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FIXED POINT THEOREM FOR \psi -GERAGHTY CONTRACTION
TYPE MAPPINGS IN B-METRIC SPACES WITH APPLICATION

SABITA KUMARI1, SANDIP SHRIVASTAVA2, AND SHRADDHA RAJPUT\ast 

Abstract. In this paper, we introduce a new class of contractive mappings, called
generalized \psi -Geraghty contractions, in the framework of b-complete metric spaces.
We establish a unique fixed-point theorem that extends existing results in fixed-point
theory. An illustrative example with a graphical representation demonstrates the
validity of our findings. Furthermore, we apply the main result to an integral equation,
highlighting its effectiveness in ensuring the existence and uniqueness of solutions. This
work underscores the theoretical significance and practical applicability of generalized
\psi -Geraghty contractions in mathematics, physics, and engineering.

1. Introduction and Preliminaries

In 1922, S. Banach [1] presented a fundamental result in fixed point theory. Since
then, this area has been extensively studied, further developed, and generalized by many
researchers in various spaces. In 1989, Bakhtin [6] introduced b-metric spaces as a
generalization of metric spaces. The works of Bakhtin [6], Bourbaki [2], and Czerwik
[3] were among the earliest contributions to extending fixed point theory within the
framework of b-metric spaces. Moreover, several authors have established significant fixed
point theorems in b-metric spaces, including the contributions of Berinde [4] and Vulpe [5].

One of the significant generalizations was introduced by M.A. Geraghty [7] in 1973,
where the classical contractive condition was relaxed by allowing the contraction factor
to depend on the distance between points. This led to the development of what is now
known as the Geraghty contraction, which has been applied in various mathematical
contexts. Over the years, researchers have extended this concept to more general spaces,
such as b-metric spaces [8], ordered b-metric spaces with rational contractive conditions
[9], partial metric spaces [11], and \alpha  - \psi - type contractions [12]. These generalizations
have significantly broadened the applicability of fixed point results in both theoretical
and practical problems.

Definition 1. [6]. Let X be a nonempty set and let s \geq 1 be a given real number. A
function d : X \times X \rightarrow R+ is said to be b-metric if and only if \forall x, y, z \in X the following
conditions are satisfied:

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, z) \leq s[d(x, y) + d(y, z)].

A triplet (X, d, s), is called a b-metric space with coefficient ’s’.

Michael A. Geraghty [7] introduced the Geraghty contraction in 1973, he used it for
the existence and uniqueness of mappings in any complete metric spaces.

Definition 2. [7] A Geraghty contraction is a mapping that satisfies the inequality

(d(Tx, Ty)) \leq \beta (d(x, y))(d(x, y)), x, y \in X
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where \beta \in S Let B denote the set of all functions \beta : [0,\infty ) \rightarrow [0, 1s ) which satisfy the
condition

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\beta (tn) =
1

s
=\Rightarrow tn \rightarrow 0 as n\rightarrow \infty .

Karapinar [12] introduced the concept of \alpha  - \psi - Geraghty contraction-type mappings
in complete metric spaces.

Definition 3. [12] Let \Psi denote the class of the functions \psi : [0,\infty ) \rightarrow [0,\infty ) satisfying
the following conditions:

(1) \psi is nondecreasing,
(2) \psi is continuous,
(3) \psi (t) = 0 if and only if t = 0,
(4) \psi is subadditive, that is \psi (s+ t) \leq \psi (s) + \psi (t).

In 2019 Hamid Faraji et al. [8] introduced common fixed point of Geraghty type
contractive mappings defined in complete b-metric spaces.

Let B denote the set of all functions \beta : [0,\infty ) \rightarrow [0, 1s ) which satisfy the condition:

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\beta (tn) =
1

s
=\Rightarrow tn \rightarrow 0 as n\rightarrow \infty .

The objective of this work is to introduce generalized \psi -Geraghty contractive mappings
and prove fixed point theorems in \psi -Geraghty contractive mappings in b-complete b-
metric spaces. Our results generalize or improve many recent fixed point theorems in the
literature. We provide an example to validate our result.

2. Main Result

In this section, we establish the fixed-point theorem in b-complete b-metric space based
on the \psi -Geraghty contractive mappings.

