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MATRICES INDUCED BY SCALED HYPERCOMPLEX NUMBERS
OVER THE REAL FIELD \BbbR 

DANIEL ALPAY AND ILWOO CHO

Abstract. In this paper, we construct, and study a certain type of definite, or indef-
inite inner product spaces over the real field \BbbR , induced by the scaled hypercomplex
numbers \BbbH t for a fixed scale t \in \BbbR , and some bounded operators acting on such vector
spaces. In particular, we are interested in the vector spaces \BbbH N

t consisting of all
N-tuples of scaled hypercomplex numbers of \BbbH t, and the (N \times N)-matrices acting
on \BbbH N

t whose entries are from \BbbH t, i.e., \BbbH t-matrices, for all N \in \BbbN . For an arbitrarily
fixed N \in \BbbN , we define \BbbH N

t as a subspace of a certain functional vector space \bfH t:2

equipped with a well-defined definite (if t < 0), or indefinite (if t \geq 0) inner product
introduced in [6, 7, 8]. So, one can check immediately that our subspace \BbbH N

t becomes
a restricted definite, or indefinite inner product Banach space. Operator-theoretic,
operator-algebraic and free-probabilistic properties of \BbbH t-matrices are considered and
characterized on \BbbH N

t .
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1. Introduction

For a fixed scale t \in \BbbR , a t-scaled hypercomplex number is a pair (a, b) \in \BbbC 2 of complex
numbers a, b \in \BbbC , contained in a noncommutative ring,

\BbbH t
denote
=

\bigl( 
\BbbC 2, +, \cdot t

\bigr) 
,

with the identity (0, 0) and the unity (1, 0), where (+) the usual vector addition on \BbbC 2,
and (\cdot t) is the t-scaled vector multiplication,

(a1, b1) \cdot t (a2, b2) =
\bigl( 
a1a2 + tb1b2, a1b2 + b1a2

\bigr) 
, (1.1)

for all (al, bl) \in \BbbC 2, for l = 1, 2, where z are the conjugates of z \in \BbbC (see [1, 2, 3, 4]). By
the canonical representation

\bigl( 
\BbbC 2, \pi t

\bigr) 
of \BbbH t of [1], every hypercomplex number (a, b) \in \BbbH t
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is realized to be a (2\times 2)-matrix,

\pi t ((a, b))
denote
= [(a, b)]t

def
=

\biggl( 
a tb

b a

\biggr) 
\mathrm{i}\mathrm{n}M2 (\BbbC ) ,

whereM2 (\BbbC ) is the matrix algebra acting on \BbbC 2. The definition of \{ \BbbH t\} t\in \BbbR is motivated by
the well-known quaternions (e.g., [10, 11, 14, 17, 20, 21, 23, 26]), and the split-quaternions
(e.g., [9, 14, 19]). Indeed, \BbbH  - 1 is the noncommutative field \BbbH of all quaternions, and \BbbH 1 is
the noncommutative unital ring of all split-quaternions (e.g., [1, 2, 3]). Algebra, analysis,
and certain free-probabilistic models on \{ \BbbH t\} t\in \BbbR are studied in [1, 2, 3, 4, 8]. In particular,
analysis and operator theory on \{ \BbbH t\} t\in \BbbR is considered by defining symmetric bilinear
forms \{ \langle , \rangle t\} t\in \BbbR on \{ \BbbH t\} t\in \BbbR in [3]. In such a case, the pairs \{ (\BbbH t, \langle , \rangle t)\} t<0

form Hilbert
spaces over \BbbR (in short, \BbbR -Hilbert spaces), meanwhile, the pairs \{ (\BbbH t, \langle , \rangle t)\} t\geq 0

become
indefinite semi-inner product spaces over \BbbR (in short, \BbbR -ISIPSs), under the semi-norms,

\| (a, b)\| t =
\sqrt{} 
| a| 2 + | t| | b| 2, \forall (a, b) \in \BbbH t, \forall t \in \BbbR ,

where | a| , | b| are the moduli on \BbbC , and | t| is the absolute value on \BbbR . Also, it is shown
that \BbbH t is (isomorphic to) a complete semi-normed \BbbR -\ast -algebra,

\scrM t = \{ mh \in B\BbbR (\BbbH t) : h \in \BbbH t\} ,
over \BbbR , operator-algebraically. (e.g., see [3, 4]). Especially, all elements of \scrM t are
adjointable over \BbbR (in short, \BbbR -adjointable) with the adjoint m\circledast 

h
\mathrm{d}\mathrm{e}\mathrm{f}
= mh\circledast \in \scrM t, for all

h \in \BbbH t, where (\circledast ) is the hypercomplex-conjugate on \BbbH t,

(a, b)
\circledast \mathrm{d}\mathrm{e}\mathrm{f}

= (a, - b) , \forall (a, b) \in \BbbH t.

(Remark that, in [1, 2, 3, 4], we denoted h\circledast by h\dagger .)
Meanwhile, different from [1, 2, 3, 4], we introduced-and-studied a new \BbbR -adjoint,

denoted by [\ast ], on the t-scaled hypercomplexes \BbbH t,

(a, b)
[\ast ] \mathrm{d}\mathrm{e}\mathrm{f}

=
\bigl( 
a, b
\bigr) 
, \forall (a, b) \in \BbbH t,

in [6]. Under this new \BbbR -adjoint [\ast ], our t-scaled hypercomplexes \BbbH t becomes a Pontryagin
space over \BbbR , for all “non-zero” scales t \in \BbbR \setminus \{ 0\} , different from the case where we have
the \BbbR -adjoint (\circledast ), the hypercomplex-conjugate. On such a Pontryagin space \BbbH t, we
constructed a Hardy-like vector space \bfH t:2 [[q]] in \BbbH t whose vectors are functions acting
on the open unit ball \BbbU t of \BbbH t, and defined-and-considered block-Toeplitz-like operators
acting on \bfH t:2 [[q]]. The general constructions and approaches of [5] motivate those of [6].

The similar version of [6] up to the \BbbR -adjoint (\circledast ) is considered in [7]. Readers can
realize that the constructions and approaches of [7] are similar to those of [6], but the
structures we handled therein are “not” equivalent at all. i.e., the main results of [7] and
those of [6] provide non-equivalent analyses and operator theories. In this paper, we follow
the settings of [7], because the \BbbR -adjoint (\circledast ) gives a natural (Clifford-algebra-theoretic)
extension from the initial inclusion \BbbR \subset \BbbC , compared with the \BbbR -adjoint [\ast ] of [6]. However,
it is true that the \BbbR -adjoint [\ast ] gives interesting unified (Krein-space-)operator-theoretic
backgrounds on the vector spaces over \BbbR (in short, \BbbR -vector spaces) induced by \BbbH t. In
this paper, we focus on (\circledast )-depending structures.

In Section 2, we review definitions and basic results of scaled hypercomplex numbers.
And then, in Section 3, we re-considered the Hardy-like \BbbR -vector space \bfH t:2 [[q]], called
the \BbbH t-Hardy space, introduced in [7] (which is not equivalent to that of [6]) to understand
our analytic structures of this paper. Note that, just like in, but different from, the usual
operator theory, our \BbbH t-Hardy space forms a complete semi-normed, definite or indefinite
semi-inner-product space over \BbbR . If t \not = 0, then it is a complete normed, definite, or
indefinite inner-product space over \BbbR .



MATRICES INDUCED BY SCALED HYPERCOMPLEX NUMBERS... 263

In Section 4, we define and study finite-dimensional \BbbR -vector space \BbbH N
t “over \BbbH t,” as \BbbR -

vector subspaces of \bfH t:2 [[q]], equipped with an inherited definite, or indefinite semi-inner
product, and a restricted complete semi-norm, for N \in \BbbN . In Section 5, some operators
acting on \BbbH N

t are introduced and considered. Especially, matrices with \BbbH t-entries acting
on \BbbH N

t are studied, as “\BbbR -linear” transformations.
In Section 6, as in classical free probability theory (over \BbbC ), we define and study certain

statistical-analytic structures acting on \BbbH N
t over \BbbR .

In Section 7, a representation
\bigl( 
\BbbC 2N ,\Pi t

\bigr) 
of \BbbH t-matrices of Section 6 is introduced. Our

matrices of Section 6 are realized as (2N \times 2N)-matrices over the complex field \BbbC , acting
on \BbbC 2N as \BbbR -linear transformations. As application, in Section 8, invariant subspaces
(as a \BbbR -vector space) of our \BbbH t-matrices in \BbbH N

t are constructed, similar to, but different
from, the usual spectral theory (over \BbbC ).

2. Scaled Hypercomplex Numbers

Let t \in \BbbR be an arbitrary scale, and let

\BbbH t = \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\BbbR \{ 1, i, jt, kt\} (2.1)

be the \BbbR -vector space spanned by \{ 1, i, jt, kt\} , where i =
\surd 
 - 1 in \BbbC , and jt and kt are

additional t-depending imaginary numbers satisfying the relation:

i2 =  - 1, j2t = t = k2t ,

ijt = kt, jtkt =  - ti, kti = jt,

and (2.2)

ikt =  - jt, ktjt = ti, jti =  - kt.
Then this \BbbR -vector space \BbbH t of (2.1) is well-defined under the relation (2.2) on its \BbbR -basis
elements \{ 1, i, jt, kt\} . i.e., every element h \in \BbbH t is expressed by

h = x+ yi+ ujt + vkt, \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} x, y, u, v \in \BbbR .

Note that, by the relation (2.2), the vector-multiplication on this \BbbR -vector space \BbbH t is
well-defined to be

h1h2 = (x1x2  - y1y2 + tu1u2 + tv1v2) + (x1y2 + y1x2  - tu1v2 + tv1u2) i

(x1u2  - y1v2 + u1x2 + v1y2) jt + (x1v2 + y1u2  - u1y2 + v1x2) kt,
(2.3)

for all hl = xl + yli + uljt + vlkt \in \BbbH t for all l = 1, 2, by (2.2). Remark that, up to
the representation of [1, 2], this vector-multiplication (2.3) is equivalent to the t-scaled
multiplication (\cdot t) of (1.1) on \BbbH t (e.g., see [3, 4]).

By the well-defined vector multiplication (2.3) on \BbbH t, this \BbbR -vector space \BbbH t forms an
algebra over \BbbR (in short, a \BbbR -algebra) (e.g., [1, 2, 3, 4]). On this \BbbR -algebra \BbbH t, one can
define a unary operation \circledast : \BbbH t \rightarrow \BbbH t by

(x+ yi+ ujt + vkt)
\circledast 
= x - yi - ujt  - vkt. (2.4)

Then this satisfies that
h\circledast \circledast = h, \mathrm{a}\mathrm{n}\mathrm{d} (rh)

\circledast 
= rh\circledast ,

for all h \in \BbbH t, and r \in \BbbR , and

(h1 + h2)
\circledast 
= h\circledast 1 + h\circledast 2 , \mathrm{a}\mathrm{n}\mathrm{d} (h1h2)

\circledast 
= h\circledast 2 h

\circledast 
1 ,

for all h1, h2 \in \BbbH t. i.e., this operation (\circledast ) of (2.4) becomes an adjoint (or, an involution)
on \BbbH t over \BbbR (in short, a \BbbR -adjoint on \BbbH t). It says that the \BbbR -algebra \BbbH t forms a
\ast -algebra over \BbbR (in short, \BbbR -\ast -algebra) equipped with its \BbbR -adjoint (\circledast ) of (2.4) (e.g.,
see [1, 2, 3, 4, 8]) for details).
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Definition 2.1. The \BbbR -\ast -algebra \BbbH t of (2.1) equipped with its \BbbR -adjoint (\circledast ) of (2.4) is
called the t-scaled hypercomplexes for a scale t \in \BbbR . All elements of \BbbH t are called t-scaled
hypercomplex numbers.

