA,

= \lambda (\lambda  - A - B  - D)[\lambda  - 1QrBA+ I] +KBA.

Since by hypothesis [\lambda  - 1QrBA+ I] \in \Phi (X) and (\lambda  - A - B  - D) \in \Phi r(X) we have by
Proposition 1.1

\lambda (\lambda  - A - B  - D)[\lambda  - 1QrBA+ I] \in \Phi r(X).

Since KBA \in \scrK (X) we obtain
\lambda (\lambda  - A - B  - D)[\lambda  - 1QrBA+ I] +KBA \in \Phi r(X).

So (\lambda  - B  - D)(\lambda  - A) \in \Phi r(X) then the use of Lemma 1.6 infer that

\lambda  - B  - D \in \Phi r(X), \forall D \in \scrL (X) with \| D\| < \varepsilon . (4.23)

Now, to check the index we must have a discussion according to the sign, thus using the
above we have

i(\lambda  - A) + i(\lambda  - B  - D) = i(\lambda  - A - B  - D) \geq 0.

Case 1: If i(\lambda  - A) \geq 0

Using Lemma 4.1 the index i(\lambda  - B - D) must be positive. Therefore adding this condition
to Equations (4.22) and (4.23) we get

\lambda /\in 
\bigl[ 
\sigma r
w(A) \cup \sigma r

w,\varepsilon (B)] \cup \{ 0\} .

Case 2: If i(\lambda  - B  - D) \geq 0.

Following to Lemma 4.1 the index i(\lambda  - A) must be positive.
Then adding this condition to Equations (4.20) and (4.21) we obtain

\lambda /\in 
\bigl[ 
\sigma r
w(A) \cup \sigma r

w,\varepsilon (B)] \cup \{ 0\} .

Case 3: If i(\lambda  - A) < 0

Following to Lemma 4.1 the index i(\lambda  - B  - D) should be negative which contradicts the
fact that i(\lambda  - A - B  - D) \geq 0.
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Case 4: If i(\lambda  - B  - D) < 0

Following to Lemma 4.1 the index i(\lambda  - A) should be negative which contradicts the fact
that i(\lambda  - A - B  - D) \geq 0.

(iii) Let \lambda /\in \sigma w,\varepsilon (A+B)\cup \{ 0\} therefore \lambda  - A - B - D \in \Phi (X) and i(\lambda  - A - B - D) = 0
then there exist Ql, Qr \in \scrL (X) and K \in \scrK (X) such that Ql(\lambda  - A - B  - D) = I  - K
and (\lambda  - A - B  - D)Qr = I  - K.

Now, according to items (i) and (ii) we get\bigl[ 
\sigma w(A) \cup \sigma w,\varepsilon (B)

\bigr] 
\setminus \{ 0\} \subseteq \sigma w,\varepsilon (A+B) \setminus \{ 0\} . \square 

Theorem 4.3.
Let A, B \in \scrL (X) such that AB = BA and \lambda \in \BbbC \ast . For all D \in \scrL (X) with \| D\| < \varepsilon ,

the following statements hold:

(i) If there exists Ql \in \scrI nvF\lambda  - A - B - D,l(X), such that  - \lambda  - 1ABQl \in \scrP \scrN \scrS \scrS T (X) then

\sigma l
e,\varepsilon (A+B) \setminus \{ 0\} =

\bigl[ 
\sigma l
e(A) \cup \sigma l

e,\varepsilon (B)
\bigr] 
\setminus \{ 0\} .

(ii) If there exists Qr \in \scrI nvF\lambda  - A - B - D,r(X), such that  - \lambda  - 1QrAB \in \scrP \scrN \scrS \scrS T (X) then

\sigma r
e,\varepsilon (A+B) \setminus \{ 0\} =

\bigl[ 
\sigma r
e(A) \cup \sigma r

e,\varepsilon (B)
\bigr] 
\setminus \{ 0\} .