Theorem 1. Let (X, d) be a b-complete b-metric space with parameter s \geq 1. Let
T : X \rightarrow X be a self-mapping satisfying,

\psi (d(Tx, Ty)) \leq \beta (\psi (M(x, y)))\psi (M(x, y)), x, y \in X (2.1)

where

M(x, y) = \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
d(x, y), d(x, Tx), d(y, Ty),

1

2s
(d(x, Ty) + d(y, Tx))

\biggr\} 
,

and \beta \in B. Then T has a unique fixed point.

Proof. Let x0 \in X be arbitrary. Consider the sequence \{ xn\} , where xn = Txn - 1 =
Tnx0, n \in \BbbN . If there exists n \in \BbbN such that xn+1 = xn, then xn is a fixed point of T
and the proof is finished. Otherwise, we have d(xn+1, xn) > 0 for all n \in \BbbN . By inequality
(2.1) , for all n \in \BbbN we have,

\psi (d(xn, xn+1)) = \psi (d(Txn - 1, Txn)) \leq \beta (\psi (M(xn - 1, xn)))\psi (M(xn - 1, xn)), (2.2)
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where,

M(xn - 1, xn)

= \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
d(xn - 1, xn), d(xn - 1, Txn - 1), d(xn, Txn),

d(xn - 1, Txn) + d(xn, Txn - 1)

2s

\biggr\} 
= \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
d(xn - 1, xn), d(xn - 1, xn), d(xn, xn+1),

d(xn - 1, xn+1) + d(xn, xn)

2s

\biggr\} 
= \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
d(xn - 1, xn), d(xn, xn+1),

s(d(xn - 1, xn) + d(xn, xn+1))

2s

\biggr\} 
= \mathrm{m}\mathrm{a}\mathrm{x} \{ d(xn - 1, xn), d(xn, xn+1)\} .

If (d(xn - 1, xn) \leq d(xn, xn+1), then M(xn - 1, xn) = d(xn, xn+1). From condition(2.2), we
obtain,

d(xn, xn+1) \leq \beta (\psi (M(xn - 1, xn))(\psi (M(xn - 1, xn))

\leq 1

s
(\psi (d(xn, xn+1)), n \in \BbbN 

<
1

s
(d(xn, xn+1))

< d(xn, xn+1).

This is a contradiction. Thus, we have,

M(xn - 1, xn) = d(xn, xn - 1),

then, from inequality (2.2), We obtain,

\psi (d(xn, xx+1)) \leq \beta (\psi (M(xn - 1, xn)))\psi (d(xn - 1, xn)) (2.3)

<
1

s
(d(xn - 1, xn)), n \in \BbbN 

< d(xn - 1, xn), n \in \BbbN .

Since \psi is non-decreasing, we have (d(xn, xn+1) \leq d(xn - 1, xn) for all n \in \BbbN . Hence, we
deduce that sequence \{ d(xn - 1, xn)\} is a decreasing sequence. Therefore, there exists
r \geq 0 such that \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty d(xn - 1, xn) = r, we claim that r = 0, suppose that r > 0, then
from inequality (2.3), we have,

\psi (d(xn, xn+1)) \leq \beta (\psi (M(xn - 1, xn)))\psi (d(xn - 1, xn)),

so,
\psi (d(xn, xn+1))

\psi (d(xn - 1, xn))
\leq \beta (\psi (Md(xn - 1, xn))) \leq 

1

s
.

This implies that \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \beta (\psi (Md(xn - 1, xn))) =
1
s , since \beta \in B,

we have \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \psi (M(xn - 1, xn)) = 0, which yields

r = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

d(xn - 1, xn) = 0,

which is a contradiction, that is, r = 0. Now we show that \{ xn\} is a b-Cauchy sequence.
Suppose, on the contrary that \{ xn\} is not a b-Cauchy sequence. Then there exists \epsilon > 0
for which we can find sub sequences \{ xm(k)\} and \{ xn(k)\} of \{ xn\} such that n(k) is the
smallest index for which n(k) > m(k) > k,

d(xm(k), xn(k)) \geq \epsilon , (2.4)

and

d(xm(k), xn(k - 1)) < \epsilon , (2.5)
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from equation (2.5) and using the b-triangular inequality, we have,

\epsilon \leq d(xm(k), xn(k)) \leq s
\bigl( 
d(xm(k), xm(k)+1) + d(xm(k)+1, xn(k))

\bigr) 
.

