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ON m-QUASI-n-POWER-TOTALLY-(\alpha , \beta )-NORMAL OPERATORS

PRADEEP RADHAKRISHNAN, SID AHMED OULD AHMED MAHMOUD,
AND P. MAHESWARI NAIK

Abstract. In this paper, we introduce the notion of m-quasi-n-power-totally-(\alpha , \beta )-
normal operators on a Hilbert space H as : An operator \scrL is called m-quasi-n-power-
totally-(\alpha , \beta )-normal (0 \leq \alpha \leq 1 \leq \beta ) if

\alpha 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m \leq \scrL m\ast (\scrL  - \lambda )n(\scrL  - \lambda )\ast \scrL m \leq \beta 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m

for natural numbers m and n and for all \lambda \in \BbbC . This paper aims to study several
properties of m-quasi-n-power-totally-(\alpha , \beta )-normal operators.

1. Introduction

Let H be a non zero complex Hilbert space and let B(H ) denote the algebra of all
bounded linear operators on H . Let m and n be natual numbers.

Definition 1.1. Let \scrL \in B(H ).
(1) An operator \scrL is called (\alpha , \beta )-normal [9, 16] (0 \leq \alpha \leq 1 \leq \beta ) if

\alpha 2\scrL \ast \scrL \leq \scrL \scrL \ast \leq \beta 2\scrL \ast \scrL .

(2) An operator \scrL is called quasi-(\alpha , \beta )-normal [19] (0 \leq \alpha \leq 1 \leq \beta ) if

\alpha 2\scrL \ast 2\scrL 2 \leq \scrL \ast \scrL \scrL \ast \scrL \leq \beta 2\scrL \ast 2\scrL 2.

(3) An operator \scrL is called m-quasi-(\alpha , \beta )-normal [19] (0 \leq \alpha \leq 1 \leq \beta ) if

\alpha 2\scrL (m+1)\ast \scrL m+1 \leq \scrL m\ast (\scrL \scrL \ast )\scrL m \leq \beta 2\scrL (m+1)\ast \scrL m+1

for a natural number m.
(4) An operator \scrL is called m-quasi-totally-(\alpha , \beta )-normal [19] (0 \leq \alpha \leq 1 \leq \beta ) if

\alpha 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )\scrL m \leq \scrL m\ast (\scrL  - \lambda )(\scrL  - \lambda )\ast \scrL m

\leq \beta 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )\scrL m

for a natural number m and for all \lambda \in \BbbC .

In general the following implications holds:
(\alpha , \beta ) - normal \subseteq quasi  - (\alpha , \beta ) - normal

\subseteq m - quasi  - (\alpha , \beta ) - normal \subseteq m - quasi  - totally  - (\alpha , \beta ) - normal.
Many authors have studied various generalizations of normal operators in [1, 2, 3, 6,
8, 14, 17, 20] and hyponormal operators in [4, 13, 15, 18]. The concept of n-normal
operators extends the concept of normal operators and has been investigated by A.A.
Jibril[14] and S.A. Alzuraiqi et al.[3]. An operator \scrL is n-normal if it satisfies the equation
\scrL n\scrL \ast = \scrL \ast \scrL n. In general normal \subseteq n  - normal. Recently, M. Guesba [11] established
sufficient conditions under which the sum and product of two hyponormal operators are
hyponormal. Some results on numerical radius inequalities for (\alpha , \beta )-normal and normal
operators are given in [9, 10].
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This paper focuses on a class of operators on Hilbert spaces that generalizes the
concepts of n-normal, (\alpha , \beta )-normal and m-quasi-(\alpha , \beta )-normal operators. Specifically,
we introduce the class of m-quasi-n-power-totally-(\alpha , \beta )-normal operators as:
An operator \scrL is called m-quasi-n-power-totally-(\alpha , \beta )-normal (0 \leq \alpha \leq 1 \leq \beta ) if

\alpha 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m \leq \scrL m\ast (\scrL  - \lambda )n(\scrL  - \lambda )\ast \scrL m

\leq \beta 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m

for natural numbers m,n and for all \lambda \in \BbbC .

Remark 1.2. (1) If m = 0, then m-quasi-n-power-totally-(\alpha , \beta )-normal is called
n-power-totally-(\alpha , \beta )-normal.

(2) If n = 1, then m-quasi-n-power-totally-(\alpha , \beta )-normal is called m-quasi-totally-
(\alpha , \beta )-normal.

(3) If m = 0, n = 1, then m-quasi-n-power-totally-(\alpha , \beta )-normal is called totally-
(\alpha , \beta )-normal.

Example 1.3. Given the operator \scrL = diag(2, 4) in B(\BbbC 2) is 2-quasi-3-power-(\alpha , \beta )-
normal for \alpha = 0.5 and \beta = 2.

Example 1.4. The following operator \scrL in B(\BbbC 2) is 2-quasi-2-power-(\alpha , \beta )-normal for
\alpha = 0.6 and \beta = 1.4.

\scrL =

\biggl( 
2 1
0 3

\biggr) 
.

2. Main Results

We begin with the following theorem.

Theorem 2.1. Let \scrL \in B(H ) be an m-quasi-n-power-totally-(\alpha , \beta )-normal if and only
if it is n-power-totally-(\alpha , \beta )-normal on ran(\scrL m).

Proof. \scrL \in B(H ) is m-quasi-n-power-totally-(\alpha , \beta )-normal operator

\leftrightarrow \alpha 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m \leq \scrL m\ast (\scrL  - \lambda )n(\scrL  - \lambda )\ast \scrL m

\leq \beta 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m

\leftrightarrow 
\bigl\langle 
\alpha 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL mx, x

\bigr\rangle 
\leq 
\bigl\langle 
\scrL m\ast (\scrL  - \lambda )n(\scrL  - \lambda )\ast \scrL mx, x

\bigr\rangle 
\leq 
\bigl\langle 
\beta 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL mx, x

\bigr\rangle 
, for every x \in H

\leftrightarrow 
\bigl\langle 
\alpha 2(\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL mx,\scrL mx

\bigr\rangle 
\leq 
\bigl\langle 
(\scrL  - \lambda )n(\scrL  - \lambda )\ast \scrL mx,\scrL mx

\bigr\rangle 
\leq 
\bigl\langle 
\beta 2(\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL mx,\scrL mx

\bigr\rangle 
, for every x \in H

\leftrightarrow \alpha 2(\scrL  - \lambda )\ast (\scrL  - \lambda )n \leq (\scrL  - \lambda )n(\scrL  - \lambda )\ast \leq \beta 2(\scrL  - \lambda )\ast (\scrL  - \lambda )n, on ran(\scrL m).

\square 

Theorem 2.2. Let \scrL \in B(H ) be m-quasi-n-power-totally-(\alpha , \beta )-normal and let \scrM be
a closed subsapce of H which reduces \scrL . Then \scrL | \scrM is m-quasi-n-power-totally-(\alpha , \beta )-
normal.

Proof. Let \scrM be a reducing subspace of \scrL . Then

\scrL =

\biggl( 
\scrL 1 0
0 \scrL 2

\biggr) 
on H = \scrM \oplus \scrM \bot .

