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FIXED POINT THEOREM FOR ¢-GERAGHTY CONTRACTION
TYPE MAPPINGS IN B-METRIC SPACES WITH APPLICATION

SABITA KUMARI!, SANDIP SHRIVASTAVA2, AND SHRADDHA RAJPUT*

ABSTRACT. In this paper, we introduce a new class of contractive mappings, called
generalized -Geraghty contractions, in the framework of b-complete metric spaces.
We establish a unique fixed-point theorem that extends existing results in fixed-point
theory. An illustrative example with a graphical representation demonstrates the
validity of our findings. Furthermore, we apply the main result to an integral equation,
highlighting its effectiveness in ensuring the existence and uniqueness of solutions. This
work underscores the theoretical significance and practical applicability of generalized
1-Geraghty contractions in mathematics, physics, and engineering.

1. INTRODUCTION AND PRELIMINARIES

In 1922, S. Banach [1]| presented a fundamental result in fixed point theory. Since
then, this area has been extensively studied, further developed, and generalized by many
researchers in various spaces. In 1989, Bakhtin [6] introduced b-metric spaces as a
generalization of metric spaces. The works of Bakhtin [6], Bourbaki [2], and Czerwik
[3] were among the earliest contributions to extending fixed point theory within the
framework of b-metric spaces. Moreover, several authors have established significant fixed
point theorems in b-metric spaces, including the contributions of Berinde [4] and Vulpe [5].

One of the significant generalizations was introduced by M.A. Geraghty [7] in 1973,
where the classical contractive condition was relaxed by allowing the contraction factor
to depend on the distance between points. This led to the development of what is now
known as the Geraghty contraction, which has been applied in various mathematical
contexts. Over the years, researchers have extended this concept to more general spaces,
such as b-metric spaces [8], ordered b-metric spaces with rational contractive conditions
[9], partial metric spaces [11], and a — - type contractions [12]. These generalizations
have significantly broadened the applicability of fixed point results in both theoretical
and practical problems.

Definition 1. [6]. Let X be a nonempty set and let s > 1 be a given real number. A
function d : X x X — R, is said to be b-metric if and only if V x,y, z € X the following
conditions are satisfied:

(1) d(z,y) =0 if and only if z =y,

(2) d(=z,y) = d(y, =),

(3) d(z,z) < sld(z,y) + d(y, 2)].
A triplet (X,d, s), is called a b-metric space with coefficient ’s’.

Michael A. Geraghty [7] introduced the Geraghty contraction in 1973, he used it for
the existence and uniqueness of mappings in any complete metric spaces.

Definition 2. [7] A Geraghty contraction is a mapping that satisfies the inequality
(d(Tz,Ty)) < B(d(z,y))(d(z,y)), v,y € X
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where 3 € S Let B denote the set of all functions 3 : [0,00) — [0, 1) which satisfy the
condition

1
limsup B(t,) = - = t, — 0 as n — 0.
s

n— oo

Karapinar [12]| introduced the concept of o — ¢~ Geraghty contraction-type mappings
in complete metric spaces.

Definition 3. [12] Let ¥ denote the class of the functions ¢ : [0, 00) — [0, c0) satisfying
the following conditions:

(1) ¢ is nondecreasing,

(2) 9 is continuous,

(3) ¥(t) =0 if and only if ¢ = 0,

(4) 1+ is subadditive, that is ¥(s +t) < 9(s) + ¥(t).

In 2019 Hamid Faraji et al. [8] introduced common fixed point of Geraghty type
contractive mappings defined in complete b-metric spaces.

Let B denote the set of all functions 3 : [0,00) — [0, 1) which satisfy the condition:

1
limsup B(t,) = - = t, — 0 as n — 0.
s

n—roo

The objective of this work is to introduce generalized 1-Geraghty contractive mappings
and prove fixed point theorems in 1-Geraghty contractive mappings in b-complete b-
metric spaces. Our results generalize or improve many recent fixed point theorems in the
literature. We provide an example to validate our result.

2. MAIN RESULT

In this section, we establish the fixed-point theorem in b-complete b-metric space based
on the -Geraghty contractive mappings.

Theorem 1. Let (X,d) be a b-complete b-metric space with parameter s > 1. Let
T: X — X be a self-mapping satisfying,

P(d(Tz,Ty)) < B(P(M (2, )0 (M(z,y)), =,y € X (2.1)

where

M) = o { o, ). do. To), 0. 7). 3 (0o Ty) + dly o) |

and B € B. ThenT has a unique fived point.