Note that, each t-scaled hypercomplex number h = x+yi+ujt+vkt \in \BbbH t is understood
to be

h = (x+ yi) + (u+ vi) jt \mathrm{i}\mathrm{n} \BbbH t,

by (2.2). If x + yi and u + vi are denoted by a respectively b in \BbbC , then this t-scaled
hypercomplex number h is expressed to be a+ bjt in \BbbH t. i.e.,

\BbbH t = \{ a+ bjt : a, b \in \BbbC \} .
Then one can define an injection \pi t : \BbbH t \rightarrow M2 (\BbbC ) by

\pi t (a+ bjt) =

\biggl( 
a tb

b a

\biggr) 
\in M2 (\BbbC ) , \forall a+ bjt \in \BbbH t, (2.5)

where z are the conjugate of z \in \BbbC . Then the pair
\bigl( 
\BbbC 2, \pi t

\bigr) 
forms a representation of \BbbH t,

satisfying
\pi t (h1 + h2) = \pi t (h1) + \pi t (h2) ,

and
\pi t (h1h2) = \pi t (h1)\pi t (h2) , \forall h1, h2 \in \BbbH t,

by (2.5), where the right-hand sides are the matrix addition, respectively, the matrix
multiplication on M2 (\BbbC ). i.e., \BbbH t has its realization,

\scrH t
2

def
= \pi t (\BbbH t) = \{ \pi t (h) : h \in \BbbH t\} , (2.6)

in M2 (\BbbC ). By (2.6), one can restrict the normalized trace \tau = 1
2 tr on M2 (\BbbC ) to that on

\scrH t
2, i.e.,

\tau ([h]t)
\mathrm{d}\mathrm{e}\mathrm{f}
= 1

2 tr

\biggl( \biggl( 
a tb

b a

\biggr) \biggr) 
= a+a

2 = R (a) , (2.7)

by (2.6), where R (a) is the real part of a complex number a in \BbbC . However, note here
that \tau | \scrH t

2
is on \scrH t

2 “over \BbbR ,” meanwhile \tau is on M2 (\BbbC ) “over \BbbC .” So, this morphism \tau of
(2.7) is a well-defined trace on the t-scaled realization \scrH t

2 of (2.5) “over \BbbR ,” satisfying

\tau (T1T2) = \tau (T2T1) , \forall T1, T2 \in \scrH t
2.

By (2.6) and (2.7), we define the \BbbR -trace, also denoted by \tau , directly on \BbbH t, by

\tau (h) = \mathrm{R}\mathrm{e} (h) , \forall h \in \BbbH t,

where \mathrm{R}\mathrm{e} (\bullet ) is the real part,

\mathrm{R}\mathrm{e} (x+ yi+ ujt + vkt) = x,

and \mathrm{I}\mathrm{m} (\bullet ) is the imaginary part, (2.8)

\mathrm{I}\mathrm{m} (x+ yi+ ujt + vkt) = yi+ ujt + vkt,

on \BbbH t, for all x, y, u, v \in \BbbR . So, by (2.7) and (2.8), one can define a bilinear form,

[, ]t : \BbbH t \times \BbbH t  - \rightarrow \BbbR ,
by (2.9)

[h1, h2]t
\mathrm{d}\mathrm{e}\mathrm{f}
= \tau 

\bigl( 
h1h

\circledast 
2

\bigr) 
= \mathrm{R}\mathrm{e}

\bigl( 
h1h

\circledast 
2

\bigr) 
.

Then this bilinear form (2.9) satisfies that:

[h, h]t \geq 0, \forall h \in \BbbH t, \mathrm{i}\mathrm{f} t < 0,

[h, h]t \in \BbbR , \forall h \in \BbbH t, \mathrm{i}\mathrm{f} t \geq 0,
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[h1, h2]t = [h2, h1]t , \forall h1, h2 \in \BbbH t, \forall t \in \BbbR 
and (2.10)

[h, h]t = 0 \Leftarrow \Rightarrow | a| 2 = t | b| 2 , \mathrm{i}\mathrm{f} h = a+ bjt \in \BbbH t, a, b \in \BbbC ,

for all t \in \BbbR , where | .| is the modulus on \BbbC . Thus, if t < 0, then it forms a \BbbR -inner
product on \BbbH t, meanwhile, if t \geq 0, then it forms an \BbbR -indefinite semi-inner product on
\BbbH t (e.g., see [3, 4, 8] for details). More precisely,

[h, q]t = 0, \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{a}\mathrm{l}\mathrm{l} q \in \BbbH t =\Rightarrow h = 0 \in \BbbH t, \forall t \in \BbbR \setminus \{ 0\} ,

which says that [, ]t is non-degenerated on \BbbH t, for all t \in \BbbR \setminus \{ 0\} . Meanwhile, if t = 0,
then

[h, q]0 = 0, \forall q \in \BbbH 0 =\Rightarrow h = 0 + 0i+ uj0 + vk0 \in \BbbH 0, (2.11)

for any u, v \in \BbbR , which implies that [, ]0 is “not” non-degenerated on \BbbH 0.

Proposition 2.2. Let \BbbH t be the t-scaled hypercomplexes, and [, ]t, the bilinear form (2.9)
on \BbbH t, for all t \in \BbbR . Then
(1) If t < 0, then (\BbbH t, [, ]t) is a \BbbR -inner product space.
(2) If t > 0, then (\BbbH t, [, ]t) is a \BbbR -indefinite inner product space.
(3) If t = 0, then (\BbbH 0, [, ]0) is a \BbbR -indefinite semi-inner product space in the sense of
[3, 4, 6, 8]. More precisely, the form [, ]0 is a positive semidefinite and degenerated.

Proof. The proof is done by (2.10) and (2.11). \square 

By the above proposition, for any scale t \in \BbbR , the pair (\BbbH t, [, ]t) becomes a definite, or
indefinite semi-inner-product \BbbR -vector space in general. Thus, one can define a function,

\| .\| t : \BbbH t  - \rightarrow \BbbR ,

by (2.12)

\| a+ bjt\| t =
\sqrt{} 
| a| 2 + | t| | b| 2, \forall a+ bjt \in \BbbH t,

where a, b \in \BbbC , and | .| in (2.12) is the absolute value on \BbbR .

Proposition 2.3. Let \BbbH t be the t-scaled hypercomplexes, and \| .\| t, the function (2.12),
for all t \in \BbbR . Then
(1) If t < 0, then (\BbbH t, \| .\| t) is a \BbbR -Hilbert space.
(2) If t > 0, then (\BbbH t, \| .\| t) is a \BbbR -Pontryagin space (i.e., \BbbR -Krein space with the finite-
dimensional anti-Hilbert space).
(3) If t = 0, then (\BbbH 0, \| .\| 0) is a complete \BbbR -semi-normed space, where the completeness
means that all Cauchy sequences are convergent in \BbbH 0.

Proof. See [8] for details. \square 

Let \BbbH t be the t-scaled hypercomplexes as a \BbbR -\ast -algebra with its \BbbR -adjoint (\circledast ). Then
this algebra \BbbH t acts on the \BbbR -vector space (\BbbH t, [, ]t) = (\BbbH t, \| .\| t) via an action \bfm ,

\bfm : h \in \BbbH t \mapsto  - \rightarrow \bfm h \in B\BbbR (\BbbH t) ,

defined by (2.13)

\bfm h (q)
\mathrm{d}\mathrm{e}\mathrm{f}
= hq \in \BbbH t, \forall q \in \BbbH t, \forall h \in \BbbH t,

where B\BbbR (Y ) means the operator algebra of all “bounded” \BbbR -linear operators on a
semi-normed \BbbR -vector space Y = (Y, \| .\| Y ) with its operator semi-norm,

\| T\| = \mathrm{s}\mathrm{u}\mathrm{p} \{ \| Ty\| Y : \| y\| Y = 1\} , \forall T \in B\BbbR (Y ) .
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It is not difficult to check that, in our case,

\| \bfm h (q)\| t = \| hq\| t \leq \| h\| t \| q\| t , \forall h, q \in \BbbH t,

implying that (2.14)

\| \bfm h\| = \| h\| t <\infty , \mathrm{i}\mathrm{n} B\BbbR (\BbbH t) , \forall h \in \BbbH t.

Also, it can be checked that

[\bfm h (h1) , h2]t = [hh1, h2]t =
\bigl[ 
h1, h

\circledast h2
\bigr] 
t
= [h1,\bfm h\circledast (h2)]t ,

for all h, h1, h2 \in \BbbH t.

Theorem 2.4. The t-scaled hypercomplexes \BbbH t forms a complete \BbbR -semi-normed \BbbR -\ast -
algebra equipped with its \BbbR -adjoint (\circledast ) of (2.4).

Proof. If we define a subset \sansM of B\BbbR (\BbbH t) by

\sansM 
\mathrm{d}\mathrm{e}\mathrm{f}
= \{ \bfm h : h \in \BbbH t\} ,

where \bfm is the action (2.13), then it forms a complete semi-normed \BbbR -\ast -subalgebra of
B\BbbR (\BbbH t). It is easy to check that \BbbH t and \sansM are isometrically isomorphic by (2.13) and
(2.14). Indeed, there exists an isometric \ast -isomorphism,

h \in \BbbH t \mapsto  - \rightarrow mh \in \sansM .

\square 

3. The \BbbH t-Hardy Space \bfH t:2 [[q]]

In this section, we define the\BbbH t-Hardy space \bfH t:2 [[q]] in a \BbbH t-variable q = z + wjt,
with the \BbbC -variables z = x+ yi and w = u+ vi, where x, y, u, v are \BbbR -variables, for an
arbitrarily fixed scale t \in \BbbR . Since the t-scaled hypercomplexes \BbbH t is a \BbbR -semi-normed
\BbbR -\ast -algebra (and hence, it is a ring), one can construct the corresponding (pure-algebraic)
formal-series ring \BbbH t [[q]] (without considering topology),

\BbbH t [[q]]
\mathrm{d}\mathrm{e}\mathrm{f}
=

\biggl\{ \infty \sum 
n=0

qnhn : hn \in \BbbH t, \forall n \in \BbbN 0 = \BbbN \cup \{ 0\} 
\biggr\} 

, (3.1)

having the functional addition (+),

(f + g) (q)
\mathrm{d}\mathrm{e}\mathrm{f}
= f (q) + g (q) =

\infty \sum 
k=0

qn (fn + gn) ,

and the Cauchy product ( \star ),

(f  \star g) (q)
\mathrm{d}\mathrm{e}\mathrm{f}
=

\infty \sum 
n=0

qn

\left(  \sum 
n1,n2\in \BbbN 0,n1+n2=n

fn1gn2

\right)  ,

for all

f (q) =

\infty \sum 
n=0

qnfn, g (q) =

\infty \sum 
n=0

qngn \in \BbbH t [[q]] ,

equivalently,

(f  \star g) (q)
\mathrm{d}\mathrm{e}\mathrm{f}
=

\infty \sum 
n=0

qn (f (q) gn) , \forall f (q) \in \BbbH t [[q]] .

This formal-series ring \BbbH t [[q]] = (\BbbH t [[q]] ,+,  \star ) of (3.1) is well-defined as a \BbbR -algebra
pure-algebraically, because the \BbbR -scalar product,

r

\Biggl( \infty \sum 
n=0

qnfn

\Biggr) 
\mathrm{d}\mathrm{e}\mathrm{f}
=

\Biggl( 
q0r +

\infty \sum 
n=1

qn0

\Biggr) 
 \star 

\Biggl( \infty \sum 
n=0

qnfn

\Biggr) 
=

\infty \sum 
n=0

qn (rfn) ,
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is well-defined on \BbbH t [[q]], for all r \in \BbbR .

Proposition 3.1. The formal-series ring \BbbH t [[q]] of (3.1) forms a \BbbR -algebra.

Proof. By definition, the family \BbbH t [[q]] of (3.1) forms a ring having a well-defined \BbbR -scalar
product, introduced in the above paragraph, making \BbbH t [[q]] be a \BbbR -vector space. So,
\BbbH t [[q]] is both a ring and a \BbbR -vector space, and hence, it forms a \BbbR -algebra. \square 

Recall that \| .\| t be the \BbbR -semi-norm (2.12) on \BbbH t (i.e., it is a \BbbR -norm if t \not = 0, while

it is a \BbbR -semi-norm if t = 0). Now, let f (q) =
\infty \sum 

n=0
qnfn \in \BbbH t [[q]] with fn \in \BbbH t, for all

n \in \BbbN 0 = \BbbN \cup \{ 0\} . Observe that, for an arbitrary qo \in \BbbH t, one may / can have

f (qo) =

\infty \sum 
n=0

qno fn \in \BbbH t, \mathrm{o}\mathrm{r}, \mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}fi\mathrm{n}\mathrm{e}\mathrm{d} \mathrm{i}\mathrm{n} \BbbH t,

satisfying (3.2)

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

n

\sqrt{} 
\| qno fn\| t \leq \| qo\| t

\biggl( 
\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

n

\sqrt{} 
\| fn\| t

\biggr) 
.