From the fact that \scrL is m-quasi-n-power-totally-(\alpha , \beta )-normal, we have

\alpha 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m \leq \scrL m\ast (\scrL  - \lambda )n(\scrL  - \lambda )\ast \scrL m

\leq \beta 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m.
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Therefore

\alpha 2

\biggl( 
\scrL 1 0
0 \scrL 2

\biggr) m\ast \biggl( \scrL 1  - \lambda 0
0 \scrL 2  - \lambda 

\biggr) \ast \biggl( \scrL 1  - \lambda 0
0 \scrL 2  - \lambda 

\biggr) n\biggl( \scrL 1 0
0 \scrL 2

\biggr) m

\leq 
\biggl( 
\scrL 1 0
0 \scrL 2

\biggr) m\ast \biggl( \scrL 1  - \lambda 0
0 \scrL 2  - \lambda 

\biggr) n\biggl( \scrL 1  - \lambda 0
0 \scrL 2  - \lambda 

\biggr) \ast \biggl( \scrL 1 0
0 \scrL 2

\biggr) m

\leq \beta 2

\biggl( 
\scrL 1 0
0 \scrL 2

\biggr) m\ast \biggl( \scrL 1  - \lambda 0
0 \scrL 2  - \lambda 

\biggr) \ast \biggl( \scrL 1  - \lambda 0
0 \scrL 2  - \lambda 

\biggr) n\biggl( \scrL 1 0
0 \scrL 2

\biggr) m

.

Hence

\alpha 2

\biggl( 
\scrL m\ast 
1 (\scrL 1  - \lambda )\ast (\scrL 1  - \lambda )n\scrL m

1 0
0 \scrV 

\biggr) 
\leq 
\biggl( 
\scrL m\ast 
1 (\scrL 1  - \lambda )n(\scrL 1  - \lambda )\ast \scrL m

1 0
0 \scrV 

\biggr) 
\leq \beta 2

\biggl( 
\scrL m\ast 
1 (\scrL 1  - \lambda )\ast (\scrL 1  - \lambda )n\scrL m

1 0
0 \scrV 

\biggr) 
.

for some operator \scrV . This indicates that

\alpha 2\scrL m\ast 
1 (\scrL 1  - \lambda )\ast (\scrL 1  - \lambda )n\scrL m

1 \leq \scrL m\ast 
1 (\scrL 1  - \lambda )n(\scrL 1  - \lambda )\ast \scrL m

1

\leq \beta 2\scrL m\ast 
1 (\scrL 1  - \lambda )\ast (\scrL 1  - \lambda )n\scrL m

1 .

So, \scrL 1 = \scrL | \scrM is m-quasi-n-power-totally-(\alpha , \beta )-normal. \square 

Theorem 2.3. [19] Let \scrL \in B(H ) such that \scrL m does not have a dense range, then the
following statements are equivalent.

(1) \scrL is a m-quasi-totally-(\alpha , \beta )-normal operator.

(2) \scrL =

\biggl( 
\scrA \scrB 
0 \scrC 

\biggr) 
on H = ran(\scrL m) \oplus ker(\scrL \ast m), where \scrA = \scrL \bigm| \bigm| ran(\scrL )

is a totally

(\alpha , \beta )-normal operator, \scrB \scrB \ast = 0 and \scrC m = 0. Furthermore \sigma (\scrL ) = \sigma (\scrA ) \cup \{ 0\} .

The next theorem give an equivalent condition for \scrL to be a m-quasi-n-power-totally-
(\alpha , \beta )-normal operator.

Theorem 2.4. Let \scrL \in B(H ) such that \scrL m does not have a dense range, then the
following are equivalent.

(1) \scrL is a m-quasi-n-power-totally-(\alpha , \beta )-normal operator.

(2) \scrL =

\biggl( 
\scrA \scrB 
0 \scrC 

\biggr) 
on H = ran(\scrL m)\oplus ker(\scrL m\ast ), where \scrA = \scrL \bigm| \bigm| ran(\scrL m)

satisfies

\alpha 2(\scrA  - \lambda )\ast (\scrA  - \lambda )n \leq (\scrA  - \lambda )n(\scrA  - \lambda )\ast +

\left(  n - 1\sum 
j=0

(\scrA  - \lambda )j\scrB (\scrC  - \lambda )n - 1 - j

\right)  \scrB \ast 

\leq \beta 2(\scrA  - \lambda )\ast (\scrA  - \lambda )n,

for all \lambda \in \BbbC and \scrC m = 0. Furthermore \sigma (\scrL ) = \sigma (\scrA ) \cup \{ 0\} .

Proof. (1) \Rightarrow (2). Consider the matrix representation of \scrL with respect to the decom-

position H = ran(\scrL m) \oplus ker(\scrL \ast m) : \scrL =

\biggl( 
\scrA \scrB 
0 \scrC 

\biggr) 
. Let \scrP be the projection onto

ran(\scrL m). Then
\biggl( 

\scrA 0
0 0

\biggr) 
= \scrL \scrP = \scrP \scrL \scrP . Since \scrL is m-quasi-n-power-totally-(\alpha , \beta )-

normal operator, we have then

\alpha 2\scrP 
\biggl( 
\scrL \ast m(\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m)

\biggr) 
\scrP \leq \scrP 

\biggl( 
\scrL \ast m(\scrL  - \lambda )n(\scrL  - \lambda )\ast \scrL m

\biggr) 
\scrP 
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\leq \beta 2\scrP 
\biggl( 
\scrL \ast m(\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m

\biggr) 
\scrP 

That is

\alpha 2(\scrA  - \lambda )\ast (\scrA  - \lambda )n \leq (\scrA  - \lambda )n(\scrA  - \lambda )\ast +

\left(  n - 1\sum 
j=0

(\scrA  - \lambda )j\scrB (\scrC  - \lambda )n - 1 - j

\right)  \scrB \ast 

\leq \beta 2(\scrA  - \lambda )\ast (\scrA  - \lambda )n,

for all \lambda \in \BbbC .
However, let x = x1 +x2 \in H = ran(\scrL m)\oplus ker(\scrL \ast m). A simple computation shows that

\langle \scrC mx2, x2\rangle = \langle \scrL m(I  - \scrP )x, (I  - \scrP )x\rangle 
= \langle (I  - \scrP )x,\scrL \ast m(I  - \scrP )x\rangle = 0.

So, \scrC m = 0.
Since \sigma (\scrL ) \cup \scrT = \sigma (\scrA ) \cup \sigma (\scrC ), where \scrT is the union of the holes in \sigma (\scrL ) which are, in

fact, a subset of \sigma (\scrA )\cap \sigma (\scrC ) by Corollary 7 of [12], and \sigma (\scrA )\cap \sigma (\scrC ) has no interior point
and \scrC is nilpotent, we have \sigma (\scrL ) = \sigma (\scrA ) \cup \{ 0\} .

(2) \Rightarrow (1) Suppose that \scrL =

\biggl( 
\scrA \scrB 
0 \scrC 

\biggr) 
onto H = ran(\scrL m)\oplus ker(\scrL \ast m), with

\alpha 2(\scrA  - \lambda )\ast (\scrA  - \lambda )n \leq (\scrA  - \lambda )n(\scrA  - \lambda )\ast +

\left(  n - 1\sum 
j=0

(\scrA  - \lambda )j\scrB (\scrC  - \lambda )n - 1 - j

\right)  \scrB \ast 

\leq \beta 2(\scrA  - \lambda )\ast (\scrA  - \lambda )n,

for all \lambda \in \BbbC and \scrC m = 0.

Since \scrL m =

\left(  \scrA m \scrY 

0 0

\right)  , \scrY =

m - 1\sum 
j=0

\scrA j\scrB \scrC m - 1 - j ,

(\scrL  - \lambda )\ast (\scrL  - \lambda )n

=

\left(    
(\scrA  - \lambda )\ast (\scrA  - \lambda )n (\scrA  - \lambda )\ast 

\left(  n - 1\sum 
j=0

(\scrA  - \lambda )
j\scrB (\scrC  - \lambda )

n - 1 - j

\right)  

\scrB \ast (\scrA  - \lambda )n \scrB \ast 

\left(  n - 1\sum 
j=0

(\scrA  - \lambda )
j\scrB (\scrC  - \lambda )

n - 1 - j

\right)  + (\scrC  - \lambda )\ast (\scrC  - \lambda )n

\right)    
and
(\scrL  - \lambda )n(\scrL  - \lambda )\ast 

=

\Biggl( 
(\scrA  - \lambda )n(\scrA  - \lambda )\ast +

\left(  n - 1\sum 
j=0

(\scrA  - \lambda )
j\scrB (\scrC  - \lambda )

n - 1 - j

\right)  \scrB \ast 

\left(  n - 1\sum 
j=0

(\scrA  - \lambda )
j\scrB (\scrC  - \lambda )

n - 1 - j

\right)  (\scrC  - \lambda )\ast 

(\scrC  - \lambda )n\scrB \ast (\scrC  - \lambda )n(\scrC  - \lambda )\ast 

\Biggr) 
.