(iii) If there exists Q \in \scrI nvF\lambda  - A - B - D,l(X) \cap \scrI nvF\lambda  - A - B - D,r(X), such that  - \lambda  - 1QAB \in 
\scrP \scrN \scrS \scrS T (X) and  - \lambda  - 1ABQ \in \scrP \scrN \scrS \scrS T (X) then

\sigma e,\varepsilon (A+B) \setminus \{ 0\} =
\bigl[ 
\sigma e(A) \cup \sigma e,\varepsilon (B)

\bigr] 
\setminus \{ 0\} . \diamondsuit 

Proof. (i) Let \lambda /\in \sigma l
e,\varepsilon (A + B) \cup \{ 0\} , then \lambda  - A  - B  - D \in \Phi l(X). We assume there

exists Ql \in \scrI nvF\lambda  - A - B - D,l(X), thus, using Equation (4.18) we have

(\lambda  - A)(\lambda  - B  - D) = A(B +D) + \lambda (\lambda  - A - B  - D),

= AB[Ql(\lambda  - A - B  - D) +K] + \lambda (\lambda  - A - B  - D),

= [ABQl + \lambda I](\lambda  - A - B  - D) +ABK,

= \lambda [\lambda  - 1ABQl + I](\lambda  - A - B  - D) +ABK.

Obviously,  - \lambda  - 1ABQl \in \scrP \scrN \scrS \scrS T (X) then by Proposition 2.4 we infer that \lambda  - 1ABQl +
I \in \Phi (X). Therefore, by Lemma 1.5 we obtain [\lambda  - 1ABQl+\lambda I](\lambda  - A - B - D) \in \Phi l(X).
Since ABK \in \scrK (X) and by applying Lemma 1.4 we obtain

\lambda [\lambda  - 1ABQl + I](\lambda  - A - B  - D) +ABK \in \Phi l(X).

We conclude that
(\lambda  - A)(\lambda  - B  - D) \in \Phi l(X), \forall D \in \scrL (X) with \| D\| < \varepsilon .

Hence, by Lemma 1.6 we deduce that

(\lambda  - B  - D) \in \Phi l(X), \forall D \in \scrL (X) with \| D\| < \varepsilon . (4.24)
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On the other hand, using the fact that AB = BA and according to the Equation (4.19)
we observe that

(\lambda  - B  - D)(\lambda  - A) = BA+ \lambda (\lambda  - A - B  - D),

= AB + \lambda (\lambda  - A - B  - D),

= AB[Ql(\lambda  - A - B  - D) +K] + \lambda (\lambda  - A - B  - D),

= [ABQl + \lambda I](\lambda  - A - B  - D) +ABK,

= \lambda [\lambda  - 1ABQl + I](\lambda  - A - B  - D) +ABK.

Using the same reasoning we conclude that (\lambda  - B  - D)(\lambda  - A) \in \Phi l(X). Therefore, by
Lemma 1.6 we deduce that

(\lambda  - A) \in \Phi l(X). (4.25)
Finally, the two Equations (4.24) and (4.25) imply that \lambda /\in 

\bigl[ 
\sigma l
e(A) \cup \sigma l

e,\varepsilon (B)
\bigr] 
\cup \{ 0\} .

So, we obtain \bigl[ 
\sigma l
e(A) \cup \sigma l

e,\varepsilon (B)
\bigr] 
\setminus \{ 0\} \subset \sigma l

e,\varepsilon (A+B) \setminus \{ 0\} .
The other inclusion is allows us to achieve equality is in [7, Theorem 4.3].
(ii) Let \lambda /\in \sigma r

e,\varepsilon (A + B) \cup \{ 0\} then \lambda  - A  - B  - D \in \Phi r(X), for all D \in \scrL (X) and
\| D\| < \varepsilon .
We assume there exists Qr \in \scrI nvF\lambda  - A - B - D,r(X) thus,

(\lambda  - A)(\lambda  - B  - D) = AB + \lambda (\lambda  - A - B  - D),

= [(\lambda  - A - B  - D)Qr +K]AB + \lambda (\lambda  - A - B  - D),

= (\lambda  - A - B  - D)\lambda [\lambda  - 1QrAB + I] +KAB.