Proposition 3.2. Let f (q) =
\infty \sum 

n=0
qnfn \in \BbbH t [[q]], with fn = an + bnjt \in \BbbH t with

an, bn \in \BbbC , for all n \in \BbbN 0. If qo \in \BbbH t satisfies

\| qo\| t <
\biggl( 
\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

n

\sqrt{} 
\| fn\| t

\biggr)  - 1

,

then f (qo) is convergent in \BbbH t in the sense that: f (qo) \in \BbbH t \Leftarrow \Rightarrow \| f (qo)\| <\infty .

Proof. By (3.2) and the root test, if

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

n

\sqrt{} 
\| qno fn\| t \leq \| qo\| t

\biggl( 
\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

n

\sqrt{} 
\| fn\| t

\biggr) 
< 1,

equivalently, if

\| qo\| t <
1

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

n
\sqrt{} 

\| fn\| t
,

then \| f (qo)\| t <\infty , i.e., f (qo) \in \BbbH t. \square 

Motivated by the above proposition, we consider the analyticity on the \BbbR -algebra
\BbbH t [[q]].

Definition 3.3. Let U be an open subset of \BbbH t under the \| .\| t-semi-norm topology.
Define the \BbbH t-analytic algebra Ht [[U ]] by

Ht [[U ]]
\mathrm{d}\mathrm{e}\mathrm{f}
= \{ f (q) \in \BbbH t [[q]] : f (q0) \in \BbbH t, \forall q0 \in U\} . (3.3)

All elements f (q) of Ht [[U ]] are said to be \BbbH t-analytic functions on a domain U . If
U = \BbbH t, then Ht [[\BbbH t]] is called the \BbbH t-entire algebra, and all elements of Ht [[\BbbH t]] are
said to be \BbbH t-entire functions (on \BbbH t).

Observe that

f (q) , g (q) \in Ht [[U ]] =\Rightarrow f (q) + g (q) , f (q)  \star g (q) \in Ht [[U ]] ,

and (3.4)

r \in \BbbR , f (q) \in H2 [[U ]] =\Rightarrow rf (q) \in Ht [[U ]] ,

since, for any qo \in U , one has

\| f (qo) + g (qo)\| t \leq \| f (qo)\| t + \| g (qo)\| t <\infty ,
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\| f (qo)  \star g (qo)\| t \leq \| f (qo)\| t \| g (qo)\| t <\infty ,

and
\| rf (qo)\| t = | r| \| f (qo)\| t <\infty , \forall r \in \BbbR .

Thus, indeed, the \BbbH t-analytic algebra Ht [[U ]] of a domain U forms a \BbbR -algebra by (3.4).
By (3.3), one can define a morphism,

\| .\| t,U : Ht [[U ]] \rightarrow \BbbR ,

by (3.5)

\| f (q)\| t,U
\mathrm{d}\mathrm{e}\mathrm{f}
= \mathrm{s}\mathrm{u}\mathrm{p}

h\in U
\| f (h)\| t ,

for all f (q) \in Ht [[U ]]. Then it is a well-defined complete \BbbR -semi-norm on Ht [[U ]]. More
precisely, if t \not = 0, then \| .\| t,U of (3.5) is a complete \BbbR -norm, meanwhile, if t = 0, then
\| .\| t,U forms a complete \BbbR -semi-norm on Ht [[U ]], because \| .\| t is a complete \BbbR -norm on
\BbbH t if t \not = 0, while, \| .\| 0 is a complete \BbbR -semi-norm on \BbbH 0.

Theorem 3.4. The \BbbH t-analytic algebra Ht [[U ]] on a domain U \subseteq \BbbH t is a complete
\BbbR -semi-normed \BbbR -algebra.

Proof. By (3.4), the \BbbH t-analytic algebra Ht [[U ]] of (3.3) on a domain U is a well-defined
\BbbR -algebra, equipped with the \BbbR -semi-norm \| .\| t,U of (3.5). As we discussed in the above
paragraph, this \BbbR -semi-norm \| .\| t,U is complete on Ht [[U ]]. \square 

Now, we define a new \BbbR -vector space \bfH t:2 [[q]] in \BbbH t.

Definition 3.5. Let \BbbU t = \{ h \in \BbbH t : \| h\| t < 1\} be the open unit ball of \BbbH t up to the
\| .\| t-semi-norm topology. Define a \BbbR -vector space \bfH t:2 [[q]] by

\bfH t:2 [[q]] =

\biggl\{ \infty \sum 
n=0

qnfn : q \mathrm{a}\mathrm{c}\mathrm{t}\mathrm{s} \mathrm{o}\mathrm{n} \BbbU t,
\infty \sum 

n=0
\| fn\| 2t <\infty 

\biggr\} 
, (3.6)

where q is the \BbbH t-variable acting on \BbbU t in \BbbH t. We call \bfH t:2 [[q]], the \BbbH t-Hardy (\BbbR -vector-
)space.

Consider that if

f (q) =

\infty \sum 
n=0

qnfn, g (q) =

\infty \sum 
n=0

qngn \in \bfH t:2 [[q]] ,

then (3.7)\Biggl( \infty \sum 
n=0

\| fn + gn\| 2t

\Biggr) 1
2

\leq 

\Biggl( \infty \sum 
n=0

\| fn\| 2t

\Biggr) 1
2

+

\Biggl( \infty \sum 
n=0

\| gn\| 2t

\Biggr) 1
2

,

by the Minkowski’s inequality, implying that

f (q) , g (q) \in \bfH t:2 [[q]] =\Rightarrow f (q) + g (q) \in \bfH t:2 [[q]] , (3.8)

by (3.7). Also, one has

r \in \BbbR , f (q) \in \bfH t:2 [[q]] =\Rightarrow rf (q) \in \bfH t:2 [[q]] , (3.9)

since
\infty \sum 

n=0

qnfn \in \bfH t:2 [[q]] =\Rightarrow 
\infty \sum 

n=0

\| rfn\| 2t = | r| 

\Biggl( \infty \sum 
n=0

\| fn\| 2t

\Biggr) 
<\infty ,

for all r \in \BbbR . So, our \BbbH t-Hardy space \bfH t:2 [[q]] is a well-defined \BbbR -vector space by (3.8)
and (3.9).

Define now a form, \varphi t on \bfH t:2 [[q]] by
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\varphi t

\biggl( \infty \sum 
n=0

qnfn,
\infty \sum 

n=0
qngn

\biggr) 
=

\infty \sum 
n=0

[fn, gn]t , (3.10)

where [, ]t is the symmetric bilinear form (2.9) on \BbbH t, especially, if t < 0, then it is a
definite \BbbR -inner product, or if t > 0, then it is a \BbbR -indefinite inner product, or if t = 0,
then it is a \BbbR -indefinite semi-inner product on \BbbH t. Note that, on \BbbH t,

| [h, h]t| = | \tau (hh\circledast )| \leq \| \tau \| \| hh\circledast \| t = \| hh\circledast \| t , \forall h \in \BbbH t, (3.11)

where \| \tau \| \mathrm{d}\mathrm{e}\mathrm{f}
= \mathrm{s}\mathrm{u}\mathrm{p} \{ | \tau (q)| : \| q\| t = 1\} = 1, since \tau (1) = \mathrm{R}\mathrm{e} (1) = 1, and hence, one has

| [h, h]t| \leq \| h\| t \| h\circledast \| t = \| h\| 2t , \forall h \in \BbbH t, (3.12)

by (3.11). Thus, similar to (3.12), if f (q) =
\infty \sum 

n=0
qnfn, g (q) =

\infty \sum 
n=0

qngn \in Ht [[U ]], then

we have that

| \varphi t (f (q) , g (q))| \leq 
\infty \sum 

n=0
| [fn, gn]t| \leq 

\infty \sum 
n=0

\| fn\| t \| gn\| t. (3.13)

It shows that the morphism \varphi t of (3.10) is bounded from \bfH t:2 [[q]]\times \bfH t:2 [[q]] into \BbbR in
the sense that

| \varphi t (f (q) , f (q))| \leq 
\infty \sum 

n=0

\| fn\| 2t <\infty .

by (3.12) and (3.13). Moreover, we have

\varphi t (r1f (q) + r2g (q) , p (q)) = r1\varphi t (f (q) , p (q)) + r2\varphi t (g (q) , p (q))

and (3.14)

\varphi t (p (q) , r1f (q) + r2g (p)) = r1\varphi t (p (q) , f (q)) + r2\varphi t (p (q) , g (q)) ,

for all r1, r2 \in \BbbR , and f (q) , g (q) \in \bfH t:2 [[q]], by the bilinearity of [, ]t on \BbbH t. And, we
have that

\varphi t (f (q) , g (q)) =
\infty \sum 

n=0
[fn, gn]t =

\infty \sum 
n=0

[gn, fn]t = \varphi t (g (q) , f (q)). (3.15)

i.e., the form \varphi t is a symmetric bilinear form on the \BbbH t-Hardy space \bfH t:2 [[q]], by (3.14)
and (3.15).

This symmetric bilinear form \varphi t of (3.10) on the \BbbH t-Hardy space \bfH t:2 [[q]] also satisfies
that: for any fixed f (q) \in \bfH t:2 [[q]], if

\varphi t (f (q) , g (q)) = 0, "for all" g (q) \in \bfH t:2 [[q]] ,

then

f (q) =

\infty \sum 
n=0

qn0 = 0, \mathrm{i}\mathrm{f} t \not = 0,

while, (3.16)

f (q) \not = 0, \mathrm{i}\mathrm{n} \mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}, \mathrm{i}\mathrm{f} t = 0,

by Proposition 2, i.e., by the non-degenerated-ness of \{ [, ]t\} t\in \BbbR \setminus \{ 0\} on \{ \BbbH t\} t\in \BbbR \setminus \{ 0\} , re-
spectively, by the degenerated-ness of [, ]0 on \BbbH 0. i.e.,

t \not = 0 =\Rightarrow \varphi t is non-degenerated on \bfH t:2 [[q]]

meanwhile, (3.17)

t = 0 =\Rightarrow \varphi 0 is not non-degenerated on \bfH 0:2 [[q]]

by (3.16).
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Theorem 3.6. Let \bfH t:2 [[q]] be the \BbbH t-Hardy space (3.6), and \varphi t, the form (3.10). Then

t < 0 =\Rightarrow (\bfH t:2 [[q]] , \varphi t) is a definite \BbbR -inner-product space,

t > 0 =\Rightarrow (\bfH t:2 [[q]] , \varphi t) is a \BbbR -indefinite-inner-product space,
and (3.18)

t = 0 =\Rightarrow (\bfH 0:2 [[q]] , \varphi 0) is a \BbbR -indefinite-semi-inner-product space,

in the sense of [3, 4, 6, 8]. i.e., the form \varphi 0 is a positive semidefinite and degenerated.
Moreover, the form \varphi t is bounded on \bfH t:2 [[q]] in the sense that:

| \varphi t (f (q) , f (q))| <\infty , \forall f (q) \in \bfH t:2 [[q]] , \forall t \in \BbbR . (3.19)

Proof. By (3.14) and (3.15), the form \varphi t of (3.10) is a symmetric bilinear form on \bfH t:2 [[q]],
for all scales t \in \BbbR .

If t > 0, then this symmetric bilinear form \varphi t is non-degenerated by (3.17), and
hence, it forms a \BbbR -indefinite inner product on \bfH t:2 [[q]]. i.e., the pair (\bfH t:2 [[q]] , \varphi t)
forms a \BbbR -indefinite-inner-product space. If t = 0, then \varphi 0 is not non-degenerated (or,
degenerated) by (3.17). So, the form \varphi 0 becomes a \BbbR -indefinite “semi-inner” product on
\bfH t:2 [[q]] , saying that the pair (\bfH 0:2 [[q]] , \varphi 0) is a \BbbR -indefinite-semi-inner-product space.
If t < 0, then this symmetric bilinear form \varphi t is not only non-degenerated, but also,
satisfying that

\varphi t (f (q) , f (q)) = 0 =\Rightarrow f (q) = 0 =

\infty \sum 
n=0

qn0 \in \bfH t:2 [[q]] ,

since [, ]t is a definite \BbbR -inner product on \BbbH t. So, the non-degenerated symmetric bilinear
form \varphi t becomes a definite \BbbR -inner product on \bfH t:2 [[q]]. Thus, if t < 0, then the pair
(\bfH t:2 [[q]] , \varphi t) forms a definite \BbbR -inner-product space. Therefore, the structure theorem
(3.18) holds.