Proof. Let xyp € X be arbitrary. Consider the sequence {z,}, where z, = Ta,_1 =
T"xg, n € N.If there exists n € N such that z,+1 = x,, then x,, is a fixed point of T’
and the proof is finished. Otherwise, we have d(x,11,x,) > 0 for all n € N. By inequality
(2.1) , for all n € N we have,

Y(d(@n, Tny1)) = Y(A(Trp-1,T2n)) < BO(M (201, 20)) )M (Tr—1, 1)), (2.2)
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where,

M (zp—1,2n)

= max

d n— 7T n d n,T n—
d(Tn—1,%n),d(Tn_1,TTn_1),d(xn, Txy), (n-1,Txyn) + d(zpn, Tx 1)}

{ 2s
d n—1,%4n d nyLn
B {d ‘Tn hxn ($n71,$n),d(xn7xn+1)7 (x = +;?9+ (x - )}
s(d(xn_1,2,) +d(xn, xy
R L R R

=max {d(zp—1,%n),d(Tn, Tni1)}-

If (d(zp—1,2n) < d(xp,Zni1), then M(2y_1,2,) = d(xy, Tpy1). From condition(2.2), we
obtain,

IN

(WM (2p—1,20)) (WM (Tp_1,zn))
(Y(d(xn, Znt1)), meN

d(l‘n, xn—&-l)

INA
—n = ®

< g(d(.’l]n7$n+1)>
< d(zp,Tnt1).
This is a contradiction. Thus, we have,
M(zp_1,2n) = d(Tn, Tn-1),
then, from inequality (2.2), We obtain,
P(d(zn, T211)) < (M (2n—1,2n)))Y(d(zn—1,7n)) (2.3)
< %(d(xn,l,xn)), neN
< d(xp-1,%,), neN.

Since 1 is non-decreasing, we have (d(zn,Zn+1) < d(zp—_1,2,) for all n € N. Hence, we
deduce that sequence {d(x,_1,z,)} is a decreasing sequence. Therefore, there exists
r > 0 such that lim, . d(z,—1,z,) = 7, we claim that r = 0, suppose that r > 0, then
from inequality (2.3), we have,

P(d(n, tni1)) < LM (2n-1,20)))P(d(Tn-1,20)),

1/}( (xnaanrl))
m By (Md(xn—1,2,))) <

This implies that lim, e B((Md(2y—-1,%,))) = 1, since 8 € B,
we have lim,,—, oo (M (xy—1,2,)) = 0, which yields

Cn\)—l

r= nl;rr;o d(xp—1,z,) =0,

which is a contradiction, that is, » = 0. Now we show that {x,} is a b-Cauchy sequence.
Suppose, on the contrary that {z,} is not a b-Cauchy sequence. Then there exists ¢ > 0
for which we can find sub sequences {2, )} and {z, )} of {z,} such that n(k) is the
smallest index for which n(k) > m(k) > k,

d(xm(k), xn(k)) > €, (2.4)

and

AT (k) Tn(k-1)) < € (2.5)
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from equation (2.5) and using the b-triangular inequality, we have,

€ < d(Tm@)> Tngr)) < 5 (A @mh)> Ty +1) + ATy 415 Tn(r))) -
Letting k — oo, we have,

Jim (T (k) Tr(k)) = €
since {d(Zpm(z)s Tnk)—1) = A Zm(a)s Tnk)) }H < AZm(z)s Tmk)—1), We have
kILH;o d(xm(m)7 xm(k)fl) = €.

Then, we get,

e}

— < limsup d(xm(m)ﬂ, $n(k))7
k—o0

»

therefore,

V(AT (k) Tr(r)) = V(AT k) -1, ATr(k))

< B (M (@ (k) =15 Tru(i)—1) (W (M (T (k) =15 T (k)

where,

lim sup M(xm(z), wn(k)—l))

k—o0

= lim sup max{d(a:m(k), Z‘n(k),l)), d(xm(k), T.’L‘m(k)),

k—o0
2s

= lilrcn sup max{d(Tm (k)s Tn(k)=1)> AZm(k)> Tm(k)+1)s
—00

d(Zn(k)—1, TTr(k)—1),

{d(@mk)s Trr)) + AT e)y—15 Tmk)+1) }
2s

< hll;n sup max{d(xm(k)a xn(k)—l)v d(mm(k)v mm(k)+1)v
— 00

d(Zn (k) =1, Tn(k))s

8A(T(k)s Tn(k)—1) + 5A(Tn(k), Tn(k)—1)
2s
SA(Zm(k)=1> Tm(k)) + ST (k) T (k)+1)
* 2s }

(T (k)15 Tn(k)),

<e.