Further

\scrL m\scrL \ast m =

\left(  \scrA m\scrA \ast m + \scrY \scrY \ast 0

0 0

\right)  
=

\biggl( 
\scrD 0
0 0

\biggr) 
,

where \scrD = \scrA m\scrA \ast m + \scrY \scrY \ast = \scrD \ast .
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Hence for all \lambda \in \BbbC , we have

\alpha 2\scrL m\scrL \ast m\bigl( (\scrL  - \lambda )\ast (\scrL  - \lambda )n
\bigr) 
\scrL m\scrL \ast m

=

\left(  \alpha 2\scrD (\scrA  - \lambda )\ast (\scrA  - \lambda )n\scrD 0

0 0

\right)  

\leq 

\left(    \scrD 

\left(  (\scrA  - \lambda )n(\scrA  - \lambda )\ast +

\left(  n - 1\sum 
j=0

(\scrA  - \lambda )j\scrB (\scrC  - \lambda )n - 1 - j

\right)  \scrB \ast 

\right)  \scrD 0

0 0

\right)    
= \scrL m\scrL \ast m\bigl( (\scrL  - \lambda )n(\scrL  - \lambda )\ast 

\bigr) 
\scrL m\scrL \ast m

\leq 
\biggl( 

\beta 2\scrD (\scrA  - \lambda )\ast (\scrA  - \lambda )n\scrD 0
0 0

\biggr) 
= \beta 2\scrL m\scrL \ast m\bigl( (\scrL  - \lambda )\ast (\scrL  - \lambda )n

\bigr) 
\scrL m\scrL \ast m.

It implies that
\alpha 2\scrL m\scrL \ast m\bigl( (\scrL  - \lambda )\ast (\scrL  - \lambda )n

\bigr) 
\scrL m\scrL \ast m

\leq \scrL m\scrL \ast m\bigl( (\scrL  - \lambda )n(\scrL  - \lambda )\ast 
\bigr) 
\scrL m\scrL \ast m

\leq \beta 2\scrL m\scrL \ast m\bigl( (\scrL  - \lambda )\ast (\scrL  - \lambda )n
\bigr) 
\scrL m\scrL \ast m.

Therefore
\alpha 2\scrL \ast m\bigl( (\scrL  - \lambda )\ast (\scrL  - \lambda )n

\bigr) 
\scrL m \leq \scrL \ast m\bigl( (\scrL  - \lambda )n(\scrL  - \lambda )\ast 

\bigr) 
\scrL m

\leq \beta 2\scrL \ast m\bigl( (\scrL  - \lambda )\ast (\scrL  - \lambda )n
\bigr) 
\scrL m,

on H = ran(\scrL \ast m)\oplus ker(\scrL m).
This leads to the conclusion that, \scrL is m-quasi-n-power-totally-(\alpha , \beta )-normal. \square 

Theorem 2.5. Let \scrL =

\biggl( 
\scrA \scrB 
0 \scrC 

\biggr) 
\in B(H \oplus H ). If \scrA is a surjective m-quasi-n-power-

(\alpha , \beta )-normal operator and \scrC m = 0 for some integer m, then \scrL is similar to a m-quasi-n-
power-(\alpha , \beta )-normal operator.

Proof. Under the condition \scrA is surjective and \scrC is nilpotent, we have \sigma (\scrA ) \cap \sigma (\scrC ) = \phi .
Then there exists an operator X such that \scrA X  - X\scrC = \scrB . Since\biggl( 

I X
0 I

\biggr) \biggl( 
\scrA \scrB 
0 \scrC 

\biggr) 
=

\biggl( 
\scrA 0
0 \scrC 

\biggr) \biggl( 
I X
0 I

\biggr) 
,

it is clear that \scrL is similar to \scrT =

\biggl( 
\scrA 0
0 \scrC 

\biggr) 
. Let \scrA be m-quasi-n-power-(\alpha , \beta )-normal

operator and \scrC m = 0. Then

\alpha 2\scrT m\ast \scrT \ast \scrT n\scrT m \leq \scrT m\ast \scrT n(\scrT  - \lambda )\ast \scrT m \leq \beta 2\scrT m\ast \scrT \ast \scrT n\scrT m.

\alpha 2

\biggl( 
\scrA 0
0 \scrC 

\biggr) m\ast \biggl( \scrA 0
0 \scrC 

\biggr) \ast \biggl( \scrA 0
0 \scrC 

\biggr) n\biggl( \scrA 0
0 \scrC 

\biggr) m

\leq 
\biggl( 
\scrA 0
0 \scrC 

\biggr) m\ast \biggl( \scrA 0
0 \scrC 

\biggr) n\biggl( \scrA 0
0 \scrC 

\biggr) \ast \biggl( \scrA 0
0 \scrC 

\biggr) m

\leq \beta 2

\biggl( 
\scrA 0
0 \scrC 

\biggr) m\ast \biggl( \scrA 0
0 \scrC 

\biggr) \ast \biggl( \scrA 0
0 \scrC 

\biggr) n\biggl( \scrA 0
0 \scrC 

\biggr) m

.

We have

\alpha 2

\biggl( 
\scrA m\ast \scrA \ast \scrA n\scrA m 0

0 0

\biggr) 
\leq 
\biggl( 
\scrA m\ast \scrA n\scrA \ast \scrA m 0

0 0

\biggr) 
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\leq \beta 2

\biggl( 
\scrA m\ast \scrA \ast \scrA n\scrA m 0

0 0

\biggr) 
.

Thus \scrL is similar to a m-quasi-n-power-totally-(\alpha , \beta )-normal operator \square 

In the following results, direct sum and tensor product for two m-quasi-n-power-(\alpha , \beta )-
normal operator are studied.

Theorem 2.6. If \scrL , \scrT are m-quasi-n-power-(\alpha , \beta )-normal operator, then \scrL \oplus \scrT is m-
quasi-n-power-(\alpha , \beta )-normal operator.

Proof. Consider,\bigl[ 
(\scrL \oplus \scrT )m\ast (\scrL \oplus \scrT )n(\scrL \oplus \scrT )\ast (\scrL \oplus \scrT )m

\bigr] 
(x1 \oplus x2)

=
\bigl[ 
(\scrL m\ast \oplus \scrT m\ast )(\scrL n \oplus \scrT n)(\scrL \ast \oplus \scrT \ast )(\scrL m \oplus \scrT m)

\bigr] 
(x1 \oplus x2)

= (\scrL m\ast \scrL n\scrL \ast \scrL m \oplus \scrT m\ast \scrT n\scrT \ast \scrT m)(x1 \oplus x2)

= (\scrL m\ast \scrL n\scrL \ast \scrL mx1)\oplus (\scrT m\ast \scrT n\scrT \ast \scrT mx2)

\geq (\alpha 2\scrL m\ast \scrL \ast \scrL n\scrL mx1)\oplus (\alpha 2\scrT m\ast \scrT \ast \scrT n\scrT mx2)

= \alpha 2
\bigl[ 
(\scrL m\ast \scrL \ast \scrL n\scrL m \oplus \scrT m\ast \scrT \ast \scrT n\scrT m)

\bigr] 
(x1 \oplus x2)

=
\bigl[ 
\alpha 2(\scrL \oplus \scrT )m\ast (\scrL \oplus \scrL )\ast (\scrL \oplus \scrT )n(\scrL \oplus \scrT )m

\bigr] 
(x1 \oplus x2).