Also, for any arbitrary scale t \in \BbbR , the form \varphi t is bounded on \bfH t:2 [[q]] in the sense
that

| \varphi t (f (q) , f (q))| <\infty , \forall f (q) \in \bfH t:2 [[q]] ,

by (3.12) and (3.13), i.e.,\bigm| \bigm| \bigm| \bigm| \bigm| \varphi t

\Biggl( \infty \sum 
n=0

qnfn,

\infty \sum 
n=0

qnfn

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \leq 
(3.13)

\infty \sum 
n=0

\| fn\| 2t <
(3.6)

\infty .

Therefore, the boundedness (3.19) of \varphi t on \bfH t:2 [[q]] is shown. \square 

By (3.18) and (3.19), if we define a map \| .\| \bfH t:2
: \bfH t:2 [[q]] \rightarrow \BbbR by\bigm\| \bigm\| \bigm\| \bigm\| \infty \sum 

n=0
qnfn

\bigm\| \bigm\| \bigm\| \bigm\| 
\bfH t:2

\mathrm{d}\mathrm{e}\mathrm{f}
=

\sqrt{} 
\infty \sum 

n=0
\| fn\| 2t , \forall 

\infty \sum 
n=0

qnfn \in \bfH t:2 [[q]] (3.20)

then it is a well-defined complete \BbbR -semi-norm on the \BbbH t-Hardy space \bfH t:2 [[q]]. More
precisely, if t \not = 0, then the map \| .\| \bfH t:2

becomes a \BbbR -norm on \bfH t:2 [[q]], meanwhile, if
t = 0, then it is a \BbbR -semi-norm on \bfH 0:2 [[q]], because \| .\| t is a \BbbR -norm if t \not = 0, while,
\| .\| 0 is a \BbbR -semi-norm on \BbbH 0 if t = 0. The completeness of the \BbbR -semi-norm \| .\| \bfH t:2

on
\bfH t:2 [[q]] is guaranteed by that of \| .\| t on \BbbH t, for all t \in \BbbR .

Theorem 3.7. If \| .\| \bfH t:2
is the morphism (3.20) on the \BbbH t-Hardy space \bfH t:2 [[q]], then

the pair
\bigl( 
\bfH t:2 [[q]] , \| .\| \bfH t:2

\bigr) 
is a complete \BbbR -semi-normed space. More precisely,

t \not = 0 =\Rightarrow 
\bigl( 
\bfH t:2 [[q]] , \| .\| \bfH t:2

\bigr) 
is a \BbbR -Banach space,

meanwhile, (3.21)

t = 0 =\Rightarrow 
\bigl( 
\bfH 0:2 [[q]] , \| .\| \bfH 0:2

\bigr) 
is a complete \BbbR -semi-normed space.



MATRICES INDUCED BY SCALED HYPERCOMPLEX NUMBERS... 271

Proof. The structure theorem (3.21) of \bfH t:2 [[q]] up to the complete \BbbR -semi-norm \| .\| \bfH t:2

is shown by (3.20) and Proposition 3. \square 

By (3.18), (3.19) and (3.21), one obtains the following corollary.

Corollary 3.8. If t \not = 0, then the \BbbH t-Hardy space \bfH t:2 [[q]] is a complete \BbbR -normed
definite, or indefinite \BbbR -inner-product space. Meanwhile, if t = 0, then \bfH 0:2 [[q]] is a
complete \BbbR -semi-normed \BbbR -indefinite-semi-inner-product space.

Proof. It is shown by (3.18), (3.19) and (3.21). \square 

The above corollary characterizes the \BbbH t-Hardy space \bfH t:2 [[q]] as a complete \BbbR -semi-
normed definite, or indefinite \BbbR -semi-inner-product space, for all t \in \BbbR .

Define now an action M of \BbbH t acting on the \BbbH t-Hardy space \bfH t:2 [[q]] by

M : h \in \BbbH t \mapsto  - \rightarrow M (h)
\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}
= Mh \in B\BbbR (\bfH t:2 [[q]]) ,

where (3.22)

Mh

\Biggl( \infty \sum 
n=0

qnfn

\Biggr) 
\mathrm{d}\mathrm{e}\mathrm{f}
=

\infty \sum 
n=0

qn (hfn) ,

where B\BbbR (\bfH t:2 [[q]]) is the operator \BbbR -algebra consisting of all bounded \BbbR -linear operators
on \bfH t:2 [[q]], equipped with its operator semi-norm \| .\| ,

\| A\| \mathrm{d}\mathrm{e}\mathrm{f}
= \mathrm{s}\mathrm{u}\mathrm{p}

\bigl\{ 
\| A (f (q))\| \bfH t:2

: \| f (q)\| \bfH t:2
= 1
\bigr\} 
, \forall A \in B\BbbR (\bfH t:2 [[q]]) .

Then this function M of (3.22) satisfies that

Mr1h1+r2h2 = r1Mh1 + r2Mh2 , \forall r1, r2 \in \BbbR ,

and (3.23)

Mh1h2 =Mh1Mh2 , \forall h1, h2 \in \BbbH t,

in B\BbbR (\bfH t:2 [[q]]), by (3.22). Moreover, for any h \in \BbbH t and f (q) =
\infty \sum 

n=0
qnfn \in \bfH t:2 [[q]]

with \| f (q)\| \bfH t:2
= 1,

\| Mh (f (q))\| 2\bfH t:2
=

\bigm\| \bigm\| \bigm\| \bigm\| \infty \sum 
n=0

qn (hfn)

\bigm\| \bigm\| \bigm\| \bigm\| 2
\bfH t:2

=
\infty \sum 

n=0
\| hfn\| 2t

\leq 
\infty \sum 

n=0
\| h\| 2t \| fn\| 

2
t = \| h\| 2t \| f (q)\| 

2
\bfH t:2

= \| h\| 2t ,

implying that (3.24)

\| Mh\| = \| h\| t , \forall h \in \BbbH t.

Theorem 3.9. The function M of (3.22) is an action of the complete \BbbR -semi-normed
\BbbR -\ast -algebra \BbbH t acting on \bfH t:2 [[q]]. Equivalently, the subset

\frakM t =
\Bigl\{ 
Mh

\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}
= M (h) : h \in \BbbH t

\Bigr\} 
\subseteq B\BbbR (\bfH t:2 [[q]])

forms a complete \BbbR -semi-normed \BbbR -\ast -algebra equipped with the \BbbR -adjoint (\circledast ) on \frakM t,

M\circledast 
h

\mathrm{d}\mathrm{e}\mathrm{f}
= Mh\circledast \in B\BbbR (\bfH t:2 [[q]]) , \forall h \in \BbbH t.
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Proof. It is shown by (3.23), (3.24) and the definition of the \BbbR -adjoint (\circledast ): M\circledast 
h =Mh\circledast ,

for all h \in \BbbH t. Indeed, the family \frakM t forms a \BbbR -semi-normed \BbbR -\ast -algebra by an isometric
isomorphism,

h \in \BbbH t \mapsto  - \rightarrow Mh \in \frakM t,

satisfying
\| Mh\| = \| h\| t , \mathrm{i}\mathrm{n} B\BbbR (\bfH t:2 [[q]]) , \forall h \in \BbbH t,

and
M\circledast 

h =Mh\circledast \in B\BbbR (\bfH t:2 [[q]]) , \forall h \in \BbbH t,

because \BbbH t is a complete \BbbR -semi-normed \BbbR -\ast -algebra. \square 

The above theorem illustrates that how the t-scaled hypercomplexes \BbbH t acts as operators
of \frakM t inside B\BbbR (\bfH t:2 [[q]]). Define the set \bfl 2 (\BbbH t) of all square-summable \BbbH t-sequences
by

\bfl 2 (\BbbH t)
\mathrm{d}\mathrm{e}\mathrm{f}
=

\biggl\{ 
(hn)

\infty 
n=0 \in \BbbH \infty 

t :
\infty \sum 

n=0
\| hn\| 2t <\infty 

\biggr\} 
, (3.25)

equipped with the addition (+) by

(fn)
\infty 
n=0 + (gn)

\infty 
n=0 = (fn + gn)

\infty 
n=0 ,

and the \BbbR -scalar product by

r (fn)
\infty 
n=0 = (rfn)

\infty 
n=0 , \forall r \in \BbbR .

Then it is indeed a well-defined \BbbR -vector space, equipped with the \BbbR -inner product (if
t < 0), or the \BbbR -indefinite inner product (if t > 0), or the \BbbR -indefinite semi-inner product
(if t = 0), also denoted by \varphi t,

\varphi t ((fn)
\infty 
n=0 , (gn)

\infty 
n=0) =

\infty \sum 
n=0

[fn, gn]t . (3.26)

under the complete \BbbR -semi-norm \| .\| \bfl t:2 defined by

\| (fn)\infty n=0\| \bfl t:2
\mathrm{d}\mathrm{e}\mathrm{f}
=

\sqrt{} 
\infty \sum 

n=0
\| fn\| 2t . (3.27)

Theorem 3.10. Let \bfl 2 (\BbbH t) be a \BbbR -vector space of (3.5) equipped with the bilinear sym-
metric form \varphi t of (3.26), and the \BbbR -semi-norm \| .\| \bfl t:2 of (3.27). Then\bigl( 

\bfl 2 (\BbbH t) , \varphi t

\bigr) \mathrm{i}\mathrm{s}\mathrm{o}
= (\bfH t:2 [[q]] , \varphi t) , isometrically, (3.28)

as complete \BbbR -semi-normed definite, or indefinite \BbbR -semi-inner-product spaces.

Proof. The bijection,
\infty \sum 

n=0

qnfn \in \bfH t:2 [[q]] \mapsto  - \rightarrow (fn)
\infty 
n=0 \in \bfl 2 (\BbbH 2) ,

is an isometric \BbbR -vector-space isomorphism in the sense that: it is a \BbbR -vector-space
isomorphism satisfying

\varphi t

\Biggl( \infty \sum 
n=0

qnfn,

\infty \sum 
n=0

qngn

\Biggr) 
=

\infty \sum 
n=0

[fn, gn]t = \varphi t ((fn)
\infty 
n=0 , (gn)

\infty 
n=0) ,

and \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty \sum 

n=0

qnfn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\bfH t:2

=

\sqrt{}    \infty \sum 
n=0

\| fn\| 2t = \| (fn)\infty n=0\| \bfl t:2 ,

by (3.16), (3.20), (3.21), (3.25), (3.26) and (3.27). \square 
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The above theorem provides an isometrically isomorphic \BbbR -vector space \bfl 2 (\BbbH t) of the
\BbbH t-Hardy space \bfH t:2 [[q]] by (3.28). By the isomorphism theorem (3.28), we also call the
\BbbR -vector space \bfl 2 (\BbbH t) of (3.25), the \BbbH t-Hardy space.

\bfA \bfs \bfs \bfu \bfm \bfp \bft \bfi \bfo \bfn \bfa \bfn \bfd \bfN \bfo \bft \bfa \bft \bfi \bfo \bfn \bfthree .\bfone . (in short, \bfA \bfN \bfthree .\bfone from below) If there are no confu-
sions, then we denote the \BbbH t-Hardy spaces \bfH t:2 [[q]] and \bfl 2 (\BbbH t) simply by \bfH t:2, respec-
tively, by \bfl t:2, from now on.

4. Certain Subspaces of the \BbbH t-Hardy Space

In this section, we construct a certain type of \BbbR (-vector)-subspaces of our \BbbH t-Hardy
space \bfH t:2

\mathrm{i}\mathrm{s}\mathrm{o}
= \bfl t:2, for a fixed scale t \in \BbbR . Throughout this section, fix N \in \BbbN , and define

a subset \bfl t:2N of \bfl t:2 by

\bfl t:2N
\mathrm{d}\mathrm{e}\mathrm{f}
=
\bigl\{ 
(fn)

\infty 
n=0 \in \bfl t:2 : fk = 0 \in \BbbH t, \forall k \geq N

\bigr\} 
,

i.e., (4.1)

\bfl t:2N = \{ (f0, f1, ..., fN - 1, 0, 0, 0, ...) : fl \in \BbbH t, \forall l = 0, ..., N  - 1\} .
Then the family \bfl t:2N becomes a \BbbR -subspace of \bfl t:2, because

(f0, ..., fN - 1, 0, 0, ...) + (g0, ..., gN - 1, 0, 0, ...) = (f0 + g0, ..., fN - 1 + gN - 1, 0, 0, ...) ,

and (4.2)

r (f0, f1, ..., fN - 1, 0, 0, ...) = (rf0, rf1, ..., rfN - 1, 0, 0, 0, ...) ,

in \bfl t:2N , for all r \in \BbbR . So, by the isomorphism theorem (3.28), we have the isomorphic
\BbbR -subspace \bfH t:2:N of \bfH t:2,

\bfH t:2:N
\mathrm{d}\mathrm{e}\mathrm{f}
=

\biggl\{ 
N - 1\sum 
n=0

qnfn \in \bfH t:2 : fn \in \BbbH t, \forall n = 0, 1, ..., N  - 1

\biggr\} 
, (4.3)

i.e.,

\bfH t:2:N \ni 
N - 1\sum 
n=0

qnfn =

\Biggl( 
N - 1\sum 
n=0

qnfn

\Biggr) 
+

\Biggl( \infty \sum 
n=N

qn0

\Biggr) 
\in \bfH t:2.

