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ABSTRACT. The primary objective of this paper is to present and investigate an
inertial Krasnoselski-Mann (KM) type iterative method for approximating a common
solution to a split monotone variational inclusion problem and a hierarchical fixed
point problem for a finite family of [-strictly pseudocontractive non-self mappings.
Additionally, we demonstrate that the iterative sequences provided by the proposed
method converge weakly to a common solution to these problems. The methodology
and conclusions described in this work extend and unify previously published findings
in this domain. Finally, a numerical example is presented to demonstrate the suggested
iterative method’s convergence analysis of the sequences obtained. We also carried
out a justification how the inertial term is useful.

1. INTRODUCTION

Let Z; and =5 be two real Hilbert spaces with the inner product (-, -) and the induced
norm || - ||. Let C C E; and D C E3 be two nonempty, closed and convex sets. A non-self
mapping A : C — = is referred as [-strictly pseudocontractive if there exists a constant
1 €]0,1) in such a way that

[ Ap — Aqll* < llp — qlI> + 1T — A)p— (T — A)q|l>, Vp,q€C.

A is nonexpansive nonself-mapping, if [ = 0.
In a fixed point problem (FPP) one needs to find an element p € C in such a way that

Ap = p, (1.1)

where A : ¢ — Z; is a mapping. We represent the solution set of FPP (1.1) by
F(A)={peC: Ap =p}.

We consider the hierarchical fixed point problem (HFPP) as follows: find ¢* € ﬂfil F(A;)
in such a way that

N
(@ —p,q"—Sq") <0, Vpe [ |F(A), (1.2)
i=1
where {A;}Y, : C — Z; is a finite family of [-strictly pseudocontractive mappings such
that ﬂf\il F(A;) # ¢ and S : C — C is a nonexpansive mapping. We represent the solution
set of HFPP (1.2) by .
If we take A; = A, then HFPP (1.2) reduces to the following HFPP: Find ¢* € F(A) in
such a way that
(¢ —p,q" —Sq") <0, VpeF(A), (1.3)

for a nonexpansive mapping 4 with regard to another nonexpansive mapping S, which
was proposed in 2006 by Moudafi and Mainge [12].
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It can be easily seen that solving HFPP (1.3) is similar to solve the following FPP: Find
q¢* € C in such a way that
q" = (Pray o S)q",
where Pp(4) stands for the metric projection of Z; onto F(A).
Assume @, := {¢* € C: (Pp4) 0 S)q" = ¢} indicates the solution set of HFPP (1.3).
It is obvious that the HFPP (1.3) is similar to the following variational inclusion

0 € Nrayq* + (T - S)q",

where Np(4) represents the normal cone to F(A), which is described as follows:

N oo = {yeBi:{(g—p,y) <0, YVgeF(A)}, ifpeF(A),
Pl = o, else.

If S becomes Z, the solution set of HFPP (1.3) becomes simply F(A). The HFPP
(1.3) covers hierarchical minimization problems, minimization problems over equilibrium
constraints, monotone variational inequality on fixed point sets etc. If we set S = Z—~1hy,
where [-strongly monotone and h; is 7-Lipschitzian continuous with v, € (0, 21/7?), then
the HFPP (1.3) is converted to the standard variational inequality problem over F(A),
known as hierarchical variational inequality problem (HVIP): Find ¢* € F(A) in such a
way that
(hi(q*),p—q*) =20, VpeF(A),

which was studied by Yamada and Ogura [23]. Moudafi [18] proposed the Krasnoselski-
Mann type algorithm to solve the HFPP (1.3) as follows: For a given xg € C, the sequence
{xm} generated by

Tl = (1 = @) + O (Ten ST + (1 = Ton ) Az ), (1.4)

where {a,,} and {7,,} are two sequences in (0,1). The Krasnoselski-Mann type algorithm
can be used to represent some signal processing and image reconstruction techniques, and
the fundamental property of its underlying convergence theorems provides a standard
framework for examining numerous specific algorithms (see [19, 21]).