Similarly,\bigl[ 
(\scrL \oplus \scrT )m\ast (\scrL \oplus \scrT )n(\scrL \oplus \scrT )\ast (\scrL \oplus \scrT )m(x1 \oplus x2)

\bigr] 
\leq 
\bigl[ 
\beta 2(\scrL \oplus \scrT )m\ast (\scrL \oplus \scrT )\ast (\scrL \oplus \scrT )n(\scrL \oplus \scrT )m

\bigr] 
(x1 \oplus x2).

Hence \scrL \oplus \scrT is m-quasi-n-power-(\alpha , \beta )-normal operator. \square 

Theorem 2.7. Let \scrL , \scrT \in \scrB (H ) and let (0 \leq \alpha 1, \alpha 2 \leq 1 \leq \beta 1, \beta 2). The following
conditions hold.

(1) If \scrL is m-quasi-n-power-(\alpha 1, \beta 1)-normal operator and \scrT is m-quasi-n-power-
(\alpha 2, \beta 2)-normal operator, then \scrL \otimes \scrT is m-quasi-n-power-(\alpha 1\alpha 2, \beta 1\beta 2)-normal
operator.

(2) If \scrL \otimes \scrT is m-quasi-n-power-(\alpha , \beta )-normal operator, then there exists two constants
c1 \geq 0 and c2 \geq 0 such that \scrL is m-quasi-n-power-

\bigl( 
\alpha 
\sqrt{} 

1
c2
, \beta 

\surd 
c1
\bigr) 
-normal operator

and \scrT is m-quasi-n-power-
\bigl( \surd 

c2,
\sqrt{} 

1
c1

\bigr) 
-normal operator.

Proof. (i) Since \scrL is m-quasi-n-power-(\alpha 1, \beta 1)-normal operator and \scrT is m-quasi-n-power-
(\alpha 2, \beta 2)-normal operator, we have

\alpha 2
1\scrL m\ast \scrL \ast \scrL n\scrL m \leq \scrL m\ast \scrL n\scrL \ast \scrL m \leq \beta 2

1\scrL m\ast \scrL \ast \scrL n\scrL m

and

\alpha 2
2\scrT m\ast \scrT \ast \scrT n\scrT m \leq \scrT m\ast \scrT n\scrT \ast \scrT m \leq \beta 2

2\scrT m\ast \scrT \ast \scrT n\scrT m.

Consider,\bigl( 
\beta 1\beta 2

\bigr) 2
(\scrL \otimes \scrT )\ast m(\scrL \otimes \scrT )\ast (\scrL \otimes \scrT )n(\scrL \otimes \scrT )m

= \beta 2
1\beta 

2
2(\scrL \ast m \otimes \scrT m\ast )(\scrL \ast \otimes \scrT \ast )(\scrL n \otimes \scrT n)(\scrL m \otimes \scrT m)

=
\bigl( 
\beta 1

\bigr) 2\scrL \ast m\scrL \ast \scrL n\scrL m \otimes 
\bigl( 
\beta 2

\bigr) 2\scrT m\ast \scrT \ast \scrT n\scrT m

\geq \scrL m\ast \scrL n\scrL \ast \scrL m \otimes \scrT m\ast \scrT n\scrT \ast \scrT m

= (\scrL m\ast \otimes \scrT m\ast )(\scrL n \otimes \scrT n)(\scrL \ast \otimes \scrT \ast )(\scrL m \otimes \scrT m)

= (\scrL \otimes \scrT )m\ast (\scrL \otimes \scrT )n(\scrL \otimes \scrT )\ast (\scrL \otimes \scrT )m.
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Hence\bigl( 
\beta 1\beta 2

\bigr) 2
(\scrL \otimes \scrT )\ast m(\scrL \otimes \scrT )\ast (\scrL \otimes \scrT )n(\scrL \otimes \scrT )m \geq (\scrL \otimes \scrT )m\ast (\scrL \otimes \scrT )n(\scrL \otimes \scrT )\ast (\scrL \otimes \scrT )m.

Secondly,
(\scrL \otimes \scrT )m\ast (\scrL \otimes \scrT )n(\scrL \otimes \scrT )\ast (\scrL \otimes \scrT )m

= (\scrL m\ast \otimes \scrT m\ast )(\scrL n \otimes \scrT n)(\scrL \ast \otimes \scrT \ast )(\scrL m \otimes \scrT m)

= \scrL m\ast \scrL n\scrL \ast \scrL m \otimes \scrT m\ast \scrT n\scrT \ast \scrT m

\geq 
\bigl( 
\alpha 1

\bigr) 2\scrL \ast m\scrL \ast \scrL n\scrL m \otimes 
\bigl( 
\alpha 2

\bigr) 2\scrT m\ast \scrT \ast \scrT n\scrT m

=
\bigl( 
\alpha 1

\bigr) 2\bigl( 
\alpha 2

\bigr) 2
(\scrL \ast m \otimes \scrT m\ast )(\scrL \ast \otimes \scrT \ast )(\scrL n \otimes \scrT n)(\scrL m \otimes \scrT m)

=
\bigl( 
\alpha 1\alpha 2

\bigr) 2
(\scrL \otimes \scrT )\ast m(\scrL \otimes \scrT )\ast (\scrL \otimes \scrT )n(\scrL \otimes \scrT )m.

Hence

(\scrL \otimes \scrT )m\ast (\scrL \otimes \scrT )n(\scrL \otimes \scrT )\ast (\scrL \otimes \scrT )m \geq 
\bigl( 
\alpha 1\alpha 2

\bigr) 2
(\scrL \otimes \scrT )\ast m(\scrL \otimes \scrT )\ast (\scrL \otimes \scrT )n(\scrL \otimes \scrT )m.

Therefore, \scrL \otimes \scrT is m-quasi-n-power-(\alpha 1\alpha 2, \beta 1\beta 2)-normal operator.
(ii) We have

\beta 2(\scrL \otimes \scrT )\ast m(\scrL \otimes \scrT )\ast (\scrL \otimes \scrT )n(\scrL \otimes \scrT )m \geq (\scrL \otimes \scrT )m\ast (\scrL \otimes \scrT )n(\scrL \otimes \scrT )\ast (\scrL \otimes \scrT )m

\geq \alpha 2(\scrL \otimes \scrT )\ast m(\scrL \otimes \scrT )\ast (\scrL \otimes \scrT )n(\scrL \otimes \scrT )m.

So,
\beta 2\scrL \ast m\scrL \ast \scrL n\scrL m \otimes \scrT \ast m\scrT \ast \scrT n\scrT m \geq \scrL \ast m\scrL n\scrL \ast \scrL m \otimes \scrT \ast m\scrT n\scrT \ast \scrT m

and
\scrL \ast m\scrL n\scrL \ast \scrL m \otimes \scrT \ast m\scrT n\scrT \ast \scrT m \geq \alpha 2\scrL \ast m\scrL \ast \scrL n\scrL m \otimes \scrT \ast m\scrT \ast \scrT n\scrT m.

So there exists a constant c1 > 0 such that

c1\beta 
2\scrL \ast m+1\scrL m+n \geq \scrL \ast m\scrL \ast \scrL n\scrL m

and
1

c1
\scrT \ast m+1\scrT m+n \geq \scrT \ast m\scrT \ast \scrT n\scrT m.

On the other hand we can find a constant c2 > 0 satisfies

c2\scrL \ast m\scrL \ast \scrL n\scrL m \geq \alpha 2\scrL \ast m+1\scrL m+n

and
1

c2
\scrT \ast m\scrT \ast \scrT n\scrT m \geq \scrT \ast m+1\scrT m+n.