Letting k \rightarrow \infty , we have,
\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

d(xm(k), xn(k)) = \epsilon ,

since | \{ d(xm(x), xn(k) - 1) - d(xm(x), xn(k))\} | \leq d(xm(x), xm(k) - 1), we have

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

d(xm(x), xm(k) - 1) = \epsilon .

Then, we get,
\epsilon 

s
\leq \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}

k\rightarrow \infty 
d(xm(x)+1, xn(k)), (2.6)

therefore,

\psi (d(xm(k), xn(k)) = \psi (d(Axm(k) - 1, Axn(k))

\leq \beta (\psi (M(xm(k) - 1, xn(k) - 1)(\psi (M(xm(k) - 1, xn(k) - 1),

where,

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
k\rightarrow \infty 

M(xm(x), xn(k) - 1))

= \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
k\rightarrow \infty 

\mathrm{m}\mathrm{a}\mathrm{x}\{ d(xm(k), xn(k) - 1)), d(xm(k), Txm(k)),

d(xn(k) - 1, Txn(k) - 1),
\{ d(xm(k), Txn(k) - 1) + d(xn(k) - 1, Txm(k))

2s
\} 

= \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
k\rightarrow \infty 

\mathrm{m}\mathrm{a}\mathrm{x}\{ d(xm(k), xn(k) - 1), d(xm(k), xm(k)+1),

d(xn(k) - 1, xn(k)),
\{ d(xm(k), xn(k)) + d(xn(k) - 1, xm(k)+1)

2s
\} 

\leq \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
k\rightarrow \infty 

\mathrm{m}\mathrm{a}\mathrm{x}\{ d(xm(k), xn(k) - 1), d(xm(k), xm(k)+1),

d(xn(k) - 1, xn(k)),
sd(xm(k), xn(k) - 1) + sd(xn(k), xn(k) - 1)

2s

+
sd(xm(k) - 1, xm(k)) + sd(xm(k), xm(k)+1)

2s
\} 

\leq \epsilon .

Therefore, \mathrm{l}\mathrm{i}\mathrm{m}k\rightarrow \infty M(xm(k), xn(k) - 1) = \epsilon ,

1

s
= \mathrm{l}\mathrm{i}\mathrm{m}

k\rightarrow \infty 

\psi (d(xm(n), xn))

\psi (d(M(xn(k), xm(k) - 1))
\leq \mathrm{l}\mathrm{i}\mathrm{m}

k\rightarrow \infty 
\beta (\psi (M(xm(k) - 1, xn(k) - 1))) \leq \epsilon ,

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
k\rightarrow \infty 

\beta (\psi (M(xm(k), xn(k) - 1))),which implies \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\psi (M(xm(k) - 1, xn(k) - 1)) =
1

s
.

Then, 1
s \leq \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}k\rightarrow \infty \beta (M(xm(k), xn(k) - 1)) \leq 1

s . Since \beta \in B,
so M(xm(k), xn(k) - 1) \rightarrow 0, as a result, d(xm(k), xn(k) - 1) \rightarrow 0. From inequality (2.4) and
using the b-triangular inequality, we have,

\epsilon \leq d(xm(k), xn(k)) \leq (s(d(xm(k), xn(k) - 1) + (d(xn(k) - 1, xn(k))).

Therefore, \mathrm{l}\mathrm{i}\mathrm{m}k\rightarrow \infty d(xm(k), xn(k)) = 0. Hence \epsilon = 0. This contradicts inequality (2.4).
Hence sequence \{ xn\} is a b-Cauchy sequence. The completeness of X implies that there
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exists u \in X such that xn \rightarrow u. We showed that u is a fixed point of T. By b-triangular
inequality and inequality (2.1), we have,

\psi (d(u, Tu) \leq s(d(u, Txn) + d(Axn, Tu))

\leq s(d(u, Txn) + s\beta (\psi M(xn, u))\psi (M(xn, u)

letting n\rightarrow \infty in the above inequality, we obtain,

\psi (d(u, Tu)) \leq \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

d(u, xn+1) + s \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\beta (\psi (M(xn, u))) \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\psi (M(xn, u)) (2.7)

where,

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

M(xn, u)

= \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\mathrm{m}\mathrm{a}\mathrm{x}\{ d(xn, u), d(xn, Txn), d(u, Tu),
1

2s
(d(xn, Tu) + d(u, Txn))\} 

\leq \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\mathrm{m}\mathrm{a}\mathrm{x}\{ d(xn, u), d(xn, Txn+1), d(u, Tu),
1

2s
(sd(xn, u)

+ sd(u, Tu) + d(u, xn+1))\} 
\leq d(u, Tu).