On the other hand, Moudafi [1] proposed the split monotone variational inclusion problem
(SMVIP) as follows: Find ¢* € E; in such a way that

0 € hi(q") + M(q"), (1.5)
and v* = Bg* € Z5 solves
0 € he(v*) + N(v"), (1.6)

where M : Z; — 251 and N : 25 — 252 are multi-valued maximal monotone mappings,
hy:Z1 — =1 and hy : 25 — 25 are two mappings and B : Z; — Z5 is a bounded linear
operator. The solution set of SMVIP (1.5)-(1.6) is indicated by Q = {¢* € =1 : ¢* €
(MVIP (1.5)) and Bg* € (MVIP (1.6))}.
Moudafi [1] proposed an iterative method and studied the weak convergence theorem
for SMVIP (1.5)-(1.6) as follows: For a given g € Z;, compute iterative sequence {x,,}
generated by

Tmt1 = U(xm + B (W —I)Bz,,), for A >0,
where U = JY(Z — Mhy), W = J{(Z — A1hy) and 71 € (0, é) with Q being the spectral
radius of the operator B*B.
The split feasibility problem, split zero problem, split fixed point problem, split variational
inequality (see [1, 6]) are special cases of SMVIP (1.5)-(1.6). They’ve been studied by
a variety of researchers and are used to tackle real-world problems like inverse problem
modeling, sensor systems in computerized tomography, data compression, and radiation
therapy; for detail, (see [5, 8]).
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If we set hy = 0, he = 0, then the SMVIP (1.5)-(1.6) becomes the following split variational
inclusion problem (SVIP): Find ¢* € =

0e M(qg"), (1.7)
and v* = Bq* € Z5 solves
0 N(v"). (1.8)

In 2012, Byrne et al. [4] proposed an iterative algorithm and provided the weak and
strong convergence theorems for solving SVIP (1.7)-(1.8) as follows: For given z( € Ej,
compute iterative sequence {z,,} generated by

Timg1 = In (T + B (IR —T)Bxyn), M > 0.

Kazmi et al. [21] proposed an iterative method as follows: For given xy € C, compute
iterative sequence {z,,} generated by

ym - (1 - O‘m)xNL + am(TmS-r7rL + (1 - TnL)Axm)v
Tmt1 = UYm + B (W = I)Byy,), Vm >0, (1.9)

where U = J/{”lj(l' —Ahy), W= J/{Vl (Z — A1hg) and S, A are nonexpansive mappings on
C and step size 1 € (0, é), Q is the spectral radius of the operator B*B and B* is the
adjoint of the bounded linear operator 5. Under some certain conditions, the sequence
{zm} generated by (1.9) converges weakly to the common solution of HFPP (1.3) and
SMVIP (1.5)-(1.6).

In general, the Krasnoselski-Mann type iterative approach has a slow convergence rate.
The term ¥y, (T — Tm1), also known as the inertial extrapolation term, was presented
in particular as a valuable tool for speeding up the convergence rate of iterative methods,
and many authors have researched and improved the inertial type algorithm in many
ways (see [22, 24, 26, 27, 28, 29]).

Motivated and inspired by the work of Moudafi [18] and Kazmi et al. ([21, 25]) we
propose and analyze an inertial Krasnoleski-Mann type iterative method with the help
of averaged mappings for finding a common solution of SMVIP (1.5)-(1.6) and HFPP
(1.2) for a finite family of I-strictly pseudocontractive nonself-mappings in the setting
of real Hilbert space. Furthermore, we establish that the sequences developed by our
proposed iterative technique converge weakly to a common solution to these problems.
The iterative approach and results mentioned in this article are original and can be
regarded as a generalisation and refinement of previously published work in this field.

2. PRELIMINARIES

In this section, we need to review some basic definitions and lemmas that are required
to prove our main convergence result.
A mapping A : E; — = is said to be
(7) monotone if
(Ap—Ag,p—q) >0, Vp,q€E1.

(79) a-inverse strongly monotone if there exists a > 0 such that
(Ap — Aq,p — q) > af Ap — Aq|]?, Vp,q € Er.
(#41) nonexpansive if
lAp — Aqll < [lp—qll, Vp,q €Er.
(iv) firmly nonexpansive if

(Ap— Aq,p —q) > || Ap — Aq||*, Vp,q € Er.
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The metric projection Pe : 1 — C is defined, for every point p € =1, as the unique
nearest point in C denoted by Pc(p) in such a way that

lp = Pe()l < llp—qll, YgeC.