Evidently,  - \lambda  - 1QrAB \in \scrP \scrN \scrS \scrS T (X) and by applying Proposition 2.4 we deduce that
\lambda  - 1QrAB + I \in \Phi (X). Since, KAB is compact, then by Lemma 1.4 we obtain

(\lambda  - A - B  - D)\lambda [\lambda  - 1QrAB + I] +KAB \in \Phi l(X).

Consequently, we have (\lambda  - A)(\lambda  - B  - D) \in \Phi r(X) and by Lemma 1.6 we infer that

(\lambda  - A) \in \Phi r(X). (4.26)

Further, we have AB = BA so,

(\lambda  - B  - D)(\lambda  - A) = BA+ \lambda (\lambda  - A - B  - D),

= AB + \lambda (\lambda  - A - B  - D),

= [(\lambda  - A - B  - D)Qr +K]AB + \lambda (\lambda  - A - B  - D),

= (\lambda  - A - B  - D)\lambda [\lambda  - 1QrAB + I] +KAB.

Using the same reasoning we conclude that (\lambda  - B  - D)(\lambda  - A) \in \Phi r(X). Then, by
Lemma 1.6 we deduce that

(\lambda  - B  - D) \in \Phi r(X), \forall D \in \scrL (X) with \| D\| < \varepsilon . (4.27)

Finally, the two Equations (4.26) and (4.27) imply that
\lambda /\in 

\bigl[ 
\sigma r
e(A) \cup \sigma r

e,\varepsilon (B)
\bigr] 
\cup \{ 0\} .

So, we obtain \bigl[ 
\sigma r
e(A) \cup \sigma r

e,\varepsilon (B)
\bigr] 
\setminus \{ 0\} \subset \sigma r

e,\varepsilon (A+B) \setminus \{ 0\} .

The other inclusion is allows us to achieve equality is in [7, Theorem 4.3].
(iii) Let \lambda /\in \sigma e,\varepsilon (A+B)\cup \{ 0\} . Then \lambda  - A - B - D \in \Phi (X) means that \lambda  - A - B - D \in 
\Phi l(X) \cap \Phi r(X).
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Now, by the hypothesis there exists Q \in \scrI nvF\lambda  - A - B - D,l(X) \cap \scrI nvF\lambda  - A - B - D,r(X), and
by applying the results in statements (i) and (ii) we infer that (\lambda  - A - B  - D) \in \Phi r(X)
and (\lambda  - A - B  - D) \in \Phi l(X), therefore (\lambda  - A - B  - D) \in \Phi (X).

Also, using the hypothesis that  - \lambda  - 1QAB \in \scrP \scrN \scrS \scrS T (X),  - \lambda  - 1ABQ \in \scrP \scrN \scrS \scrS T (X)
and AB = BA we give us this two condition:

(\lambda  - A)(\lambda  - B  - D) \in \Phi (X) and (\lambda  - B  - D)(\lambda  - A) \in \Phi (X).

Therefore, following Theorem 1.2 we obtain (\lambda  - A) \in \Phi (X) and (\lambda  - B  - D) \in \Phi (X)
means that \lambda /\in 

\bigl[ 
\sigma e(A) \cup \sigma e,\varepsilon (B)

\bigr] 
\cup \{ 0\} . Then we get the following inclusion\bigl[ 

\sigma e(A) \cup \sigma e,\varepsilon (B)
\bigr] 
\setminus \{ 0\} \subseteq \sigma e,\varepsilon (A+B) \setminus \{ 0\} .

The other inclusion is allows us to achieve equality is in [7, Theorem 4.3]. \square 

The same reasoning of the above theorem, we allow to obtain the result of the following
result.