Hence, from inequality (2.7), we have,

\psi (d(u, Tu)) \leq s \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}\beta (\psi (M(xn, u))\psi (d(u, Tu))

. Consequently, 1
s \leq \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}n\rightarrow \infty \beta (Md(xn, u)) \leq 1

s . Since \beta \in \bfB , we concluded
\mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty M(xn, u) = 0. Therefore, Tu = u, we have to prove that the fixed point u \in X is
unique, suppose that there is v \not = u in X such that Tv = v. From inequality (2.1), we get,

\psi (d(u, v)) = \psi (d(Au,Av) \leq \beta \Psi (M(u, v))\Psi (M(u, v)),

where,

M(u, v) = \mathrm{m}\mathrm{a}\mathrm{x}\{ d(u, v), d(u, Tu), d(v, Tv),
1

2s
(d(u, Tv) + d(v, Tu)\} 

\leq d(u, v).

Therefore, we have d(u, v) < 1
sd(u, v). Then u = v, which is a contradiction. \square 

In this section, we give an example to validate our result.

Example 1. Let X = [0,\infty ) and d : X \times X \rightarrow [0, 1] be defined by d(x, y) = | x - y| 2 for
all x, y \in [0,\infty ) and (x, d) b-complete b-metric space with parameter s = 2. Let Tx = x

5

afor all x \in X and \beta = 1
1+2t or \psi (t) = t

2 . s \geq 1. Then T has a unique fixed point x\ast \in X.
Solution: We consider the following three cases.
Case-1: When x, y \in [0, 1] and x < y

\psi (d(Tx, Ty)) = \beta (\psi (M(x, y))\psi (M(x, y)),

where,

M(x, y) = \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
d(x, y), d(x, Tx), d(y, Ty),

1

2s
(d(x, Ty) + d(y, Tx))

\biggr\} 
,

= \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
| x - y| 2, | x - Ax| 2, | y  - Ay| 2, 1

2s

\bigl( 
| x - Ay| 2 + | y  - Ax| 2

\bigr) \biggr\} 
,

= \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
| x - y| 2, | x - x| 2, | y  - y| 2, 1

2s

\bigl( 
| x - y| 2 + | y  - x| 2

\bigr) \biggr\} 
,

= | x - y| 2.
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so,

\psi (d(Tx, Ty)) =
1

2
(| x
5
 - y

5
| 2)

=
1

50
(| x - y| 2)

\leq \beta (\psi (| x - y| 2))\psi (| x - y| 2),

= \beta (
| x - y| 2

2
)
| x - y| 2

2

= (
| x - y| 2

4

1

1 + 2| x - y| 2
) (2.8)

x y L.H.S
\bigl( 

1
50 | x - y| 2

\bigr) 
R.H.S

\Bigl( 
| x - y| 2

4 \cdot 1
1+2| x - y| 2

\Bigr) 
0 0.5 0.005 0.0167

0.2 0.7 0.005 0.0145
0.5 1.0 0.005 0.0125
...

...
...

...

Table 1. Variation of L.H.S and R.H.S for specific values of x and y in
the range [0, 1], with x < y.

Figure 1. Variation of Left hand Side (L.H.S.) and Right-hand Side
(R.H.S) when x, y \in [0, 1] and x < y
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Case-2: When x, y \in [0, 1] and x > y. We analyze and interpret the data using both
the graph and comparison table.

x y L.H.S
\bigl( 

1
50 | x - y| 2

\bigr) 
R.H.S

\Bigl( 
| x - y| 2

4 \cdot 1
1+2| x - y| 2

\Bigr) 
0.5 0.4 0.0002 0.00083
0.7 0.3 0.0032 0.0121
0.9 0.1 0.0128 0.0388
...

...
...

...

Table 2. Variation of L.H.S and R.H.S for specific values of x and y in
the range [0, 1], with x > y.