By the definitions (4.1) and (4.3), these \BbbR -vector spaces \bfl t:2N and \bfH t:2:N have their bounded
definite, or indefinite \BbbR -semi-inner product \varphi t,

\varphi t,N ((f0, ..., fN - 1, 0, 0, ...) , (g0, ..., gN - 1, 0, 0, ...)) =

N - 1\sum 
n=0

[fn, gn]t ,

and (4.4)

\varphi t,N

\Biggl( 
N - 1\sum 
n=0

qnfn,

N - 1\sum 
n=0

qngn

\Biggr) 
=

N - 1\sum 
n=0

[fn, gn]t .

Similarly, they have their complete \BbbR -semi-norm,

\| (f0, ..., fN - 1, 0, 0, ...)\| t:N
\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}
= \| (f0, ..., fN - 1, 0, 0, ...)\| \bfl t:2 ,

and (4.5)\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N - 1\sum 
n=0

qnfn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
t:N

\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}
=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N - 1\sum 
n=0

qnfn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\bfH t:2

,

satisfying (4.6)

\| (f0, ..., fN - 1, 0, 0, ...)\| t:N =

\sqrt{}    N - 1\sum 
n=0

\| fn\| 2t =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N - 1\sum 
n=0

qnfn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
t:N

,
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by (4.5). So, up to subspace topology, the \BbbR -subspaces \bfl t:2N and \bfH t:2:N form complete
\BbbR -semi-normed definite, or indefinite \BbbR -semi-inner-product spaces inside \bfl t:2, respectively,
\bfH t:2, by (4.4) and (4.6).

Corollary 4.1. For N \in \BbbN , the \BbbR -subspaces \bfl t:2N \subset \bfl t:2 of (4.1) and \bfH t:2:N \subset \bfH t:2

of (4.3) are isometrically isomorphic as complete \BbbR -semi-normed definite, or indefinite
\BbbR -semi-inner-product spaces. i.e.,

\bfl t:2N
\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2:N , \forall N \in \BbbN . (4.7)

Proof. As we seen in the above paragraph, two \BbbR -vector spaces \bfl t:2N and \bfH t:2:N are well-
defined complete \BbbR -semi-normed definite, or indefinite \BbbR -semi-inner-product spaces in the
\BbbH t-Hardy space \bfl t:2

\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2. Similar to the proof of (3.25), one can define an isometric

isomorphism,
N - 1\sum 
n=0

qnfn \in \bfH t:2:N \mapsto  - \rightarrow (f0, ..., fN - 1, 0, 0, ...) \in \bfl t:2N ,

by (4.2), (4.4) and (4.6). Therefore, the structure theorem (4.7) holds. \square 

The above corollary confirms that the \BbbH t-Hardy space \bfl t:2
\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2 contains its \BbbR -

subspaces
\Bigl\{ 
\bfl t:2N

\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2:N

\Bigr\} 
N\in \BbbN 

. Define now the Cartesian product set \BbbH N
t of N -copies of

the t-scaled hypercomplexes \BbbH t, by

\BbbH N
t = \{ (f1, f2, ..., fN ) : fl \in \BbbH t, \forall l = 1, 2, ..., N\} . (4.8)

Then, this Cartesian product set \BbbH N
t of (4.8) becomes a \BbbR -vector space under the vector-

addition,
(f1, ..., fN ) + (g1, ..., gN ) = (f1 + g1, ..., fN + gN ) ,

and the \BbbR -scalar-product, (4.9)

r (f1, ..., fN ) = (rf1, ..., rfN ) , \forall r \in \BbbR .

Also, one can define a definite, or indefinite \BbbR -semi-inner product [, ]t,N ,

[(f1, ..., fN ) , (g1, ..., gN )]t,N
\mathrm{d}\mathrm{e}\mathrm{f}
=

N\sum 
k=1

[fk, gk]t . (4.10)

In particular, if t < 0, then the form [, ]t,N of (4.10) becomes a \BbbR -inner product on \BbbH N
t ,

since [, ]t is a \BbbR -inner product on \BbbH t; if t > 0, then [, ]t,N is a \BbbR -indefinite inner product on
\BbbH N

t , since [, ]t is a \BbbR -indefinite inner product on \BbbH t; and if t = 0, then it is a \BbbR -indefinite
semi-inner product on \BbbH N

0 , since [, ]0 is a \BbbR -indefinite semi-inner product on \BbbH 0. Clearly,
one can define the \BbbR -semi-norm on \BbbH N

t by

\| (f1, ..., fN )\| t,N
\mathrm{d}\mathrm{e}\mathrm{f}
=

\sqrt{} 
N\sum 

k=1

\| fk\| 2t . (4.11)

Especially, if t \not = 0, then \| .\| t,N of (4.11) becomes a \BbbR -norm on \BbbH N
t , since \| .\| t is a \BbbR -norm

on \BbbH t; and if t = 0, then it is a \BbbR -semi-norm on \BbbH N
0 , since \| .\| 0 is a \BbbR -semi-norm on \BbbH 0.

Theorem 4.2. The Cartesian-product set \BbbH N
t of (4.8) forms a definite, or indefinite

\BbbR -semi-inner-product complete \BbbR -semi-normed space. In particular,

\BbbH N
t

\mathrm{i}\mathrm{s}\mathrm{o}
= \bfl t:2N

\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2:N , \forall N \in \BbbN . (4.12)
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Proof. Recall that, by (4.7), the \BbbR -subspaces \bfl t:2N and \bfH t:2:N are isometrically isomorphic
as definite, or indefinite \BbbR -semi-inner-product complete \BbbR -semi-normed spaces. So, if we
show the first relation of (4.12) holds, then one can conclude that the set \BbbH N

t of (4.8) is a
definite, or indefinite \BbbR -semi-inner-product complete \BbbR -semi-normed space equipped with
the form [, ]t,N of (4.10), and the morphism \| .\| t,N of (4.11).

Define a bijective morphism \Psi t,N : \BbbH N
t \rightarrow \bfl t:2N by

\Psi t,N ((f1, ..., fN ))
\mathrm{d}\mathrm{e}\mathrm{f}
= (g0, g1, ..., gN - 1, 0, 0, ...) ,

with (4.13)

gn = fn+1 \in \BbbH t, \forall n = 0, 1, ..., N  - 1.

Then this bijection \Psi t,N satisfies that

\Psi t,N (r1W1 + r2W2) = r1\Psi t,N (W1) + r2\Psi t,N (W2) ,

for all r1, r2 \in \BbbR and W1,W2 \in \BbbH N
t , and hence, it is a \BbbR -vector-space-isomorphism.

Moreover, it is isometric in the sense that

\varphi t,N (\Psi t,N (W1) ,\Psi t,N (W2)) = [W1,W2]t,N ,

and
\| \Psi t,N (W1)\| t:N = \| W1\| t,N ,

where \varphi t,N and \| .\| t:N are in the sense of (4.4) and (4.5), respectively, and where [, ]t,N
and \| .\| t,N are in the sense of (4.10) and (4.11), respectively. So, the \BbbR -vector-space
isomorphism \Psi t,N of (4.13) is isometric, too. Therefore, \BbbH N

t and \bfl t:2N are isometrically
isomorphic over \BbbR , and hence, the isomorphic relation (4.12) holds true. \square 

By (4.12), one can understand \BbbH N
t , \bfl t:2N and \bfH t:2:N as isomorphic definite, or indefinite

\BbbR -semi-inner-product complete \BbbR -semi-normed spaces embedded in the \BbbH t-Hardy space
\bfl t:2

\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2, for all N \in \BbbN . In this paper, we focus on the \BbbR -vector space \BbbH N

t of (4.8).
Let B\BbbR 

\bigl( 
\BbbH N

t

\bigr) 
be the operator \BbbR -algebra consisting of all bounded \BbbR -linear operators

on \BbbH N
t equipped with its operator-semi-norm,

\| T\| = \mathrm{s}\mathrm{u}\mathrm{p}
\Bigl\{ 
\| T (v)\| t,N : \| v\| t,N = 1

\Bigr\} 
, \forall T \in B\BbbR 

\bigl( 
\BbbH N

t

\bigr) 
.

Now, we are interested in a certain type of operators of B\BbbR (\BbbH t). Define a subset MN (\BbbH t)
by

\scrM t,N
\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}
= MN (\BbbH t) =

\Bigl\{ 
[hi,j ]N\times N : hi,j \in \BbbH t

\Bigr\} 
, (4.14)

where

[hi,j ]N\times N =

\left(     
h1,1 h1,2 \cdot \cdot \cdot h1,N
h2,1 h2,2 \cdot \cdot \cdot h2,N

...
...

. . .
...

hN,1 hN,2 \cdot \cdot \cdot hN,N

\right)     , \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} hi,j \in \BbbH t,

acts on

\BbbH N
t =

\left\{         
\left(     

f1
f2
...
fN

\right)     : fl \in \BbbH t, \forall l = 1, ..., N

\right\}         ,
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canonically under the usual block-matrix action, i.e.,

[hi,j ]N\times N

\left(     
f1
f2
...
fN

\right)     =

\left(           

N\sum 
k=1

h1,kfk

N\sum 
k=1

h2,kfk

...
N\sum 

k=1

hN,kfk

\right)           
,

having its operator-semi-norm,\bigm\| \bigm\| \bigm\| [hi,j ]N\times N

\bigm\| \bigm\| \bigm\| = \mathrm{m}\mathrm{a}\mathrm{x}
\Bigl\{ 
\| (hk,1, ..., hk,N )\| t,N : k = 1, ..., N

\Bigr\} 
<\infty ,

and hence, [hi,j ]N\times N \in B\BbbR 
\bigl( 
\BbbH N

t

\bigr) 
, implying indeed that

\scrM t,N =MN (\BbbH t) \subseteq B\BbbR 
\bigl( 
\BbbH N

t

\bigr) 
.

Definition 4.3. The family \scrM t,N
\mathrm{d}\mathrm{e}\mathrm{f}
= MN (\BbbH t) of (4.14) is called the \BbbH t-matrix algebra

(for N \in \BbbN ).

As we discussed above, the \BbbH t-matrix algebra \scrM t,N is a subset of B\BbbR 
\bigl( 
\BbbH N

t

\bigr) 
. Also,

under the usual block-matrix addition,

[fi,j ]N\times N + [gi,j ]N\times N = [fi,j + gi,j ]N\times N ,

and the \BbbR -scalar product,

r [fi,j ]N\times N = [rfi,j ]N\times N , \forall r \in \BbbR ,
and the block-matrix multiplication,\Bigl( 

[fi,j ]N\times N

\Bigr) \Bigl( 
[gi,j ]N\times N

\Bigr) 
= [di,j ]N\times N , \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} di,j =

N\sum 
k=1

fi,kgk,j ,

indeed, our \BbbH t-matrix algebra forms a \BbbR -algebra embedded in B\BbbR 
\bigl( 
\BbbH N

t

\bigr) 
. Moreover, one

can get that \Bigl[ 
[fi,j ]N\times N (W1) ,W2

\Bigr] 
t,N

=
\Bigl[ 
W1,

\bigl[ 
f\circledast j,i
\bigr] 
N\times N

(W2)
\Bigr] 
t,N

, (4.15)

for all W1,W2 \in \BbbH N
t .