Pc is well known to be nonexpansive, and it is firmly nonexpansive. Furthermore, P¢ is
characterized by the following property:

(p="Pc(p),q—Pe(p)) <0, VpEE, g€C. (2.10)
A multi-valued mapping M : Z; — 251 is called monotone if for all py,ps € Z1, q1 € Mp,
and go € Mp, such that
(P1 —p2,q1 — q2) > 0.
A monotone mapping M is maximal if G(M), the graph of M defined as

G(M) = {(p1,q1) : q1 € Mp1},

is not adequately included in the graph of any other monotone mapping.

Remark: It is commonly known that a monotone mapping M is maximal iff for (p1,q1) €
Z1 X Z1,(p1 — p2,q1 — q2) > 0 for each (p2,g2) € G(M) implies that ¢; € Mp;.

Let M : Z; — 25! be a multi-valued maximal monotone mapping. Then the resolvent
operator Ji\f : 21 — E; is defined by

I (p1) = (T + M) (p1), Vp1 €y

for some A1 > 0, where Z denotes the identity operator on =Z;. We notice that for all
A1 > 0 the resolvent operator .J i‘f is single-valued, nonexpansive and firmly nonexpansive.

Definition 2.1. [12] A sequence {M,,} of mazimal monotone mappings defined on
= is said to be graph convergent to M if {graph(M,,)} converges to graph(M ) in the
Kuratowski-Painleve sense, i.e.,

lim sup graph(M,,) C graph(M) C lim inf graph(M,,).

m—0o0 m—0o0
Definition 2.2. [9] A mapping A : 21 — E; is said to be averaged mapping if there
exists some number « € (0 1) such that A = (1 —a)Z + oS, where T : 21 — 2y is the
identity mapping and S : 21 — =21 s a nonexpansive mapping. An averaged mapping is
also a nonezpansive mapping and F(S)=F(A).
Lemma 2.3. [13] Assume that S is a [-strictly pseudocontractive mapping on a Hilbert
space Z;. Define a mapping A by Ap = ap + (1 — a)Sp for all p € =, where « € [I,1).
Then A is nonexpansive mapping with F(A)=F(S).
Lemma 2.4. [10] If the mapping {A;}}¥, are averaged and have a common fixed point,
then

N F(A) =F(A1 A ... Ay).

In particular, for N =2, F(A;) NF(A2) = F(A1As) = F(AxA).

Lemma 2.5. [13] Let A : C — Z; be a [-strictly pseudocontractive mapping with
F(A) # ¢. Then F(PcA) = F(A).

Lemma 2.6 (Demiclosedness Principle). [11] Assume that A is nonexpansive self
mapping of a closed convex subset C of a Hilbert space Z;. If A has a fixed point, then
7 — A is demiclosed, i.e., whenever {x,,} is a sequence in C weakly converge to some p €
C and {(Z — A)x,,} converges strongly to some p € C, then (Z — A)p = p.

Lemma 2.7. [15] Let {emn}, {nm} and {am} be sequences in [0, 00) satisfying €41 <
€m + Qm (€m — €m—1) + 0, for all m > 1 provided > 9, < +o00 and with 0 < o, < @ < 1

m=1
for all m > 1. Then the following hold:
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(i) Y [em — €m—1]+ < +00, where [s]+= max{s,0};
m>1
(74) There exists €* € [0,400) such that lim e, = €*.
m—r o0

Lemma 2.8. [17] We have the following assertions:

(a) Let M be a maximal monotone mapping on Z;. Then {t,,! M} is graph convergent
to Nys-1¢ as t,, — 0 provided that M 10 # ¢.

(b) Let {M,,} be a sequence of maximal monotone mappings on =; which is graph
convergent to a mapping M defined on Z;. If B is a Lipschitz maximal monotone
mapping on =y, then {B + M,,} is graph convergent to B + M and B + M is
maximal monotone.

3. MAIN RESULT

In this section, the proposed iterative approach to approximate a common solution
of HFPP (1.2) and SMVIP (1.5)-(1.6) of a finite family of I-strictly pseudocontractive
nonself-mappings in real Hilbert space is used to prove a weak convergence theorem.