Theorem 4.4. Let A, B \in \scrL (X) such that AB = BA and \lambda \in \BbbC \ast . For all D \in \scrL (X)
with \| D\| < \varepsilon , the following statements hold:

(i) If there exists Ql \in \scrI nvF\lambda  - A - B - D,l(X), such that  - \lambda  - 1ABQl \in \scrP \scrN \scrS \scrS T (X) then

\sigma l
w,\varepsilon (A+B) \setminus \{ 0\} =

\bigl[ 
\sigma l
w,\varepsilon (A) \cup \sigma l

w,\varepsilon (B)
\bigr] 
\setminus \{ 0\} .

(ii) If there exists Qr \in \scrI nvF\lambda  - A - B - D,r(X), such that  - \lambda  - 1QrAB \in \scrP \scrN \scrS \scrS T (X) then

\sigma r
w,\varepsilon (A+B) \setminus \{ 0\} =

\bigl[ 
\sigma r
w(A) \cup \sigma r

w,\varepsilon (B)
\bigr] 
\setminus \{ 0\} .

(iii) If there exists Q \in \scrI nvF\lambda  - A - B - D,l(X) \cap \scrI nvF\lambda  - A - B - D,r(X), such that  - \lambda  - 1QAB \in 
\scrP \scrN \scrS \scrS T (X) and  - \lambda  - 1ABQ \in \scrP \scrN \scrS \scrS T (X) then

\sigma w,\varepsilon (A+B) \setminus \{ 0\} =
\bigl[ 
\sigma w(A) \cup \sigma w,\varepsilon (B)

\bigr] 
\setminus \{ 0\} . \diamondsuit 

5. Application to bounded 2\times 2 block operator matrices forms

The objective of this section is to utilize Theorem 4.3 from Section 4 in order to analyze
the pseudo left (right)-Fredholm essential spectra of the given operator matrix.

Let X1 and X2 be two Banach spaces and consider the 2 \times 2 block operator matrices
defined on X1 \times X2 by:

\scrM :=

\biggl( 
A C
0 B

\biggr) 
.

where A \in \scrL (X1) , B \in \scrL (X2) , C \in \scrL (X2, X1) and D \in \scrL (X1, X2).

Next, we define the following matrix:

\frakD =

\biggl( 
D1 0
0 D2

\biggr) 
,

where D1 \in \scrL (X1) , D2 \in \scrL (X2) and \| \frakD \| = \mathrm{m}\mathrm{a}\mathrm{x} \{ \| D1\| , \| D2\| \} .

In the following theorem, we seek the pseudo left (right)-Fredholm essential spectra of
Matrix \scrM C .

Theorem 5.1. Let the 2\times 2 block operator matrix \scrM C and \varepsilon > 0. In all that follows we
will make the following assumptions:
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\scrH :

\left\{       
\| \frakD \| < \varepsilon ,
AC = CB,
A \in \Phi (X), B \in \Phi (X),
CB \in \scrS (X1 \times X2).

Then, we have that

(i) \sigma left
e,\varepsilon (\scrM C)\setminus \{ 0\} \subseteq 

\bigl[ 
\sigma left
e,\varepsilon (A) \cup \sigma left

e,\varepsilon (B)
\bigr] 
\setminus \{ 0\} .

(ii) \sigma right
e,\varepsilon (\scrM C)\setminus \{ 0\} \subseteq 

\bigl[ 
\sigma right
e,\varepsilon (A) \cup \sigma right

e,\varepsilon (B)
\bigr] 
\setminus \{ 0\} .

Proof. We begin by presenting the polynomial P in the specified format:

P : \BbbR 2 \rightarrow \BbbR 
(x, y) \mapsto \rightarrow P (x, y) = x.y

We can write

\scrM :=

\biggl( 
A C
0 B

\biggr) 
=

\biggl( 
0 C
0 0

\biggr) 
+

\biggl( 
A 0
0 B

\biggr) 
= \scrM \scrC + \scrM A,B .