Theorem 4.4. The \BbbH t-matrix algebra \scrM t,N of (4.14) is a complete \BbbR -semi-normed
\BbbR -\ast -algebra under the \BbbR -operator-semi-normed subspace topology for B\BbbR 

\bigl( 
\BbbH N

t

\bigr) 
. i.e.,

\scrM t,N is a complete \BbbR -semi-normed \BbbR -\ast -algebra. (4.16)

Proof. As we discussed above, the \BbbH t-matrix algebra \scrM t,N is a \BbbR -operator-semi-normed
\BbbR -algebra consisting of all bounded block matrices in \BbbH t over \BbbR . If we define an operation
(\ast ) on \scrM t,N by

[hi,j ]
\ast 
N\times N

\mathrm{d}\mathrm{e}\mathrm{f}
=
\bigl[ 
h\circledast j,i
\bigr] 
N\times N

\in \scrM t,N , \forall [hi,j ]N\times N \in \scrM t,N , (4.17)

then it satisfies that

T \ast \ast = T, (rT )
\ast 
= rT \ast , \forall T \in \scrM t,N , r \in \BbbR ,

and
(T1 + T2)

\ast 
= T \ast 

1 + T \ast 
2 , (T1T2)

\ast 
= T \ast 

2 T
\ast 
1 ,

for all T1, T2 \in \scrM t,N , by (4.15). i.e., this operation (\ast ) of (4.17) forms a \BbbR -adjoint on
\scrM t,N . Therefore, the structure theorem (4.16) holds. \square 
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The above theorem shows that the \BbbH t-matrix algebra \scrM t,N =MN (\BbbH t) acts on \BbbH N
t

as a complete \BbbR -operator-semi-normed \BbbR -\ast -algebra of all adjointable bounded operators
of B\BbbR 

\bigl( 
\BbbH N

t

\bigr) 
, in the sense of (4.17), by (4.16).

Now, let M be the action (3.19) of the t-scaled hypercomplexes \BbbH t acting on the
\BbbH t-Hardy space \bfl t:2

\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2, i.e.,

Mh ((fn)
\infty 
n=0) = (hfn)

\infty 
n=0

\mathrm{i}\mathrm{s}\mathrm{o}
=

\infty \sum 
n=0

qn (hfn) =Mh

\Biggl( \infty \sum 
n=0

qnfn

\Biggr) 
.

By (4.12), one can restrict the action M of (3.19) as an action of \BbbH t acting on \BbbH N
t , i.e.,

M : h \in \BbbH t \mapsto  - \rightarrow Mh \in B\BbbR 
\bigl( 
\BbbH N

t

\bigr) 
,

where (4.18)

Mh ((h1, ..., hN )) = (hh1, ..., hhN ) , \forall h \in \BbbH t.

Then the family \{ Mh : h \in \BbbH t\} forms a well-defined \BbbR -\ast -algebra on \BbbH N
t , as a realization

of \BbbH t acting on \BbbH N
t .

Theorem 4.5. Let M be the action (4.18) of \BbbH t acting on \BbbH N
t , as a restriction of the

action M of (3.19). Then the realization M (\BbbH t) = \{ Mh : h \in \BbbH t\} satisfies that

M (\BbbH t)
\mathrm{s}\mathrm{e}\mathrm{t}
=
\bigl\{ 
hI \in B\BbbR 

\bigl( 
\BbbH N

t

\bigr) 
: h \in \BbbH t

\bigr\} \ast -\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{e}\mathrm{b}\mathrm{r}\mathrm{a}
\subset \scrM t,N , (4.19)

where I is the identity operator satisfying I (W ) =W , for all W \in \BbbH N
t .

Proof. By (4.18), clearly, the realization M (\BbbH t) is equipotent to

\{ hI : h \in \BbbH t\} \subset B\BbbR 
\bigl( 
\BbbH N

t

\bigr) 
.

So, the set-equality of (4.19) holds. Note that the identity operator I is identified with
the identity matrix IN \in \scrM t,N ,

IN =

\left(        

1 0 0 \cdot \cdot \cdot 0
0 1 0 \cdot \cdot \cdot 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 \cdot \cdot \cdot 0 1

\right)        
N\times N

\in \scrM t,N ,

where 1 = 1 + 0i+ 0jt + 0kt \in \BbbH t. It shows that

M (\BbbH t)
\mathrm{i}\mathrm{s}\mathrm{o}
= \{ hIN \in \scrM t,N : h \in \BbbH t\} \subset \scrM t,N ,

as the collection of all \BbbH t-constant matrices of \scrM t,N . So, the family M (\BbbH t) is \ast -
homomorphic to \scrM t,N , satisfying

(hIN )
\ast 
= INh

\circledast = h\circledast IN \in M (\BbbH t) , \mathrm{i}\mathrm{n} \scrM t,N .

Therefore, the relation in (4.19) holds, too. \square 

It is clear that M (\BbbH t)
\mathrm{i}\mathrm{s}\mathrm{o}
= \BbbH t realized on \BbbH N

t as \BbbH t-constant matrices by (4.19).
Since our \BbbH t-matrix algebra \scrM t,N is a \BbbR -\ast -algebra, one can have the following opera-

tor-theoretic properties of \BbbH t-matrices.

Definition 4.6. Let \scrM t,N be the \BbbH t-matrix algebra.
(1) T is self-adjoint in \scrM t,N , if T \ast = T on \BbbH N

t .
(2) T is a projection in \scrM t,N , if T \ast = T = T 2 on \BbbH N

t .
(3) T is normal in \scrM t,N , if T \ast T = TT \ast on \BbbH N

t .
(4) T is an isometry in \scrM t,N , if T \ast T = IN on \BbbH N

t .
(5) T is unitary in \scrM t,N , if T \ast T = IN = TT \ast on \BbbH N

t .
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The following result characterizes the self-adjointness on \scrM t,N .

Theorem 4.7. An \BbbH t-matrix [hi,j ]N\times N is self-adjoint in \scrM t,N , if and only if

hj,i = h\circledast i,j \in \BbbH t, \forall i, j \in \{ 1, ..., N\} ,

if and only if (4.20)

[hi,j ]N\times N =

\left(       
h1,1 h\circledast 2,1 h\circledast 3,1 \cdot \cdot \cdot h\circledast N,1

h2,1 h2,2 h\circledast 3,2 \cdot \cdot \cdot h\circledast N,2

h3,1 h3,2 h3,3 \cdot \cdot \cdot h\circledast N,3
...

...
. . . . . .

...
hN,1 hN,2 \cdot \cdot \cdot hN,N - 1 hN,N

\right)       , \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} h\circledast k,k = hk,k.

Proof. By the \BbbR -adjoint (4.17) on \scrM t,N , one has [hi,j ]N\times N is self-adjoint in \scrM t,N , if
and only if

[hi,j ]
\ast 
N\times N =

\bigl[ 
h\circledast j,i
\bigr] 
N\times N

= [hi,j ]N\times N ,

if and only if
h\circledast j,i = hi,j \in \BbbH t, \forall i, j \in \{ 1, ..., N\} .

Therefore, the characterization (4.20) holds. \square 

The above theorem characterizes the self-adjointness on \scrM t,N in terms of \BbbH t-entries
by (4.20).

Corollary 4.8. An element Mh \in M (\BbbH t) is self-adjoint in \scrM t,N , if and only if h is
\circledast -self-adjoint in \BbbH t, i.e.,

Mh \in M (\BbbH t) is self-adjoint in \scrM t,N ,\Leftarrow \Rightarrow h\circledast = h in \BbbH t. (4.21)

Proof. By (4.19), the realization M (\BbbH t) is isomorphic to the \ast -subalgebra \{ hIN : h \in \BbbH t\} 
of \BbbH t-constant matrices in \scrM t,N . So, by (4.20), Mh

\mathrm{i}\mathrm{s}\mathrm{o}
= hIN is self-adjoint in \scrM t,N , if

and only if h\circledast = h, in \BbbH t. So, the relation (4.21) holds. \square 

Let T = [hi,j ]N\times N \in \scrM t,N be an \BbbH t-matrix. Observe that

T 2 = [di,j ]N\times N , \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} di,j =

N\sum 
k=1

hi,khk,j .

So, if T is self-adjoint in \scrM t,N , then

T 2 = [di,j ]N\times N , \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} di,j =

N\sum 
k=1

hi,kh
\circledast 
j,k,

where (4.22)

h\circledast k,k = hk,k \in \BbbH t, \forall k = 1, ..., N.

Theorem 4.9. An \BbbH t-matrix [hi,j ]N\times N is a projection in \scrM t,N , if and only if

hi,j = h\circledast j,i =
N\sum 

k=1

hi,kh
\circledast 
j,k \in \BbbH t, \forall i, j = 1, ..., N. (4.23)

Proof. Without loss of generality, assume that an \BbbH t-matrix T = [hi,j ]N\times N is self-adjoint
in \scrM t,N , i.e.,

h\circledast j,i = hi,j \in \BbbH t, \forall i, j = 1, ..., N,

by (4.20). Then, such a self-adjoint \BbbH t-matrix T is a projection, if and only if

T 2 = T, \mathrm{i}\mathrm{n} \scrM t,N ,
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if and only if

hi,j =

N\sum 
k=1

hi,kh
\circledast 
j,k \in \BbbH t, \forall i, j = 1, ..., N,

by (4.22). Therefore, the projection-property (4.23) holds on \scrM t,N . \square 

The above theorem characterizes the projection-property on \scrM t,N by (4.23).

Corollary 4.10. An operator Mh \in M (\BbbH t) with h \in \BbbH t is a projection on \BbbH N
t , if and

only if

either Mh =M1
\mathrm{i}\mathrm{s}\mathrm{o}
= IN , or Mh =M0

\mathrm{i}\mathrm{s}\mathrm{o}
= ON , (4.24)

where ON is the zero \BbbH t-matrix of \scrM t,N whose \BbbH t-entries are 0 = 0 + 0i+ 0jt + 0kt in
\BbbH t.

Proof. By applying (4.23), one has that Mh
\mathrm{i}\mathrm{s}\mathrm{o}
= hIN is a projection, if and only if

M\ast 
h =Mh\circledast 

\mathrm{i}\mathrm{s}\mathrm{o}
= h\circledast IN = hIN = h2IN

\mathrm{i}\mathrm{s}\mathrm{o}
= Mh2 =M2

h ,

on \BbbH N
t , if and only if

h\circledast = h = h2 \mathrm{i}\mathrm{n} \BbbH t.

The first equality h\circledast = h implies that h is a real number in \BbbH t, i.e., h = h+0i+0jt +0kt
in \BbbH t with h \in \BbbR . So, the second equality implies that

h2 = h\Leftarrow \Rightarrow h = 1, \mathrm{o}\mathrm{r} 0, \mathrm{i}\mathrm{n} \BbbR .
So, the operator Mh is a projection, if and only if

\mathrm{e}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}Mh =M1
\mathrm{i}\mathrm{s}\mathrm{o}
= IN , \mathrm{o}\mathrm{r}Mh =M0

\mathrm{i}\mathrm{s}\mathrm{o}
= ON , \mathrm{i}\mathrm{n} \scrM t,N .

Thus, the relation (4.24) holds. \square 

As a special case of (4.23), one obtains the projection-property (4.24) on M (\BbbH t) in
\scrM t,N .

Now, let T = [hi,j ]N\times N \in \scrM t,N be an \BbbH t-matrix with its adjoint T \ast =
\bigl[ 
h\circledast j,i
\bigr] 
N\times N

\in 
\scrM t,N . Then

T \ast T = [di,j ]N\times N , \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} di,j =

N\sum 
k=1

h\circledast k,ihk,j ,

and (4.25)

TT \ast = [ei,j ]N\times N , \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} ei,j =

N\sum 
k=1

hi,kh
\circledast 
j,k,

by the straightforward computations.

Theorem 4.11. An \BbbH t-matrix T = [hi,j ]N\times N is normal in \scrM t,N , if and only if
N\sum 

k=1

\Bigl( 
h\circledast k,ihk,j  - hi,kh

\circledast 
j,k

\Bigr) 
= 0 = 0 + 0i+ 0jt + 0kt, (4.26)

in \BbbH t, for all i, j = 1, ..., N .

Proof. By definition, a given \BbbH t-matrix T is normal in \scrM t,N , if and only if T \ast T = TT \ast 

in \scrM t,N , if and only if
N\sum 

k=1

h\circledast k,ihk,j =

N\sum 
k=1

hi,kh
\circledast 
j,k, \mathrm{i}\mathrm{n} \BbbH t, \forall i, j = 1, ..., N,

by (4.25), if and only if the relation (4.26) holds, for all i, j = 1, ..., N . \square 
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The above theorem characterizes the normality on \scrM t,N in terms of the \BbbH t-entries of
\BbbH t-matrices of \scrM t,N , by (4.26).