Theorem 3.1. Let =1 and Z5 be two real Hilbert spaces and let C and D be nonempty,
closed and conver subsets of =1 and Zo, respectively. Let B : 21 — Z9 be a bounded linear
operator with its adjoint operator B*. Assume that M : Z; — 251 and N : 25 — 2=2 be two
multivalued mazximal monotone mappings. Let hy : C — Z1 and hy : D — E3 be n1- and
Ne-inverse strongly monotone mappings, respectively. Let S : 21 — 21 be a nonexpansive
self-mappings and {Ai}f\il : C — =1 be l;-strictly pseudocontractive nonself-mappings.
Suppose that J = QN O # ¢. Define a sequence {xm} as follows: xg, x1 € Eq,

W, = Ty, + ﬁm(mm - $m71)>
Ym = (1 — @)W, + Qi (T Swy, + (1 — 70 )JARAR . AT W), (3.11)
Tmt1 = UWm + 1B*(W —I)By,,), ¥Ym >0,

where U = JY(T — Ahy), W = JY(Z — Mha) and v € (0, IIBIHQ)’ A = (1-06.)T +
5£,L,PC(&I+ (1 - fl)Al)7 0<l; <& <1, 57in S (O, 1) fori=1,2,...N. Let {Oém}, {Tm}

be two real sequences in (0,1), {9} C [0,9] for some ¢ € [0,1) and A1 C (0, ), where
a = 2min{n, n2}. Also, let the following conditions hold:

o0
(@) X Imllwm — Tm-1]] < oo;
mozl
(i) > Tm < o0
m=0
i) i,

lym—wml _
Am Tm - O.

Then the sequence {x.,} converges weakly to ¢* € J.

Proof. We initiate by proving the theorem for NV = 2. The technique is easily adaptable
to the general case.
Since h; : C — =1 is np-inverse strongly monotone mapping then for any p, g € C, we have

(Z = Ah)p — (= Mha)all® = |l(p — @) — A1 (hap — haq)|?
<lp—all> = M2 — A1) ||hap — hagl?
<lp-dql?

which proves that (Z— A1hq) is nonexpansive. Similarly, we can also prove that (Z — A hs)
is nonexpansive mapping. Hence U and W are also nonexpansive mappings. Let ¢* € J.
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Then ¢* € ® and ¢* € 2, we have

lwm — ¢ [| = |zm + Im(Tm — Tm—1) — ¢"||
= ||({L‘m - q*) + ﬁm(xm - xmfl)H
<Nem = ¢l + Fmllzm — 2m-1l]- (3.12)

From Lemma 2.3, Lemma 2.4 and Lemma 2.5 we get ¢* = A} A"¢*. Hence, we have
ym — a*[| = I(1 — )W + (T Swin + (1 — 7 ) A5 AT wim) — ¢*|
< (1= am)lwm — ¢* | + am[rm[|Swn = ¢ [ + (1 = 7 [| A3 AT Wi — ¢7[]
< (A = am)llwn — ¢*l| + am([Tm[wm — ¢ || + (1 — 7) [|wm — ¢*|]]
+ amTm||S¢" — ¢*|| = [[wm — ¢"[| + amTm[|Sq" — ¢7|]
<Nzm = ¢l + Imll@m — Tm1ll + @mTml|Sq* — ¢*||. (3.13)

Also, since ¢* € J, we have Uq* = ¢* and WBq* = Bq*. Let 2, = Y + 71 B*(W —I)By,,.
Then we have

l2m — ¢*1* = |ym + B> (W — I)Bym — ¢*|?
= lym — @*[I> + B (W — I)Byml|? + 271 (ym — ¢*, B*(W — I)Byy,)
= lym — ¢*[I> + 1 IB* (W = I) By > + 271 (ym — ¢*, B*(W — I)Bypn).

(3.14)
Further, we have
271 (Ym — ¢ B (W — I)Bym)
= 291 (Bym — Bg*, (W — I)Bym)
=271 (Bym — Bg* + (W = I)Byy, — (W — ) By, (W — ) By,,)
= 20 {(WBym — Bg*, (W = I)Bypm) — (W = I)Bym*}
= 1{IWBym — Bg"|* + |(W = I)Bym|* — | Bym — Bq"|>
—2[|(W — I) By, *}
<Y1 {l1Bym — Ba*|I> = |1Bym — Ba*|* = (W — I) By |*}
= —nll(W —I)Byn|*. (3.15)
From (3.14) and (3.15), we have
zm = @1 < lym — ¢*[I” = 11 (L = lIBADIW — Z)Bym |- (3.16)
Since v € (0, ”61”2>, (3.6) implies
lzm = @ 1* < llym — ¢*11%. (3.17)

Next, using (3.12), (3.13), (3.16) and (3.17)
Zmi1 = 11> = 1U(ym + 11 B*(W = T)Bym) — ¢*|?