We have:

P (\scrM \scrC ,\scrM A,B) = \scrM \scrC .\scrM A,B =

\biggl( 
0 CB
0 0

\biggr) 
.

it follows from the hypothesis (H) that:

P (\scrM \scrC ,\scrM A,B) \in \scrS (X1 \times X2), and \scrM \scrC .\scrM A,B \in \scrP \scrN \scrS \scrS T (X).

Moreover we have A+B \in \Phi (X) then there exist A0 \in \scrL (X) and K \in \scrK (X) such that
A0(A+B) = I  - K. Then

A0(A+B +D) = I  - K \prime ,with K \prime \in \scrK (X).

Using Theorem 4.3, we obtain that

(i) \sigma left
e,\varepsilon (\scrM )\setminus \{ 0\} = \sigma left

e,\varepsilon (\scrM \scrC +\scrM A,B)\setminus \{ 0\} =
\bigl[ 
\sigma left
e (\scrM \scrC ) \cup \sigma left

e,\varepsilon (\scrM A,B)
\bigr] 
\setminus \{ 0\} .

(ii) \sigma right
e,\varepsilon (\scrM )\setminus \{ 0\} = \sigma right

e,\varepsilon (\scrM \scrC +\scrM A,B)\setminus \{ 0\} =
\bigl[ 
\sigma right
e (\scrM \scrC ) \cup \sigma right

e,\varepsilon (\scrM A,B)
\bigr] 
\setminus \{ 0\} .

Furthermore, we can readily demonstrate \sigma left
e (\scrM \scrC ) = \sigma right

e (\scrM \scrC ) = \{ 0\} . Consequently,
applying [[2], Theorem 4 (i)], we show that

\sigma left
e,\varepsilon (\scrM )\setminus \{ 0\} =

\bigl[ 
\sigma left
e (\scrM \scrC ) \cup \sigma left

e,\varepsilon (\scrM A,B)
\bigr] 
\setminus \{ 0\} 

=
\bigl[ 
\{ 0\} \cup \sigma left

e,\varepsilon (\scrM A,B)
\bigr] 
\setminus \{ 0\} 

= \sigma left
e,\varepsilon (\scrM A,B)

\subseteq 
\bigl[ 
\sigma left
e,\varepsilon (A) \cup \sigma left

e,\varepsilon (B)
\bigr] 
\setminus \{ 0\} ,

and

\sigma right
e,\varepsilon (\scrM )\setminus \{ 0\} =

\bigl[ 
\sigma right
e (\scrM \scrC ) \cup \sigma right

e,\varepsilon (\scrM A,B)
\bigr] 
\setminus \{ 0\} 

=
\bigl[ 
\{ 0\} \cup \sigma right

e,\varepsilon (\scrM A,B)
\bigr] 
\setminus \{ 0\} 

= \sigma right
e,\varepsilon (\scrM A,B)
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\subseteq 
\bigl[ 
\sigma right
e,\varepsilon (A) \cup \sigma right

e,\varepsilon (B)
\bigr] 
\setminus \{ 0\} . \square 

Conclusion

In this article, we have extended the study of essential pseudospectra by introducing
and analyzing polynomially strict singular operators, which generalize classical strict
singular operators. We established new stability results for the essential pseudospectra of
closed linear operators under perturbations by this broader class of operators in Banach
spaces. Our investigation also detailed how these perturbations affect the left and right
Weyl as well as Fredholm essential pseudospectra. Additionally, we characterized the
essential pseudospectra of the sum of two bounded linear operators and applied these
findings to the pseudo-left (right)-Fredholm spectra of 2\times 2 block operator matrices.

This work not only broadens the understanding of essential pseudospectra in operator
theory but also opens several avenues for further research. For instance, how might these
polynomially strict singular perturbations influence pseudospectral properties in other
classes of operators or different functional settings? Can these results be extended or
refined in the context of unbounded operators or non-Banach space? Moreover, what
potential applications could arise in applied fields such as quantum mechanics, control
theory, or numerical analysis from these generalized pseudospectral insights?
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