Corollary 4.12. Every element Mh \in M (\BbbH t) for h \in \BbbH t is normal on \BbbH N
t . i.e.,

All elements of M (\BbbH t) are normal on \BbbH N
t . (4.27)

Proof. Recall again that if Mh \in M (\BbbH t), then it is isomorphic to hIN \in \scrM t,N . So,

M\ast 
h

\mathrm{i}\mathrm{s}\mathrm{o}
= (hIN )

\ast 
= h\circledast IN

\mathrm{i}\mathrm{s}\mathrm{o}
= Mh\circledast , \mathrm{o}\mathrm{n} \BbbH N

t .

Thus, one can get that: Mh is normal on \BbbH N
t , if and only if hIN is normal in \scrM t,N , if

and only if
(hIN )

\ast 
(hIN ) =

\bigl( 
h\circledast h

\bigr) 
IN =

\bigl( 
hh\circledast 

\bigr) 
IN = (hIN ) (hIN )

\ast 
,

in \scrM t,N , if and only if (4.28)

h\circledast h = hh\circledast , \mathrm{i}\mathrm{n} \BbbH t.

However, every t-scaled hypercomplex number h = a+bjt \in \BbbH t with a, b \in \BbbC automatically
satisfies that

h\circledast h = | a| 2  - t | b| 2 =
\Bigl( 
| a| 2  - t | b| 2

\Bigr) 
+ 0i+ 0jt + 0kt = hh\circledast ,

in \BbbH t. It implies that every operator Mh \in M (\BbbH t), isomorphic to hIN \in \scrM t,N , satisfies
(4.28). Therefore, the normality (4.27) on M (\BbbH t) holds. \square 

The above corollary shows that every operator of M (\BbbH t) is normal on \BbbH N
t by (4.26)

and (4.28).
Also, by (4.25), we obtain the following isometry-property on \scrM t,N .

Theorem 4.13. An \BbbH t-matrix T = [hi,j ]N\times N is an isometry in \scrM t,N , if and only if

N\sum 
k=1

h\circledast k,ihk,j =

\left\{   1 \mathrm{i}\mathrm{f} i = j \in \{ 1, ..., N\} 

0 \mathrm{i}\mathrm{f} i \not = j \in \{ 1, ..., N\} ,
(4.29)

in \BbbH t, for all i, j = 1, ..., N .

Proof. By definition, a given \BbbH t-matrix T is an isometry in \scrM t,N , if and only if T \ast T = IN
in \scrM t,N , if and only if all main-diagonal \BbbH t-entries of T \ast T are identical to 1 = 1 + 0i+
0jt+0kt in \BbbH t, and all off-diagonal \BbbH t-entries of T \ast T are identical to 0 = 0+0i+0jt+0kt
in \BbbH t, if and only if the relation (4.29) holds by (4.25). \square 

The above theorem characterizes the isometry-property on \scrM t,N by (4.29). So, one
obtains a following special case.

Corollary 4.14. An operator Mh \in M (\BbbH t), with h = a+ bjt for a, b \in \BbbC , is an isometry
on \BbbH N

t , if and only if

| a| 2 = 1 + t | b| 2, in \BbbC . (4.30)

Proof. Since Mh
\mathrm{i}\mathrm{s}\mathrm{o}
= hIN in \scrM t,N , it is an isometry on \BbbH N

t , if and only if hIN is an
isometry in \scrM t,N , if and only if

(hIN )
\ast 
(hIN ) =

\bigl( 
h\circledast h

\bigr) 
IN = IN , \mathrm{i}\mathrm{n} \scrM t,N ,

if and only if
h\circledast h = 1, \mathrm{i}\mathrm{n} \BbbH t,

if and only if
h\circledast h = | a| 2  - t | b| 2 = 1, \mathrm{i}\mathrm{n} \BbbH t,

if and only if the relation (4.30) holds. \square 
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The above corollary characterizes the isometry-property on M (\BbbH t) on \BbbH N
t by (4.30).

Let’s consider an interesting application of (4.30). Suppose h = x+ ujt with x, u \in \BbbR in
\BbbH t. i.e., h is a t-hyperbolic number in the sense of [3]. Recall that, in [3], we considered a
sub-structure,

\BbbD t = \{ x+ 0i+ ujt + 0kt \in \BbbH t : x, u \in \BbbR \} \subset \BbbH t,

called the t-scaled hyperbolics. Remark that \BbbD  - 1 is isomorphic to the complex field \BbbC ;
and \BbbD 1 is isomorphic to the classical hyperbolic numbers \scrD =

\bigl\{ 
x+ uj : x, u \in \BbbR , j2 = 1

\bigr\} 
;

and \BbbD 0 is isomorphic to the dual numbers \sansD =
\bigl\{ 
x+ uJ : x, u \not = \BbbR , J2 = 0

\bigr\} 
. If w =

x+ ujt \in \BbbD t in \BbbH t with x, u \in \BbbR , then

w\circledast w = x2  - tu2 = ww\circledast , \mathrm{i}\mathrm{n} \BbbD t \subset \BbbH t,

as a \BbbR -quantity. So, by (4.30), Mw
\mathrm{i}\mathrm{s}\mathrm{o}
= wIN is an isometry on \BbbH N

t , if and only if x2 - tu2 = 1
in \BbbR , if and only if \left\{   x2 + | t| u2 = 1 \mathrm{i}\mathrm{f} t =  - | t| < 0

x2  - tu2 = 1 \mathrm{i}\mathrm{f} t > 0
x2 = 1 \mathrm{i}\mathrm{f} t = 0,

for t \in \BbbR . It shows that: Mw is an isometry on \BbbH N
t , if and only if (i) (x, u) \in \BbbR 2 is

contained in the boundary of the oval figure
\bigl\{ 
(x, u) : x2 + | t| u2 = 1

\bigr\} 
in \BbbR 2 if t < 0; (ii)

(x, u) \in \BbbR 2 is contained in the hyperbolic lines
\bigl\{ 
(x, u) : x2 = tu2

\bigr\} 
if t > 0; and (iii)

(x, u) \in \BbbR 2 is contained in the vertical straight lines \{ (\pm 1, u) : u \in \BbbR \} in \BbbR 2 if t = 0.

Theorem 4.15. An \BbbH t-matrix T = [hi,j ]N\times N is unitary in \scrM t,N , if and only if

N\sum 
k=1

h\circledast k,ihk,j =
N\sum 

k=1

\Bigl( 
hi,kh

\circledast 
j,k

\Bigr) 
=

\left\{   1 \mathrm{i}\mathrm{f} i = j \in \{ 1, ..., N\} 

0 \mathrm{i}\mathrm{f} i \not = j \in \{ 1, ..., N\} ,
(4.31)

in \BbbH t, for all i, j = 1, ..., N .

Proof. By definition, a given \BbbH t-matrix T is unitary in \scrM t,N , if and only if it is both a
normal operator, and an isometry in \scrM t,N , if and only if

N\sum 
k=1

h\circledast k,ihk,j =

N\sum 
k=1

\Bigl( 
hi,kh

\circledast 
j,k

\Bigr) 
,

and
N\sum 

k=1

h\circledast k,ihk,j =

\left\{   1 \mathrm{i}\mathrm{f} i = j \in \{ 1, ..., N\} 

0 \mathrm{i}\mathrm{f} i \not = j \in \{ 1, ..., N\} ,

by the normality (4.26), respectively, by the isometry-property (4.29), for all i, j = 1, ..., N ,
if and only if the condition (4.31) holds. \square 

The unitarity on \scrM t,N is characterized by (4.31).

Corollary 4.16. An operator Mh \in M (\BbbH t), with h = a + bjt \in \BbbH t for a, b \in \BbbC , is
unitary on \BbbH N

t , if and only if it is an isometry in the sense of (4.30).

Proof. By (4.27), every element of M (\BbbH t) is automatically normal on \BbbH N
t . So, an operator

Mh is unitary on \BbbH N
t , if and only if it is an isometry. And the isometry-property on

M (\BbbH t) is characterized by (4.30). \square 
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5. \BbbH t-Toeplitz Matrices on \BbbH N
t

In this section, we construct, and study a special type of \BbbH t-matrices of \scrM t,N =
MN (\BbbH t) acting on the definite, or indefinite \BbbR -semi-inner-product complete \BbbR -semi-
normed space \BbbH N

t for a fixed N \in \BbbN . In particular, we are interested in Toepliz-like
matrices. Also, the construction of such \BbbH t-matrices are motivated by those of so-called
\BbbH t-Toeplitz operators of [6, 7].

Let’s define an \BbbH t-matrix U by

U =

\left(          

0 0 0 0 \cdot \cdot \cdot 0
1 0 0 0 \cdot \cdot \cdot 0
0 1 0 0 \cdot \cdot \cdot 0

0 0 1 0
. . .

...
...

...
. . . . . . . . . 0

0 0 \cdot \cdot \cdot 0 1 0

\right)          
N\times N

\in \scrM t,N ,

having its \BbbR -adjoint U\ast ,

U\ast =

\left(           

0 1 0 0 \cdot \cdot \cdot 0
0 0 1 0 \cdot \cdot \cdot 0

0 0 0 1
. . .

...

0 0 0 0
. . . 0

...
...

...
. . . . . . 1

0 0 0 \cdot \cdot \cdot 0 0

\right)           
N\times N

\in \scrM t,N ,

where 1 = 1 + 0i+ 0jt + 0kt, 0 = 0 + 0i+ 0jt + 0kt \in \BbbH t. i.e.,

U ((f1, f2, ..., fN - 1, fN )) = (0, f1, f2..., fN - 1) ,

and (5.1)

U\ast ((f1, f2, ..., fN - 1, fN )) = (f2, ..., fN - 1, fN , 0) ,

on \BbbH N
t , for all (f1, ..., fN ) \in \BbbH N

t .

Definition 5.1. We call the \BbbH t-matrices U and U\ast of (5.1), the forward, respectively,
the backward shifts on \BbbH N

t .

It is not hard to check that

UN = ON = (U\ast )
N
, \mathrm{i}\mathrm{n} \scrM t,N ,

more generally, (5.2)

UN+k = ON = (U\ast )
N+k

, \mathrm{i}\mathrm{n} \scrM t,N , \forall k \in \BbbN 0 = \BbbN \cup \{ 0\} .
Equivalently, the forward, and the backward shifts U and U\ast of (5.1) are nilpotent in
\scrM t,N with their nilpotences N , in the sense that: the quantity N \in \BbbN is the smallest
quantity making UN = ON = (U\ast )

N in \scrM t,N .

Proposition 5.2. Let U,U\ast \in \scrM t,N be the forward, respectively, the backward shifts of
(5.1).

U and U\ast are nilpotent with their nilpotences N . (5.3)

Proof. By the definition (5.1) of the shifts U,U\ast \in \scrM t,N , there exists N \in \BbbN , such that

UN+k = ON = (U\ast )
N+k \in \scrM t,N , \forall k \in \BbbN 0.

Therefore, the nilpotent property (5.3) holds in \scrM t,N . \square 
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From the forward shift U of (5.1) and its \BbbR -adjoint U\ast , the backward shift of (5.1),
satisfying (5.3), we define a certain type of \BbbH t-matrices.

Definition 5.3. Let U and U\ast be the forward, and the backward shifts (5.1) in \scrM t,N .
An \BbbH t-matrix,

T =

N - 1\sum 
k=1

(U\ast )
k
(h - kIN ) +

N - 1\sum 
k=0

Uk (hkIN ) \in \scrM t,N

with axiomatization: (5.4)

U0 = IN = (U\ast )
0 \in \scrM t,N ,

is called a \BbbH t-Toeplitz matrix, where hj \in \BbbH t, for all j \in \{ 0,\pm 1, ...,\pm (N  - 1)\} . i.e., an
\BbbH t-matrix,

T =

\left(         

h0 h - 1 h - 2 \cdot \cdot \cdot h - (N - 1)

h1 h0 h - 1
. . .

...

h2 h1 h0
. . . h - 2

...
...

. . . . . . h - 1

hN - 1 hN - 2 \cdot \cdot \cdot h1 h0

\right)         
\in \scrM t,N ,

is called an \BbbH t-Toeplitz matrix of \scrM t,N .