It is straightforward to see that

0 \leq \alpha 

\sqrt{} 
1

c2
,
\surd 
c2 \leq 1 \leq \beta 

\surd 
c1,

\sqrt{} 
1

c1
.

Therefore, \scrL is m-quasi-n-power-
\bigl( 
\alpha 
\sqrt{} 

1
c2
, \beta 

\surd 
c1
\bigr) 
-normal operator and \scrT is m-quasi-n-

power-
\bigl( \surd 

c2,
\sqrt{} 

1
c1

\bigr) 
-normal operator. \square 

In the following theorem, the stability of the sum of two m-quasi - n-power-totally-(\alpha , \beta )-
normal operators is preserved under the specific conditions.

Theorem 2.8. Let \scrL , \scrT \in B(H ). If \scrL , \scrT are m-quasi-n-power-totally-(\alpha , \beta )-normal
operator satisfies the following conditions;

\bullet (\scrL  - \lambda )\scrT = (\scrT  - \lambda )\scrL = 0
\bullet \scrT \ast (\scrL  - \lambda ) = \scrL \ast (\scrT  - \lambda ) = 0
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\bullet (\scrL  - \lambda )(\scrT  - \lambda )\ast = (\scrL  - \lambda )\ast (\scrT  - \lambda ) = 0
\bullet \scrL \scrT = \scrT \scrL = 0
\bullet (\scrL  - \lambda )(\scrT  - \lambda ) = (\scrT  - \lambda )(\scrL  - \lambda ) = 0

Then \scrL + \scrT is m-quasi-n-power-totally-(\alpha , \beta )-normal operator.

Proof. If \scrL , \scrT are m-quasi-n-power-totally-(\alpha , \beta )-normal operator, then we have

\alpha 2\scrL \ast m(\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m \leq \scrL \ast m(\scrL  - \lambda )n(\scrL  - \lambda )\ast \scrL m

\leq \beta 2\scrL \ast m(\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m,

\alpha 2(\scrT \ast m)(\scrT  - \lambda )\ast (\scrT  - \lambda )n(\scrT m) \leq (\scrT \ast m)(\scrT  - \lambda )n(\scrT  - \lambda )\ast (\scrT m)

\leq \beta 2(\scrT \ast m)(\scrT  - \lambda )\ast (\scrT  - \lambda )n(\scrT m)

for all \lambda \in \BbbC .
To show that \scrL + \scrT is m-quasi-n-power-totally-(\alpha , \beta )-normal operator.

First we have,\bigl( 
(\scrL + \scrT )m

\bigr) \ast \bigl[ 
\alpha 2
\bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast 

\bigr) \bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) \bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast )

\bigr] \bigl( 
(\scrL + \scrT )m

\bigr) 

= (\scrL m\ast + \scrT m\ast )
\bigl[ 
\alpha 2
\bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast 

\bigr) \bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) \bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast )

\bigr] 
(\scrL m + \scrT m)

= \scrL m\ast \bigl[ \alpha 2
\bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast 

\bigr) \bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) \bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast )

\bigr] 
\scrL m

+\scrL m\ast \bigl[ \alpha 2
\bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast 

\bigr) \bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) \bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast )

\bigr] 
(\scrT m)

+(\scrT m\ast )
\bigl[ 
\alpha 2
\bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast 

\bigr) \bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) \bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast )

\bigr] 
\scrL m

+(\scrT m\ast )
\bigl[ 
\alpha 2
\bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast 

\bigr) \bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) \bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast )

\bigr] 
(\scrT m)

= \scrL m\ast \bigl[ \alpha 2
\bigl( 
(\scrL  - \lambda )\ast (\scrL  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n(\scrL  - \lambda )\ast )

\bigr] 
\scrL m

+(\scrT m\ast )
\bigl[ 
\alpha 2
\bigl( 
(\scrT  - \lambda )\ast (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrT  - \lambda )n(\scrT  - \lambda )\ast )

\bigr] 
(\scrT m)

\leq 0.

Secondly,\bigl( 
(\scrL + \scrT )m

\bigr) \ast \bigl[ 
\beta 2
\bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast 

\bigr) \bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) 
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 - 
\bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) \bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast )

\bigr] \bigl( 
(\scrL + \scrT )m

\bigr) 
= (\scrL m\ast + \scrT m\ast )

\bigl[ 
\beta 2
\bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast 

\bigr) \bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) \bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast )

\bigr] 
(\scrL m + \scrT m)

= \scrL m\ast \bigl[ \beta 2
\bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast 

\bigr) \bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) \bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast )

\bigr] 
\scrL m

+\scrL m\ast \bigl[ \beta 2
\bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast 

\bigr) \bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) \bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast )

\bigr] 
(\scrT m)

+(\scrT m\ast )
\bigl[ 
\beta 2
\bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast 

\bigr) \bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) \bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast )

\bigr] 
\scrL m

+(\scrT m\ast )
\bigl[ 
\beta 2
\bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast 

\bigr) \bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n + (\scrT  - \lambda )n

\bigr) \bigl( 
(\scrL  - \lambda )\ast + (\scrT  - \lambda )\ast )

\bigr] 
(\scrT m)

= \scrL m\ast \bigl[ \beta 2
\bigl( 
(\scrL  - \lambda )\ast (\scrL  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrL  - \lambda )n(\scrL  - \lambda )\ast )

\bigr] 
\scrL m

+(\scrT m\ast )
\bigl[ 
\beta 2
\bigl( 
(\scrT  - \lambda )\ast (\scrT  - \lambda )n

\bigr) 
 - 
\bigl( 
(\scrT  - \lambda )n(\scrT  - \lambda )\ast )

\bigr] 
(\scrT m)

\geq 0.

Therefore \scrL + \scrT is m-quasi-n-power-totally-(\alpha , \beta )-normal operator. \square 

Theorem 2.9. Let \scrL 1,\scrL 2 \in B(H ) be doubly commuting. If \scrL 1 is an m-quasi-n-
power-(\alpha , \beta )-normal and \scrL 2 is an m-quasi-n-power-(\alpha \prime , \beta \prime )-normal, then \scrL 1\scrL 2 is an
m-quasi-n-power-(\alpha \alpha \prime , \beta \beta \prime )-normal

Proof. Consider,

(\alpha \alpha \prime )2(\scrL 1\scrL 2)
m\ast (\scrL 1\scrL 2)

\ast (\scrL 1\scrL 2)
n(\scrL 1\scrL 2)

m = \alpha 2\alpha \prime 2\scrL m\ast 
1 \scrL \ast 

1\scrL n
1\scrL m

1 \scrL m\ast 
2 \scrL \ast 

2\scrL n
2\scrL m

2

\leq \alpha 2\scrL m\ast 
1 \scrL \ast 

1\scrL n
1\scrL m

1 \scrL m\ast 
2 \scrL n

2\scrL \ast 
2\scrL m

2

\leq \scrL m\ast 
1 \scrL n

1\scrL \ast 
1\scrL m

1 \scrL m\ast 
2 \scrL n

2\scrL \ast 
2\scrL m

2

= (\scrL 1\scrL 2)
m\ast (\scrL 1\scrL 2)

n(\scrL 1\scrL 2)
\ast (\scrL 1\scrL 2)

m

,

and

(\scrL 1\scrL 2)
m\ast (\scrL 1\scrL 2)

n(\scrL 1\scrL 2)
\ast (\scrL 1\scrL 2)

m = \scrL m\ast 
1 \scrL n

1\scrL \ast 
1\scrL m

1 \scrL m\ast 
2 \scrL n

2\scrL \ast 
2\scrL m

2

\leq \beta 2\scrL m\ast 
1 \scrL \ast 

1\scrL n
1\scrL m

1 \scrL m\ast 
2 \scrL n

2\scrL \ast 
2\scrL m

2

\leq \beta 2\beta \prime 2\scrL m\ast 
1 \scrL \ast 

1\scrL n
1\scrL m

1 \scrL m\ast 
2 \scrL \ast 

2\scrL n
2\scrL m

2

= \beta 2\beta \prime 2\scrL m\ast 
1 \scrL \ast 

1\scrL n
1\scrL m

1 \scrL m\ast 
2 \scrL \ast 

2\scrL n
2\scrL m

2

= (\beta \beta \prime )2(\scrL 1\scrL 2)
m\ast (\scrL 1\scrL 2)

\ast (\scrL 1\scrL 2)
n(\scrL 1\scrL 2)

m.