< [(ym +1B*(W = I)Bym) — ¢"||?
<ym = ¢*1* =1 (1 = n|BI)[(W = T)Bynml|®
< (lzm = ¢l + Imllzm = m-1]l + amTmllSq" = ¢"])?
— @ =n|BIHIW —I)Byn | (3.18)
< (lzm = ¢l + Iml|2m = Tm-1ll + A T[S = a*[1)?,

which implies that

[2ms1 = ¢ < l[2m = ¢l + Imllwm = 2m-all + am7m|[[S¢" — 7. (3.19)
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o0 (o] o0
Since > Ip|Tm — Tm-1|| < 00 and Y 7, < 0o, we have > Ty < 0o and using
m=1 m=0 m=0
Lemma 2.7 to (3.19), we deduce that lim ||z, — ¢*|| exist and finite. Therefore {x,,} is
m—r o0

bounded. Furthermore, it follows from (3.12), (3.13) and (3.17) that the sequences {w,, },
{ym} and {z,,} are bounded.
Since v1(1 — 71| B||?) > 0, it follows from lim 7, =0, and (i), then (3.18) implies that

m=c0
"}i_r)n(><> (Z — W)By,,|| = 0. (3.20)
Since 2z, = Ym + 11 B*(W — I) By, we have
lzm — Ymll = 71 [1B*(Z — W) By||- (3.21)
From (3.20) and (3.21), we have
W}i_rfloo [2m — ym| = 0. (3.22)
Now, we estimate
[2mt1 = Zm
= #mi1 — ¢ — m + |17
= zm1 = @I = llzm — ¢ = 2zmsr — Tm, Tm — )
= zmar = @17 = llzm — @I° = 2{@msr — &, 2m — @) + 2{@m — T,2m —q7),  (3.23)
where 7 is a weak cluster point of {z,,}. Since n}gnoo l|zm — ¢*| exists, we get
W}i_{noo |Zm+1 — zm] = 0. (3.24)
Now,
|Zm+1 = g*|* = Uz — Ug"||?
= JN(T = Mh1)zm — JA(T — Mha)g*||?
< T = M) zm — (T = Mha)g"|)?
< lzm — @I = M2 — A1) h12m — hag® || (3.25)
which implies that
Ai(2m = A)[[h1zm — hag*|?
< lzm =@ I? = lemss — |12
< Nlym = @I = 2mes — ¢
< lwm = "I + 07,7 1Sa" = "I
+ 200, T ||wm — ¢ ([|[S¢" = ¢"|| = lzm+1 — q*”z
< lem = a1 = llzmer — ¢ + 05, lwm — 2|
+ 2|z — ¢*[Omllem — 2m-1l + a7 [Sa™ — ¢
+ 20mTm||8¢" — " [|([#m — ¢"[| + Iml|@m — Tm-1l])
< llem = zmrrll(lzm = ¢ + lemer — 1) + Inllem — zm—1]?
+2||zm — ¢*[[ImllTm — Tm-1l + 0412717'31H8q* - q*H2
+ 20T |IS¢" — ¢*[| (|2 — ¢ (| + D l|Tm — Tm—1]])- (3.26)
Since, A\1(2m1 — A1) > 0, ||lom — ¢*| is bounded, W}gnoo Il Tm — Tm-1]] = 0, and
lim 7, =0, we have

m—r oo

||]’L12m — hlq*|| =0. (327)

lim
m—r00
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Since J i\f is firmly nonexpansive, we have

|mes = "2 = 1T(Z = Mha)zm — J3] (2 = Aha)g* |

<{(Z—-Mh1)zm — (T = Xh1)q"  Tmi1 — ¢7)
1
= 5[”(1 = Mh)zm — (T = Mb)@ |? + [ #mgr — ¢*|

— ||Zm — Tm4+1 — Al(hlzm - hlq*)“2]

A

1 * *
< Slllzm = @1 + lemir = a1 = lzm = 2 |®

+ 22X (Zm — T, T — hag™) — /\?”hlzm - hlq*||2]