Therefore, limg o0 M (T, (k)s Tr(r)y—1) = €,

5 O G ey 2y 1)~ otV 91 B2 ))) <

limsup B(¢) (M (2 (k) Tn(k)-1))), which implies lim (M (2 (k)15 Zn(k) -

k—o0

Then, 1 <limsup,_, . B(M (2 k), Tnk)—1)) < 1. Since 3 € B,
80 M (Zy(k), Tn(k)—1) — 0, as a result, d(z,,m),

using the b-triangular inequality, we have,

1)7

}

1)

€ < d(wm(k), xn(k)) < (s(d(zm(k), zn(k) = 1) + (d(zn(k) — 1,20 (K))).

Therefore, limy_, d(xm(k),xn(k)) = 0. Hence ¢ = 0. This contradicts inequality (2.4).
Hence sequence {z,} is a b-Cauchy sequence. The completeness of X implies that there
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(2.6)

1
; n(k)—1) — 0. From inequality (2.4) and
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exists u € X such that z,, — u. We showed that u is a fixed point of T. By b-triangular
inequality and inequality (2.1), we have,

W(d(u, Tu) < s(d(u, Txy) + d(Azp, Tu))
< s(d(u, Txy) + sB(WOM (x4, w)) V(M (xp, w)
letting n — oo in the above inequality, we obtain,

(d(u, Tu)) < Tim sup d(u, 2ny) + s T sup B (M (2, 1)) Timsup (M, w)) (2.7)

n—oo n— oo n—oo

where,

limsup M (z,,, u)

n—oo
1

= lim sup max{d(xn, u), d(zn, Ty ), d(u, Ty,), %(d(xn, Tu) + d(u, Tx,))}

n—oo
< lim sup max{d(z,, u), d(z,, Txni1), d(u, Ty), %(sd(mn, u)

n—o00 S

+ sd(u, Tu) + d(u, ¥p41))}

< d(u,Tu).

Hence, from inequality (2.7), we have,

P(d(u, Tu)) < slimsup By (M (2, )¢ (d(u, Tu))

Consequently, % < limsup,,_, . B(Md(z,,u)) < % Since 8 € B, we concluded

lim,, oo M (2, u) = 0. Therefore, Tu = u, we have to prove that the fixed point u € X is
unique, suppose that there is v # u in X such that 7Tv = v. From inequality (2.1), we get,

P(d(u,v)) = P(d(Au, Av) < U (M (u,v)) ¥ (M (u,v)),

where,
M (u,v) = max{d(u,v),d(u, Ty),d(v,T,), Q—Z(d(u,Tv) +d(v,T,)}
< d(u,v).
Therefore, we have d(u,v) < 1d(u,v). Then u = v, which is a contradiction. O

In this section, we give an example to validate our result.

Example 1. Let X = [0,00) and d: X x X — [0, 1] be defined by d(x,y) = |x — y|? for

all z,y € [0,00) and (z,d) b-complete b-metric space with parameter s = 2. Let Tz = £

afor allz € X and g = ﬁ or Y(t) = % s > 1. Then T has a unique fixed point z* € X.
Solution: We consider the following three cases.
Case-1: When z,y € [0,1] and z < y

P(d(Tz,Ty)) = B(P(M(z,y)p(M(z,y)),

where,

1
M) = o { o). do To), (0. 7). 5 (oo ) + o T) |
1
= max{|a: —y? |z — Az?, |y — Ay|?, % (Jo — Ay|* + |y — Am|2)} ,

1
— i {Jo = oo ol ly = % o (= o+ by =)},

=z —yf*.
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S0,
Loz yo
ATz, Ty)) = =(|= - £
YT Ty) = (15 - 27)
1
= == (=)
< Bz = y*)b(jz —yl*),
_ eyl le -y
|z —yf? 1
_ 2.8
( 4 142z— y|2) (28)
T— 2
y | LHS (4l -yP) | RES (EpE . 1)
0 |05 0.005 0.0167
0207 0.005 0.0145
0.5 1.0 0.005 0.0125

TABLE 1. Variation of L.H.S and R.H.S for specific values of x and y in
the range [0, 1], with < y.