\square 

Theorem 2.10. Let \scrL be an m-quasi-n-power-totally-(\alpha , \beta )-normal operator. If \scrL m has
dense range, then \scrL is totally-n-power-(\alpha , \beta )-normal.

Proof. Since \scrL m has a dense range, it follows that ran(\scrL m) = H . Let y \in H . Then
there exists a sequence (xn) in H such that \scrL m(xn) \rightarrow y as n \rightarrow \infty .
Since \scrL is m-quasi-n-power-totally-(\alpha , \beta )-normal operator, we have
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\alpha 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m \leq \scrL m\ast (\scrL  - \lambda )n(\scrL  - \lambda )\ast \scrL m \leq \beta 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL m\bigl\langle 
\alpha 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL mx, x

\bigr\rangle 
\leq 
\bigl\langle 
\scrL m\ast (\scrL  - \lambda )n(\scrL  - \lambda )\ast \scrL mx, x

\bigr\rangle 
\leq 
\bigl\langle 
\beta 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL mx, x

\bigr\rangle 
, for every x \in H .

In particular,

\bigl\langle 
\alpha 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL mxn, xn

\bigr\rangle 
\leq 
\bigl\langle 
\scrL m\ast (\scrL  - \lambda )n(\scrL  - \lambda )\ast \scrL mxn, xn

\bigr\rangle 
\leq 
\bigl\langle 
\beta 2\scrL m\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL mxn, xn

\bigr\rangle 
, for every xn \in H .

It follows that

\bigl\langle 
\alpha 2(\scrL  - \lambda )\ast (\scrL  - \lambda )ny, y

\bigr\rangle 
\leq 
\bigl\langle 
(\scrL  - \lambda )n(\scrL  - \lambda )\ast y, y

\bigr\rangle 
\leq 
\bigl\langle 
\beta 2(\scrL  - \lambda )\ast (\scrL  - \lambda )ny, y

\bigr\rangle 
,

for all y \in H and for all \lambda \in \BbbC . Therefore \scrL is totally-n-power-(\alpha , \beta ) - normal
operator. \square 

Corollary 2.11. Let \scrL be an m-quasi-n-power-totally-(\alpha , \beta )-normal operator. If \scrL m \not = 0
and if \scrL has no nontrivial \scrL m-invariant closed subspace, then \scrL is totally-n-power-(\alpha , \beta )-
normal.

Proof. Since \scrL m has no nontrivial invariant closed subspace, it has no nontrivial hyperin-
variant subspace. But ker(\scrL m) and ran(\scrL m) are hyperinvariant subspaces, and \scrL m \not = 0,
hence ker(\scrL m) = 0 and ran(\scrL m) = H . Therefore \scrL is totally-n-power(\alpha , \beta )-normal
operator. \square 

Corollary 2.12. If \scrL is such that a + b\scrL is m-quasi-n-power-totally-(\alpha , \beta )-normal
operator for all scalars a and b, then \scrL is totally-n-power-(\alpha , \beta )-normal.

Proof. If \scrL is m-quasi-n-power-totally-(\alpha , \beta )-normal operator but not totally-n-power-
(\alpha , \beta )-normal operator, then \scrL m is not invertible. It is possible to find scalars a and
b \not = 0 such that \scrT = a+ b\scrL is invertible m-quasi-n-power-totally-(\alpha , \beta )-normal operator.
Therefore \scrT is totally-n-power-(\alpha , \beta )-normal operators.

\scrT = a+ b\scrL \Rightarrow \scrL =
1

b
(\scrT  - a).

Therefore \scrL is also totally-n-power-(\alpha , \beta )-normal. \square 

Proposition 2.13. Let \scrL be an m-quasi-n-power-totally-(\alpha , \beta )-normal operator. If a, b
are non-zero eigenvalues of \scrL such that a \not = b, then ker (\scrL  - a)\bot ker (\scrL  - b).

Proof. Let x \in ker(\scrL  - a) and y \in ker(\scrL  - b). Then \scrL x = ax and \scrL y = by. Therefore
a < x, y >= b < x, y >, and so (a - b) < x, y >= 0. Hence ker (\scrL  - a)\bot ker (\scrL  - b). \square 

Theorem 2.14. The set \{ \scrL \in B(H ) : \alpha 2\scrL \ast m\scrL \ast \scrL n\scrL m \leq \scrL \ast m\scrL n\scrL \ast \scrL m \leq \beta 2\scrL \ast m\scrL \ast \scrL n\scrL m

and (0 \leq \alpha \leq 1 \leq \beta )\} is arcwise connected for m,n \in \BbbN .

Proof. It is enough to prove that \zeta \scrL is m-quasi-n-power-(\alpha , \beta )-normal operator for every
non zero complex number \zeta . Now for x \in H ,\bigl\langle 

\alpha 2(\zeta \scrL )\ast m(\zeta \scrL )\ast (\zeta \scrL )n(\zeta \scrL )mx, x,
\bigr\rangle 
\leq \langle (\zeta \scrL )\ast m(\zeta \scrL )n(\zeta \scrL )\ast (\zeta \scrL )mx, x\rangle 

\leq 
\bigl\langle 
\beta 2(\zeta \scrL )\ast m(\zeta \scrL )\ast (\zeta \scrL )n(\zeta \scrL )mx, x

\bigr\rangle 
.
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Hence

| \zeta | 2m\zeta \zeta n
\bigl\langle 
\alpha 2\scrL \ast m\scrL \ast \scrL n\scrL mx, x,

\bigr\rangle 
\leq | \zeta | 2m\zeta n\zeta \langle \scrL \ast m\scrL n\scrL \ast \scrL mx, x\rangle 

\leq | \zeta | 2m\zeta \zeta n
\bigl\langle 
\beta 2\scrL \ast m\scrL \ast \scrL n\scrL mx, x

\bigr\rangle 
.

Therefore \alpha 2\scrL \ast m\scrL \ast \scrL n\scrL m \leq \scrL \ast m\scrL n\scrL \ast \scrL m \leq \beta 2\scrL \ast m\scrL \ast \scrL n\scrL m.
This implies that the class of m-quasi-n-power-(\alpha , \beta )-normal operator is arcwise connected.

\square 

Theorem 2.15. Let \scrL be an m-quasi-n-power-totally-(\alpha , \beta )-normal operator. If k is a
complex number, then ker (\scrL  - k) \subseteq ker (\scrL \ast m(\scrL  - k)n(\scrL  - k)\ast \scrL m) for each k \not = 0.