1
< Slllzm = @ 1P + lomir = a1 = lzm = 2 |®

+ 2)\1Hzm - xm—‘—l”hlzm - hlq*H]a

which in turns yields

229

(3.28)

lzme1 = a* 17 < lzm = @1 = llzm — @msa 1* + 2M1ll2m — 2mga[ha2m — hag™|l, (3.29)

from (3.12), (3.13) and (3.17), implies that

12m = 21 l® < lzm = @11 = l@mer = @17 + 2M1llzm — Tmga [ha2m — hag|l,

< lym = @* 17 = llzmsr = ¢ l° + 221 ll2m = @msa Iz — g,

< lwm — ¢ [1* + o7, 72 180" = ¢ |1* + 200 T [wm — ¢ [[1Sq" — ¢

—zmar =" 1° + 2X1 2 — s llhazm — hag®,
<lzm = mial(lzm = ¢*l| + lzmer = @) + Tllzm — 2m-1]?

+2)2m = @ Wmllem — wm-rll + af, 7 1Sa™ — ¢*|I?

+ 205 T l|S¢" — ¢ [|([|2m — ¢7|]

+ 19m||xm - xm—lH) + 2)‘IHZM - wm-&-thlzm - hlq*”,

Using (i), (ii), (3.24) and (3.27) in (3.30), we have
i llem = gl =0

Since
[2m = Tl < llzm — Tmaall + [[Tms1 — Tl
from (3.24) and (3.31), implies that

lim ||z — zm| = 0.
m—o0

Since
[2m = ymll < l2m = 2mll + [12m = yml|,
from (3.22) and (3.32), implies that

[€m = yml| = 0.

lim
m—r 00

using (i) and we observe that

lim ||wp, — 2w = Um Ip||zm — Tmi1]] = 0.
m—r o0 m— 00

Since
[wm = Ym |l < [l wm — Tl + |2 — yml,
from (3.33) and (3.34) implies that

lm ||wy,, — ym|| = 0.
m—r0o0

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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Now, we show that ¢* € J. Since A3 AT" is an averaged mapping and nonexpansive.
Due to the boundedness of {w,,} and nonexpansivity of S, there exists L > 0 such that
|Swsm — AZ* AT w,, || < L for all m > 0. Now, we know that

[ym — A ATwm || = [[(1 = am)wm + am(TmSwm + (1 — 7)) AT AT W) — A AT w0 |
= (1 — an)||lwm — AT AT W || + amTm||Swm — AS AT Wy ||
< (1= am)wm — yml + 1 = am) [ym — A3" AT wn |
+ T [|Swe, — AT AT W, ||

< (1= am)llwm = ymll + (1 = am)|ym — A A" W || + am T L,
which implies

ml|ym = A" A W || < (1 = am)l|wm = Yml| + amTm L

< lwm = yml| + am7m L. (3.36)
Hence, we have
g — AT AT w | < r o —Yull | p (3.37)
AUmTm
From condition (ii) and (iii),
lim ||ym — A Al wy, || = 0. (3.38)
m—o0
Since
[wm — A" A W [| = [[wm = ym || + [[ym — A5" AT wn,|,
from (3.35) and (3.38) implies that
lim _fJwyn — A5" AT wm || = 0. (3.39)

Since {wp, } is bounded, there exists a subsequence {wy,, } of {w,,} that weakly converges
to ¢*. Noticing that {6?,} is bounded for i=1,2, we can consider 6fnj — &% as j — oo,
where 0 < ¢ < 1 for i = 1,2. Define, for i=1,2,

A = (1= 0T + 0 Pe (&l + (1 - &) Ay).

From Lemma 2.3 and Lemma 2.5, F(Pc(&Z + (1 — &)A;) = F(A;). Again, since
Pe(&T + (1 — &;).A;) is nonexpansive , A is averaged and F(A°) = F(A4;) for i=1,2.
Moreover, since

F(AY?) NF(AY) = F(A1) NF(Az) = F(2) # ¢,
by Lemma 2.4, we get
F(AFAY) = F(A?) NF(AY) = F(2).
Notice that
A7 s — AZs|| < 16, — 5|l + [ Ais)),
hence, we get

lim sup || A" s — A®s| =0, (3.40)
S

J]—0 sE
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where S is an arbitrary bounded subset of Z;. Also, we obtain
[, = ASP AT W, || < [[wim; =A™ AT wn, || 4 A AL w0y — A AT w |
+ [ AF AT Wi, — A AT W |
< ||wmj - AgnjATj W H + ”AgleTjwmj - AEOAT'jWMj |
+ AT Wi, — APw, ||
< lwm, — A7 AT wi, |
+ sup || Ay s — ACs|| + sup [ A7 s — S|, (3.41)
ses s€s”
where S is bounded subset including {A}" w,,,} and S” is a bounded subset including
{wm, }. Tt follows that from (3.39), (3.40) and (3.41) that ]1520 lwm,; — ASCAP W, || = 0.