From case 1 and case 2 for x < y (or x > y, since the expressions are symmetric xy)
the nonzero values of xy both expressions are positive. L.H.S grows linearly with xy2,
while R.H.S. grows more slowly due to the additional denominator factor 1 + | x - y| 2.
We conclude that for x \not = y, R.H.S is generally larger than L.H.S. as | x - y| grows, this
difference increases.

Figure 2. Variation of Left hand Side (L.H.S.) and Right-hand Side
(R.H.S) when x, y \in [0, 1] and x > y

Case-3: When x, y \in [0, 1] and x = y. In this cases, the expressions are equal and yield a
value of zero. There is no need for a comparison table in this case, as the result is always
0 for both sides. By plotting these functions over the interval [0, 1], we can observe where
the two curves meet. The points of intersection correspond to values of xy for which the
two expressions are equal. These points reveal potential fixed points, including the trivial
fixed point at x = y (where | xy| = 0), as well as any non-trivial fixed points that might
exist within this range.
Therefore, the conditions of Theorem 1 are satisfied.

3. Application

In this section, we study the existence of solutions for nonlinear integral equations as
an application to the fixed point theorems proved in the previous section. Let X = C[0, l]
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be the set of all real continuous functions on [0, l] and d : X \times X \rightarrow [0,\infty ) be defined by:

d(u, v) = \mathrm{m}\mathrm{a}\mathrm{x}
0\leq t\leq l

| u(t) - v(t)| 2, u, v \in X.

Obviously, (X, d) is a complete b-metric space with parameter s = 2. First, consider the
integral equation:

u(t) = h(t) +

\int l

0

G(t, s)k(t, s, u(s))ds, (3.9)

where l > 0 and h : [0, l] \rightarrow R, G : [0, l] \times [0, l]\times \rightarrow R and k : [0, l] \times [0, l] \times R \rightarrow R are
continuous functions.
Theorem 2. Suppose that the following hypotheses hold:
(1) For all t, s \in [0, l] and u, v \in X, we have,

| k(t, s, u(s)) - k(t, s, v(s))| \leq 1

1 + 2M(u, v)
M(u, v).

(2) For all t, s \in [0, l], we have,

\mathrm{m}\mathrm{a}\mathrm{x}

\int l

0

G(t, s)2ds \leq 1

l
.

Then, the integral equation (3.9) has a unique solution u \in X.

Proof. Let A : X \rightarrow X be a mapping defined by:

Au(t) = h(t) +

\int 1

0

G(t, s)k(t, s, u(s))ds, u \in X, t, s \in [0, l].

From inequality (2.1) and inequality (2.2), we can write:

\psi (d(Au,Av))

= \mathrm{m}\mathrm{a}\mathrm{x}
t\in [0,l]

| Au(t) - Av(t)| 2

= \mathrm{m}\mathrm{a}\mathrm{x}
t\in [0,l]

\{ | h(t) +
\int l

0

G(t, s)k(t, s, u(s))ds - h(t) - 
\int l

0

G(t, s)k(t, s, v(s))ds| 2\} 

= \mathrm{m}\mathrm{a}\mathrm{x}
t\in [0,l]

| 
\int l

0

G(t, s)(k(t, s, u(s)) - k(t, s, v(s)))ds| 2

\leq \mathrm{m}\mathrm{a}\mathrm{x}
t\in [0,l]

\int l

0

G(t, s)2ds

\int l

0

| (k(t, s, u(s)) - k(t, s, v(s)))| 2ds

\leq 1

l

\int l

0

| 1

1 + 2M(u, v)
M(u, v)| ds

\leq M(u, v)

1 + 2M(u, v)
.

so we get,
\psi (d(Au,Av)) \leq \beta (\psi (M(u, v)))\psi (M(u, v)).

Thus, all conditions in Theorem 2 for \psi (t) = t, t > 0 where \beta (t) = 1
1+2t are satisfied and

hence T has a fixed point x = 0. \square 

4. Conclusion

From our investigations we conclude that the \psi -contractive defined on a b-complete
b-metric space satisfying \psi -Geraghty contractive mappings and have a unique common
fixed point. Our investigations and results obtained were supported by the suitable
example with graphs which provides new path for researchers in the concerned field.
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