Proof. Suppose \scrL x = kx. Since \scrL is m-quasi-n-power-totally-(\alpha , \beta )-normal,\bigl\langle 
\alpha 2\scrL \ast m(\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL mx, x,

\bigr\rangle 
\leq \langle \scrL \ast m(\scrL  - \lambda )n(\scrL  - \lambda )\ast \scrL mx, x\rangle 

\leq 
\bigl\langle 
\beta 2\scrL \ast m(\scrL  - \lambda )\ast (\scrL  - \lambda )n\scrL mx, x

\bigr\rangle 
for all x \in H and for all \lambda \in \BbbC . In particular,\bigl\langle 

\alpha 2\scrL \ast m(\scrL  - k)\ast (\scrL  - k)n\scrL mx, x,
\bigr\rangle 
\leq \langle \scrL \ast m(\scrL  - k)n(\scrL  - k)\ast \scrL mx, x\rangle 

\leq 
\bigl\langle 
\beta 2\scrL \ast m(\scrL  - k)\ast (\scrL  - k)n\scrL mx, x

\bigr\rangle 
.

This clearly forces x \in ker (\scrL \ast m(\scrL  - k)n(\scrL  - k)\ast \scrL m).
\square 

Theorem 2.16. Let \scrL \in B(H ) and \scrN \in B(H ) be an invertible operator such that
\scrN \ast \scrN commutes with \scrL . Then \scrL is m-quasi-totally-n-power-(\alpha , \beta )-normal operator if and
only if \scrN \scrL \scrN  - 1 is m-quasi-n-power-totally-(\alpha , \beta )-normal operator.

Proof. Assume that \scrL is m-quasi-n-power-totally-(\alpha , \beta )-normal operator.
Consider,

\alpha 2((\scrN \scrL \scrN  - 1)m)\ast (\scrN \scrL \scrN  - 1  - \lambda )\ast (\scrN \scrL \scrN  - 1  - \lambda )n((\scrN \scrL \scrN  - 1)m)

\leq ((\scrN \scrL \scrN  - 1)m)\ast (\scrN \scrL \scrN  - 1  - \lambda )n(\scrN \scrL \scrN  - 1  - \lambda )\ast ((\scrN \scrL \scrN  - 1)m)

\leq \beta 2((\scrN \scrL \scrN  - 1)m)\ast (\scrN \scrL \scrN  - 1  - \lambda )\ast (\scrN \scrL \scrN  - 1  - \lambda )n((\scrN \scrL \scrN  - 1)m).

We have

\alpha 2(\scrN  - 1)\ast (\scrL m)\ast \scrN \ast ((\scrN  - 1)\ast (\scrL  - \lambda )\ast \scrN \ast )(\scrN (\scrL  - \lambda )n\scrN  - 1)\scrN (\scrL m)\scrN  - 1

\leq (\scrN  - 1)\ast (\scrL m)\ast \scrN \ast (\scrN (\scrL  - \lambda )n\scrN  - 1)((\scrN  - 1)\ast (\scrL  - \lambda )\ast \scrN \ast )\scrN (\scrL m)\scrN  - 1

\leq \beta 2(\scrN  - 1)\ast (\scrL m)\ast \scrN \ast ((\scrN  - 1)\ast (\scrL  - \lambda )\ast \scrN \ast )(\scrN (\scrL  - \lambda )n\scrN  - 1)\scrN (\scrL m)\scrN  - 1.

It follows that

\alpha 2(\scrN  - 1)\ast (\scrL m)\ast (\scrL  - \lambda )\ast \scrN \ast \scrN (\scrL  - \lambda )n(\scrL m)\scrN  - 1

\leq (\scrN  - 1)\ast (\scrL m)\ast (\scrL  - \lambda )n\scrN \ast \scrN \scrN  - 1(\scrN  - 1)\ast (\scrL  - \lambda )\ast \scrN \ast \scrN (\scrL m)\scrN  - 1

\leq \beta 2(\scrN  - 1)\ast (\scrL m)\ast (\scrL  - \lambda )\ast \scrN \ast \scrN (\scrL  - \lambda )n(\scrL m)\scrN  - 1.

Hence,

\alpha 2\scrN (\scrL m)\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n(\scrL m)\scrN  - 1

\leq \scrN (\scrL m)\ast (\scrL  - \lambda )n(\scrL  - \lambda )\ast (\scrL m)\scrN  - 1

\leq \beta 2\scrN (\scrL m)\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n(\scrL m)\scrN  - 1.
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We have
\scrN 
\biggl( 
\alpha 2(\scrL m)\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n(\scrL m) \leq (\scrL m)\ast (\scrL  - \lambda )n(\scrL  - \lambda )\ast (\scrL m)

\leq \beta 2(\scrL m)\ast (\scrL  - \lambda )\ast (\scrL  - \lambda )n(\scrL m)

\biggr) 
\scrN  - 1.

Therefore, \scrN \scrL \scrN  - 1 is m-quasi-n-power-totally-(\alpha , \beta )-normal operator.
Conversely, assume that \scrN \scrL \scrN  - 1 is m-quasi-n-power-totaly-(\alpha , \beta )-normal.
Set \scrT = \scrN \scrL \scrN  - 1. We observe that \scrT commutes with (\scrN  - 1)\ast \scrN  - 1 and \scrN  - 1\scrT \scrN = \scrL . By
taking into account the preceding part of the theorem, we have \scrN  - 1\scrT \scrN is m-quasi-n-
power-totaly-(\alpha , \beta )-normal. \square 

For \scrT ,\scrL \in B(H ) the operator \Gamma \scrT ,\scrL defined as \Gamma \scrT ,\scrL : \scrC 2(H ) such that X \rightarrow \scrT X\scrL \in 
\scrC 2(H ) has been studied in [7].

The following results extends A. Bachir[5, Theorem 9]

Theorem 2.17. If \scrT \in B(H ) is m-quasi-n-power-(\alpha , \beta )-normal operator and \scrL is
normal, then \Gamma \scrT ,\scrL is m-quasi-n-power-(\alpha , \beta )-normal operator.

Proof. Here,
\Gamma \scrT ,\scrL (X) = \scrT X\scrL ,
\Gamma \ast 
\scrT ,\scrL (X) = \scrT \ast X\scrL \ast ,

\Gamma m
\scrT ,\scrL (X) = \scrT mX\scrL m,

\Gamma m\ast 
\scrT ,\scrL (X) = \scrT m\ast X\scrL m\ast 

First we have,\bigl( 
\Gamma m\ast 
\scrT ,\scrL \Gamma 

n
\scrT ,\scrL \Gamma 

\ast 
\scrT ,\scrL \Gamma 

m
\scrT ,\scrL  - \alpha 2\Gamma m\ast 

\scrT ,\scrL \Gamma 
\ast 
\scrT ,\scrL \Gamma 

n
\scrT ,\scrL \Gamma 

m
\scrT ,\scrL 
\bigr) 
(X)

= \scrT m\ast \scrT n\scrT \ast \scrT mX\scrL m\scrL \ast \scrL n\scrL m\ast  - \alpha 2\scrT m\ast \scrT \ast \scrT n\scrT mX\scrL m\scrL n\scrL \ast \scrL m\ast 

= \scrT m\ast \scrT n\scrT \ast \scrT mX\scrL m\scrL \ast \scrL n\scrL m\ast  - \alpha 2\scrT m\ast \scrT \ast \scrT n\scrT mX\scrL m\scrL \ast \scrL n\scrL m\ast 

+\alpha 2\scrT m\ast \scrT \ast \scrT n\scrT mX\scrL m\scrL \ast \scrL n\scrL m\ast  - \alpha 2\scrT m\ast \scrT \ast \scrT n\scrT mX\scrL m\scrL n\scrL \ast \scrL m\ast 

=
\bigl( 
\scrT m\ast \scrT n\scrT \ast \scrT m  - \alpha 2\scrT m\ast \scrT \ast \scrT n\scrT m

\bigr) 
X\scrL m\scrL \ast \scrL n\scrL m\ast 

+\alpha 2\scrT m\ast \scrT \ast \scrT n\scrT mX (\scrL m\scrL \ast \scrL n\scrL m\ast  - \scrL m\scrL n\scrL \ast \scrL m\ast )

=
\bigl( 
\scrT m\ast \scrT n\scrT \ast \scrT m  - \alpha 2\scrT m\ast \scrT \ast \scrT n\scrT m

\bigr) 
X\scrL m\scrL \ast \scrL n\scrL m\ast 

\geq 0.