So, by Lemma 2.6, we have ¢* € F(APAP) = F(A;) NF(As).
Now, we show that ¢* € ®. It follows from (3.11), we have
Ym — Wi = i (T (SWim — W) + (1 = 7)) (AT AT Wi, — win))
and hence
Wm — Ym

A Tm

_ ((z — S)wy, + (1 - Tm) (- Ag”A;”)wm) . (3.42)

Tm
Lemma 2.8 (a), ensure that the operator sequence {(1=7=)(Z — A7* A7)} graph converges
to Np(a,)nF(A4,), and hence, from Lemma 2.8 (b), the operator sequence {(Z — S) +

<ﬂ> (Z — AZ*AT")} is graph convergent to (Z — S) + Np(4,)nF(A4,)- Now by replacing

Tm

m with m; and allowing the limit in (3.42) and evaluating the fact that lim ¥m—fm —(
m—roQ0 mim

and the graph of (Z —S) + Np(4,)nF(4,)- is weakly-strongly closed, we get
0€(Z-S8)q" + Nyay)nr(a)d"

so ¢* € ®. On the other hand, since {x,,} is bounded, then there is a subsequence {x,, }
of {z,} that weakly converges to ¢* € Z;. Further, since {z,,}, {zm}, {ym} and {w.,}
have the same asymptotic behaviour, then there are subsequences {z,, } of {zm}, {wm, }
of {wp,} and {ym,} of {ym} converge weakly to ¢*. The third equation of algorithm
(3.11) can be expressed as

(ka- - "Emlle) - Alhl(zmk)

A1
We get 0 € hi(q*) + Mg* by going to limit k — oo in (3.43) and taking into consideration
that h; is L-Lipschitz continuous and the graph of maximal monotone operator is weakly-

c M{l?mk+1. (343)

strongly closed. {Bym, } weakly converges to Bg* because B is continuous. The fact
that J3\ (Z — A1hs) is nonexpansive, (3.20) and Lemma 2.6 leads to the conclusion that
0 € ha(Ag*) + N(Ag*). Consequently ¢* € Q. Thus ¢* € J, which completes the
proof. O

4. CONSEQUENCE

In this section, we deduce a special case from our main convergence Theorem 3.1.
If we set A; = A in Theorem 3.1, we have the following result to approximate a common
solution of SMVIP (1.5)-(1.6) and HFPP (1.3).

Corollary 4.1: Let =Z; and =5 be two real Hilbert spaces and let C and D be nonempty,
closed and convex subsets of Z; and =5, respectively. Let B : Z; — =5 be a bounded linear
operator with its adjoint operator B*. Assume that M : Z; — 251 and N : 5 — 2%2
be two multivalued maximal monotone mappings. Let hy; : C — Z; and he : D — =9
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be n1- and ns-inverse strongly monotone mappings, respectively. Let S, 4: Z; — =1 be
two nonexpansive mappings. Assume that J = QN ®; # ¢. Define a sequence {z,,} as
follows: xg, x1 € Z4,

Wyy, = Ty + P (T, — Tin—1),

Ym = (1 — ap) Wi, + @ (T Swp, + (1 — 1) Awyy,), (4.44)

g1 = UYm + 1B (W —I)By,), Vm >0,

where U = J(T — X\ihy), W = JY(Z — Aihy) and 7 € (0, W) Let {am}, {Tm} be
two real sequences in (0,1), {¢,,} C [0,9] for some ¥ € [0,1) and A\ C (0, ), where

a = 2min{n,na}. Also, let the following conditions hold:

oo
(@) 20 ImllTm — T < o0;
m=1

(#4) io: Tom < 00

Y Il Il
o s Ym —Wm —
(i) lim Sz el =0.
Then the sequence {z,,} converges weakly to ¢* € QN ®;. d

5. NUMERICAL EXAMPLE
We give an example and numerical result which justify the Theorem 3.1.

Let 2, = E5 = C = D = R, the set of all real numbers, let M : Z; — 25 defined
as M(p) = {3p}, ¥p € 1 and N : Z5 — 252 defined as N(p) = {5p}, Vp € Z. Let
hi : C — Z1 defined as hi(p) = 2p, Vp € C and hy : D — =y defined as ha(p) = 4p,
Vp € D. For \; = %, we compute that