0.200
0175 ek
0.150
0.125

0100

Walue

0.075

0.050

0.025

0.000

0.0 0.2 0.4 0.6 0.8 1.0
I =¥l

FIGURE 1. Variation of Left hand Side (L.H.S.) and Right-hand Side
(R.H.S) when z,y € [0,1] and z < y
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Case-2: When z,y € [0,1] and = > y. We analyze and interpret the data using both
the graph and comparison table.

v |y |LHS (o -yP) [RES (B8 o)
0504 0.0002 0.00083
0.7 0.3 0.0032 0.0121
0.9 | 0.1 0.0128 0.0388

TABLE 2. Variation of L.H.S and R.H.S for specific values of = and y in
the range [0, 1], with 2 > y.

From case 1 and case 2 for < y (or > y, since the expressions are symmetric zy)
the nonzero values of zy both expressions are positive. L.H.S grows linearly with zy?2,
while R.H.S. grows more slowly due to the additional denominator factor 1+ |z — y|*.
We conclude that for x # y, R.H.S is generally larger than L.H.S. as |x — y| grows, this
difference increases.

0.14 jo-e.0
012
0.10
L
=1
= 008
&
=]
T 0.06
£
=
£
0.04
0.02
0.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6
[ = yI?

FIGURE 2. Variation of Left hand Side (L.H.S.) and Right-hand Side
(R.H.S) when z,y € [0,1] and z > y

Case-3: When z,y € [0,1] and z = y. In this cases, the expressions are equal and yield a
value of zero. There is no need for a comparison table in this case, as the result is always
0 for both sides. By plotting these functions over the interval [0, 1], we can observe where
the two curves meet. The points of intersection correspond to values of zy for which the
two expressions are equal. These points reveal potential fixed points, including the trivial
fixed point at & = y (where |zy| = 0), as well as any non-trivial fixed points that might
exist within this range.

Therefore, the conditions of Theorem 1 are satisfied.

3. APPLICATION

In this section, we study the existence of solutions for nonlinear integral equations as
an application to the fixed point theorems proved in the previous section. Let X = C0, 1]
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be the set of all real continuous functions on [0,] and d : X x X — [0,00) be defined by:
d(u,v) = t) — o), u,v e X.

(u, v) = max fu(t) —v(t)], u,v

Obviously, (X, d) is a complete b-metric space with parameter s = 2. First, consider the
integral equation:

/Gts (t,s,u(s))ds, (3.9)

where [ > 0 and h:[0,]] = R, G:[0,{] x [0,]]x — R and k : [0,{] x [0,{] x R — R are
continuous functions.

Theorem 2. Suppose that the following hypotheses hold:
(1) For allt,s € [0,1] and u,v € X, we have,

|k(t;s,u(s)) = k(t,s,0(s))
(2) For allt,s € [0,1], we have,

1
| S w7
1+ 2M(u,v)

l
max/ G(t,s)ds < %
0

Then, the integral equation (3.9) has a unique solution u € X.
Proof. Let A: X — X be a mapping defined by:

1
t +/ G(t, s)k(t,s,u(s))ds, ue€ X,t,s€[0,l].
0

From inequality (2.1) and inequality (2.2), we can write:
P(d(Au, Av))
= A Av(t)[?
f&%’z‘]‘ u(t) — Av(t)]|

l
= max {|h(t) / G(t,s)k(t, s, u(s))ds — h(t) _/0 G(t,8)k(t,s,v(s))ds|*}

te0,l]

= max \/ (t, s)(k(t,s,u(s)) — k(t, s,v(s)))ds|?

te[0,]]

IN

maX/ G(t,s)*d I( (t5,u(s)) — k(t, s, v(s)))|*ds

te[0,]]

<1 /|1+2M M . v)lds

) 0)
— 1+ 2M(u, v)’
so we get,
Y(d(Au, Av)) < B(p(M ( )b (M (u,v)).
Thus, all conditions in Theorem 2 for ¥(t) = ¢, t > 0 where 5(t) = ﬁ are satisfied and
hence T has a fixed point = = 0. 0

4. CONCLUSION

From our investigations we conclude that the 1-contractive defined on a b-complete
b-metric space satisfying i-Geraghty contractive mappings and have a unique common
fixed point. Our investigations and results obtained were supported by the suitable
example with graphs which provides new path for researchers in the concerned field.
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