Secondly,\bigl( 
\beta 2\Gamma m\ast 

\scrT ,\scrL \Gamma 
\ast 
\scrT ,\scrL \Gamma 

n
\scrT ,\scrL \Gamma 

m
\scrT ,\scrL  - \Gamma m\ast 

\scrT ,\scrL \Gamma 
n
\scrT ,\scrL \Gamma 

\ast 
\scrT ,\scrL \Gamma 

m
\scrT ,\scrL 
\bigr) 
(X)

= \beta 2\scrT m\ast \scrT \ast \scrT n\scrT mX\scrL m\scrL n\scrL \ast \scrL m\ast  - \scrT m\ast \scrT n\scrT \ast \scrT mX\scrL m\scrL \ast \scrL n\scrL m\ast 

= \beta 2\scrT m\ast \scrT \ast \scrT n\scrT mX\scrL m\scrL n\scrL \ast \scrL m\ast  - \scrT m\ast \scrT n\scrT \ast \scrT mX\scrL m\scrL n\scrL \ast \scrL m

+\scrT m\ast \scrT n\scrT \ast \scrT mX\scrL m\scrL n\scrL \ast \scrL m  - \scrT m\ast \scrT n\scrT \ast \scrT mX\scrL m\ast \scrL \ast \scrL n\scrL m

=
\bigl( 
\beta 2\scrT m\ast \scrT \ast \scrT n\scrT m  - \scrT m\scrT n\scrT \ast \scrT m\ast \bigr) X\scrL m\ast \scrL n\scrL \ast \scrL m

+\scrT m\ast \scrT n\scrT \ast \scrT mX (\scrL m\ast \scrL n\scrL \ast \scrL m  - \scrL m\ast \scrL \ast \scrL n\scrL m)

=
\bigl( 
\beta 2\scrT m\ast \scrT \ast \scrT n\scrT m  - \scrT m\scrT n\scrT \ast \scrT m\ast \bigr) X\scrL m\ast \scrL n\scrL \ast \scrL m

\geq 0.

Hence \Gamma \scrT ,\scrL is m-quasi-n-power-(\alpha , \beta )-normal operator. \square 
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Theorem 2.18. If \scrL m-quasi-n-power-(\alpha , \beta )-normal operator and if \scrT is unitary equiv-
alent to \scrL , then \scrT is m-quasi-n-power-(\alpha , \beta )-normal operator for natural numbers m and
n.

Proof. Let \scrT be an operator unitary equivalent to \scrL . Then \scrT = \scrU \ast \scrL \scrU for some unitary
operator \scrU . Therefore for every x \in H

\alpha 2
\bigl\langle 
\scrT m\ast \scrT \ast \scrT n\scrT mx, x

\bigr\rangle 
=

\bigl\langle 
(\scrU \ast \scrL \scrU )m\ast (\scrU \ast \scrL \scrU )\ast (\scrU \ast \scrL \scrU )n(\scrU \ast \scrL \scrU )mx, x

\bigr\rangle 
= \alpha 2

\bigl\langle 
(\scrU \ast \scrL m\ast \scrU )(\scrU \ast \scrL \ast \scrU )(\scrU \ast \scrL n\scrU )(\scrU \ast \scrL m\scrU )x, x

\bigr\rangle 
= \alpha 2

\bigl\langle 
(\scrU \ast \scrL m\ast \scrU )(\scrU \ast \scrL \ast \scrU )(\scrU \ast \scrL n\scrU )(\scrU \ast \scrL m\scrU )x, x

\bigr\rangle 
= \alpha 2

\bigl\langle \bigl( 
\scrU \ast \scrL m\ast \scrL \ast \scrL n\scrL m\scrU 

\bigr) 
x, x

\bigr\rangle 
= \alpha 2

\bigl\langle \bigl( 
\scrL m\ast \scrL \ast \scrL n\scrL m

\bigr) 
\scrU x,\scrU x

\bigr\rangle 
\leq 

\bigl\langle \bigl( 
\scrL m\ast \scrL n\scrL \ast \scrL m

\bigr) 
\scrU x,\scrU x

\bigr\rangle 
=

\bigl\langle 
\scrT m\ast \scrT n\scrT \ast \scrT mx, x

\bigr\rangle 
=

\bigl\langle \bigl( 
\scrL m\ast \scrL n\scrL \ast \scrL m

\bigr) 
\scrU x,\scrU x

\bigr\rangle 
\leq \beta 2

\bigl\langle \bigl( 
\scrL m\ast \scrL \ast \scrL n\scrL m

\bigr) 
\scrU x,\scrU x

\bigr\rangle 
= \beta 2

\bigl\langle 
\scrT m\ast \scrT \ast \scrT n\scrT mx, x

\bigr\rangle 
.

Hence \scrT is m-quasi-n-power-(\alpha , \beta )-normal operator for natural numbers m and n. \square 

In the next result, we study the necessary and sufficient condition to the weighted shift
operator to be m-quasi-n-power-(\alpha , \beta )-normal operator.

Theorem 2.19. Let \scrL be a weighted shift operator with nonzero weights \{ zk)\infty k=0. Then
\scrL is m-quasi-n-power-(\alpha , \beta )-normal operator if and only if

\alpha 2
\bigl( 
zk \cdot \cdot \cdot | zk+m+n - 1| 2zk+m+n - 2 \cdot \cdot \cdot zk+n - 1

\bigr) 
\leq 
\bigl( 
zk \cdot \cdot \cdot | zk+m - 1| 2zk+m - 1 \cdot \cdot \cdot | zk+m+n - 2| 2 \cdot \cdot \cdot zk+n - 1

\bigr) 
\leq \beta 2

\bigl( 
zk \cdot \cdot \cdot | zk+m+n - 1| 2zk+m+n - 2 \cdot \cdot \cdot zk+n - 1

\bigr) 
.

Proof. Let \{ ek)\infty k=0 be an orthogonal basis of Hilbert space H . Then
\scrL (ek) = zkek+1,
\scrL \ast (ek) = zk - 1ek - 1,
\scrL m(ek) = zk \cdot \cdot \cdot zk+m - 1ek+m,
\scrL m\ast (ek) = zk - 1 \cdot \cdot \cdot zk - mek - m.

\scrL m\ast \scrL \ast \scrL n\scrL m(ek) =
\bigl( 
zk \cdot \cdot \cdot | zk+m+n - 1| 2zk+m+n - 2 \cdot \cdot \cdot zk+n - 1

\bigr) 
ek+n - 1,

\scrL m\ast \scrL n\scrL \ast \scrL m(ek) =
\bigl( 
zk \cdot \cdot \cdot | zk+m - 1| 2zk+m - 1 \cdot \cdot \cdot | zk+m+n - 2| 2 \cdot \cdot \cdot zk+n - 1

\bigr) 
ek+n - 1.

Thus

\alpha 2
\bigl( 
zk \cdot \cdot \cdot | zk+m+n - 1| 2zk+m+n - 2 \cdot \cdot \cdot zk+n - 1

\bigr) 
ek+n - 1

\leq 
\bigl( 
zk \cdot \cdot \cdot | zk+m - 1| 2zk+m - 1 \cdot \cdot \cdot | zk+m+n - 2| 2 \cdot \cdot \cdot zk+n - 1

\bigr) 
ek+n - 1

\leq \beta 2
\bigl( 
zk \cdot \cdot \cdot | zk+m+n - 1| 2zk+m+n - 2 \cdot \cdot \cdot zk+n - 1

\bigr) 
ek+n - 1.

\square 
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