U=JW(T = hi)(p) = gv
W = JY(Z - Mhs)(p) = ,g
Let us define the mapping B : 21 — Zy be defined by B(p) = —%p, Vp € Z; and

S : Z1 — Z; be defined by S(p) = sinp, Vp € Z1. Let A1, A : C — E; defined by
Ai(p) = & and Ax(p) = £,Vp € C. Then, it is simple to check A; and Ay are O-strictly
pseudocontractive mappings, S is nonexpansive and B is bounded linear operator with

adjoint operator B* such that ||B|| = ||B*|| = 2. Now let us choose oy, = 0.5, 7, = -5,
11=01,9=09,&=03>1l =0,&=04>1=0,6, =2+ and 62, = gig. It is

clear that F(A;) = F(Ay) = {0} and @ = {0 € Z; : 0 € (MVIP (1.5)) and B(0) € (MVIP
(1.6))}. Therefore, J = QN ® = {0} # ¢. The stopping criteria for our proposed iterative
method is E,, = ||Tmi1 — Zm|| < 1 x 1075, Figure 2 shows the error graph of sequence

{xm}-
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TABLE 1. Numerical results for two different initial values of algorithm (3.11)

Number of Xm Em = [|[Xm+1 — Xml]| Xm Em = ||Xm+1 — Xml||
iterations Xo=2>5 Xo=>5 Xo = -3 Xo = —3
(m) X1 =2 X1 =2 X1 = -5 X1 =-5

1 5.000000 3.000000 -3.000000 2.000000

2 2.000000 2.038429 -5.000000 4.678384

3 -0.038429 5.5022¢ 02 -0.321616 5.0504e 01
4 -0.093451 8.6273¢ 92 0.183422 1.5149¢~ 01
5 -0.007178 1.0651e~92 0.031937 3.7083¢702
6 0.003473 2.8370e793 -0.005146 3.2700¢793
7 0.000636 7.2900e %4 -0.001876 1.9270e~93
8 -0.000093 5.7000e 0% 0.000052 3.4000e9°
9 -0.000036 3.7000e~0° 0.000086 8.0000e~9%
10 0.000001 1.0000e~96 0.000006 9.0000¢~96
11 0.000002 1.0000e~%6 -0.000003 3.0000¢96
12 0.000000 0.0000e 100 -0.000001 1.0000e—26
13 0.000000 0.0000e 100 0.000000 0.0000e100
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FIGURE 1. Convergence of {x,,} with two different initial values z¢ and ;.
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FIGURE 2. Error plotting of {z,,} with two different initial values.
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From Table 1 and Figure 1, we conclude that the sequence {x,,} generated by proposed
iterative method converges to 0.

TABLE 2. Numerical results after removing the inertial step in algorithm (3.11)

Number of Xm Xm
iterations () X0 =5 xp = -3

1 5.000000 -3.000000
) 4.189565 -2.860058
10 3.086497 -2.052167
15 3.002579 -2.005976
20 3.001178 -2.000037
25 3.000473 -1.755264
30 3.000036 -1.591005
35 2.568943 -1.359401
40 2.364907 -1.065945
45 2.001691 -1.008920
50 2.000202 -1.000894
95 1.649871 -0.915760
60 1.064894 -0.057913

Table 1 is a numerical interpretation of our proposed iterative algorithm (3.11) while
Table 2 represents the numerical interpretation when we remove the inertial interpolation
term from the algorithm (3.11). The convergence of our algorithm is faster than the
algorithm obtained by removing the inertial term which shows the usefulness of the
inertial interpolation term.

6. CONCLUSION

In this paper, we suggested and analyzed an inertial Krasnoselski-Mann type iterative
method for approximating a common solution of a split monotone variational inclusion
problem and a hierarchical fixed point problem for a finite family of k-strictly pseudocon-
tractive nonself-mappings under the framework of real Hilbert spaces. We constructed an
iterative method for the stated problems and proved a weak convergence theorem under
some certain conditions. Further, we deduced a special case from our convergence result.
Finally, a numerical example was presented to justify the convergence analysis of the
proposed iterative method. We also carried out a justification how the inertial step is
useful.
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