By (5.4), every \BbbH t-Toeplitz matrix T = [hi - j ]N\times N \in \scrM t,N is isomorphic to

T =

N - 1\sum 
k=1

(U\ast )
k
Mh - k

+

N - 1\sum 
k=0

UkMh \in B\BbbR 
\bigl( 
\BbbH N

t

\bigr) 
,

where Mh \in B\BbbR 
\bigl( 
\BbbH N

t

\bigr) 
are in the sense of (3.22), isomorphic to hIN \in \scrM t,N , for all

h \in \BbbH t.
If the readers check the forward shift \bfU , and the backward shift \bfU \ast acting on the

\BbbH t-Hardy space \bfl t:2
\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2 in [6, 7], i.e.,

\bfU =

\left(      
0 0 0 \cdot \cdot \cdot 
1 0 0 \cdot \cdot \cdot 

0 1 0
. . .

...
. . . . . . . . .

\right)      , \mathrm{a}\mathrm{n}\mathrm{d} \bfU \ast =

\left(       
0 1 0 \cdot \cdot \cdot 

0 0 1
. . .

0 0 0
. . .

...
...

. . . . . .

\right)       ,

on (5.5)

\bfl t:2 =

\left\{         
\left(     

f0
f1
f2
...

\right)     :

\infty \sum 
n=0

\| fn\| 2t <\infty 

\right\}         ,

then they are “not” nilpotent in the sense that: there does not exist any natural quantity
n \in \BbbN , such that \bfU n = O = (\bfU \ast )

n on \bfl t:2
\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2, where O is the zero operator on

\bfl t:2
\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2. Also, the readers can check, in [7], that the \BbbH t-Toeplitz operators \bfT are

defined by

\bfT =

\infty \sum 
n=1

(\bfU \ast ) (h - nI) +

\infty \sum 
n=0

\bfU n (hnI) ,

with (5.6)

(h - n)
\infty 
n=1 , (hn)

\infty 
n=0 \in \bfl \infty ,
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satisfying

\mathrm{s}\mathrm{u}\mathrm{p}

\Biggl\{ \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty \sum 

n=1

qnh - n

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
t

: q \in \BbbU t

\Biggr\} 
<\infty ,

and

\mathrm{s}\mathrm{u}\mathrm{p}

\Biggl\{ \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty \sum 

n=0

qnhn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
t

: q \in \BbbU t

\Biggr\} 
<\infty ,

on the \BbbH t-Hardy space \bfl t:2
\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2, where \bfU and \bfU \ast are in the sense of (5.5) and \BbbU t is

the unit open ball of \BbbH t, and where I is the identity operator on \bfl t:2
\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2. So, if we

compress the \BbbH t-Toeplitz operators (5.6) acting on the \BbbH t-Hardy space \bfl t:2
\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2 to

those on \bfl t:2N
\mathrm{i}\mathrm{s}\mathrm{o}
= \bfH t:2:N

\mathrm{i}\mathrm{s}\mathrm{o}
= \BbbH N

t , then the compressions of \BbbH t-Toeplitz operators becomes
our \BbbH t-Toeplitz matrices of \scrM t,N .

Theorem 5.4. Let \bfT \in B\BbbR 
\bigl( 
\bfl t:2
\bigr) 

be an \BbbH t-Toeplitz operator (5.6), introduced in [7]. For
N \in \BbbN , if

P[N ]
\mathrm{d}\mathrm{e}\mathrm{f}
=

\left(                   

1 0 \cdot \cdot \cdot 0 \cdot \cdot \cdot \cdot \cdot \cdot 

0 1
. . .

... \cdot \cdot \cdot 

0 0
. . . 0

. . .
. . . . . . 1\underbrace{}  \underbrace{}  

(N,N)-th

0
. . .

...
. . . 0 0 0

...
. . . 0 0

. . .
. . . . . .

\right)                   

,

in B\BbbR 
\bigl( 
\bfl t:2
\bigr) 
, then

P[N ]\bfT P[N ] \in B\BbbR 
\bigl( 
\bfl t:2N

\bigr) 
,

and (5.7)

P[N ]\bfT P[N ]
\mathrm{i}\mathrm{s}\mathrm{o}
= T, the \BbbH t-Toeplitz matrix (5.4) in \scrM t,N .

Proof. By (5.5) and (5.6), one has

\bfT =

\left(          

h0 h - 1 h - 2 h - 3 \cdot \cdot \cdot 

h1 h0 h - 1 h - 2
. . .

h2 h1 h0 h - 1
. . .

h3 h2 h1 h0
. . .

...
. . . . . . . . . . . .

\right)          
\in B\BbbR 

\bigl( 
\bfl t:2
\bigr) 
,
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and hence, if P[N ] \in B\BbbR 
\bigl( 
\bfl t:2
\bigr) 

is the above projection, satisfying P \ast 
[N ] = P[N ] = P 2

[N ] on
\bfl t:2 (e.g., see [7]), then

P[N ]\bfT P[N ] =

\left(            

h0 h - 1 \cdot \cdot \cdot h - (N - 1) 0 \cdot \cdot \cdot 

h1 h0
. . .

...
... \cdot \cdot \cdot 

...
. . . . . . h - 1

... \cdot \cdot \cdot 
hN - 1 \cdot \cdot \cdot h1 h0 0 \cdot \cdot \cdot 

0 \cdot \cdot \cdot \cdot \cdot \cdot 0 0
. . .

...
...

...
...

. . . . . .

\right)            
,

identified with

P[N ]\bfT P[N ] =

\biggl( 
T O
O O

\biggr) 
, as a operator-block matrix,

where T is the \BbbH t-Toeplitz matrix (5.4) in \scrM t,N . Thus, this compression P[N ]\bfT P[N ] is a
well-defined on the \BbbR -subspace \bfl t:2N of the \BbbH t-Hardy space \bfl t:2, and hence,

P[N ]\bfT P[N ]
\mathrm{i}\mathrm{s}\mathrm{o}
= T, \mathrm{o}\mathrm{n} \BbbH N

t
\mathrm{i}\mathrm{s}\mathrm{o}
= \bfl t:2N .

Therefore, the compressions P[N ]\bfT P[N ] of \BbbH t-Toeplitz operators \bfT of (5.6) by the projec-
tion P[N ] are (isomorphic to) our \BbbH t-Toeplitz matrices T of (5.4). \square 

The above theorem shows the relation between \BbbH t-Toeplitz operators of [7] and our
\BbbH t-Toeplitz matrices by (5.7). The \BbbH t-Toeplitz operators (5.4) of \scrM t,N are (isomorphic
to) the P[N ]-compression of \BbbH t-Toeplitz operators (5.6) of B\BbbR 

\bigl( 
\bfl t:2
\bigr) 
.

Now, consider the following projections Pk and Qk of \scrM t,N ,

Pk =

\left(              

1
1 0

. . .
1\underbrace{}  \underbrace{}  

(k,k)-th

0

0
. . .

0

\right)              
N\times N

\in \scrM t,N ,

and (5.8)

Qk =

\left(              

0 0
. . .

0
1\underbrace{}  \underbrace{}  

(N - k,N - k)-th

1
. . .

0 1

\right)              
N\times N

\in \scrM t,N ,

for all k \in \{ 1, ..., N\} .
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Theorem 5.5. If Pk and Qk are the projections (5.8) in \scrM t,N , for k = 1, ..., N , then
the forward, and the backward shifts U and U\ast of (5.1) satisfy that:

(U\ast )
n1 Un2 =

\left\{           
(U\ast )

n1 - n2 PN - n2 \mathrm{i}\mathrm{f} n1 + n2 < 2N  - 1, n1 \geq n2

PN - n1
Un2 - n1 \mathrm{i}\mathrm{f} n1 + n2 < 2N  - 1, n1 \leq n2

ON \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},

and (5.9)

Un1 (U\ast )
n2 =

\left\{           
Un1 - n2QN - n2

\mathrm{i}\mathrm{f} n1 + n2 < 2N  - 1, n1 \geq n2

QN - n1
(U\ast )

n2 - n1 \mathrm{i}\mathrm{f} n1 + n2 < 2N  - 1, n1 \leq n2

ON \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},

for all n1, n2 \in \BbbN .

Proof. By (5.1), one obtains that

U\ast U = PN - 1, \mathrm{a}\mathrm{n}\mathrm{d} UU\ast = QN - 1, \mathrm{i}\mathrm{n} \scrM t,N .

Inductively, one can get that

(U\ast )
n
Un = PN - n, U

n (U\ast )
n
= QN - n, \forall n = 1, ..., N, (5.10)

and, by the nilpotent-property (5.3), if either n1 \geq N , or n2 \geq N , then

(U\ast )
n1 Un2 = ON = Un2 (U\ast )

n1 .

Equivalently, if n1 + n2 \geq 2N  - 1, then

(U\ast )
n1 Un2 = ON = (U\ast )

n2 Un1 , \mathrm{i}\mathrm{n} \scrM t,N .

Now, suppose n1 + n2 < 2N  - 1. If n1 \geq n2, then

(U\ast )
n1 Un2 = (U\ast )

n1 - n2 ((U\ast )
n2 Un2) = (U\ast )

n1 - n2 PN - n2
,

and
Un1 (U\ast )

n2 = Un1 - n2 (Un2 (U\ast )
n2) = Un1 - n2QN - n2

,

by (5.10). Meanwhile, if n1 \leq n2, then

(U\ast )
n1 Un2 = ((U\ast )

n1 Un1)Un2 - n1 = PN - n1U
n2 - n1 ,

and
Un1 (U\ast )

n2 = (Un1 (U\ast )
n1) (U\ast )

n2 - n1 = QN - n1
(U\ast )

n2 - n1 ,

in \scrM t,N , by (5.10). Therefore, the formulas in (5.9) hold true. \square 

The formulas of (5.9) illustrate the following properties of U and U\ast on \scrM t,N .

Corollary 5.6. (1) The forward, and the backward shifts U and \itU \ast are not self-adjoint
in \scrM t,N , and hence, they are not projections in \scrM t,N , either.
(2) U and U\ast are not normal in Mt,N .
(3) U and U\ast are not isometries in \scrM t,N , and hence, they are not unitary in \scrM t,N ,
either.

Proof. Clearly, the forward shift U is not self-adjoint, since its \BbbR -adjoint is the backward
shift U\ast in \scrM t,N . By the non-self-adjointness, these \BbbH t-matrices cannot be projections
in \scrM t,N .

By (5.8) and (5.9), one has that

U\ast U = PN - 1 \not = QN - 1 = UU\ast , \mathrm{i}\mathrm{n} \scrM t,N ,
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implying the non-normality of both U and U\ast in \scrM t,N . It implies also that neither U
nor U\ast is an isometry in \scrM t,N , and hence, they cannot be unitary in \scrM t,N . \square 

The above corollary shows that the generating operators \{ U,U\ast \} of all \BbbH t-Toeplitz
matrices (5.4) of \scrM t,N disobey the fundamental operator-theoretic properties, self-
adjointness, projection-property, normality, isometry-property, and unitarity. However,
such a nilpotent \BbbH t-matrices satisfy the following additional property.

Definition 5.7. An \BbbH t-matrix T \in \scrM t,N is said to be a partial isometry, if T \ast T is a
projection in \scrM t.

As in the usual operator theory, by definition, it is not difficult to check that T is a
partial isometry, if and only if T \ast T is a projection, if and only if TT \ast is a projection, if
and only if T \ast is a partial isometry, in \scrM t,N , if and only if T = TT \ast T , if and only if
T \ast = T \ast TT \ast , in \scrM t,N .

Theorem 5.8. The forward shift U is a partial isometry in \scrM t,N , equivalently, the
backward shift U\ast is a partial isometry in \scrM t,N . i.e.,

U and U\ast are partial isometries in \scrM t,N . (5.11)

Proof. The operator-theoretic property (5.11) is immediately proven by (5.9), especially,
by the special case (5.10). Indeed, the operators U\ast U and UU\ast are identified with the
projections PN - 1, respectively, QN - 1 of (5.8), in \scrM t,N . Therefore, the relation (5.11)
holds true.

Independently, one can check that

U (f1, f2, ..., fN ) = (0, f1, ..., fN - 1) ,

and
UU\ast U (f1, ..., fN ) = UPN - 1 (f1, ..., fN )

= U (f1, ..., fN - 1, 0)
= (0, f1, ..., fN - 1) ,

for all (f1, ..., fN ) \in \BbbH N
t , implying that

U = UU\ast U, \mathrm{i}\mathrm{n} \scrM t,N .

Thus, the forward shift U is a partial isometry, and hence, its \BbbR -adjoint U\ast , the backward
shift, is a partial isometry, too. Therefore, the relation (5.11) is re-proven. \square 

The above corollary and theorem show that even though the \BbbH t-matrices U and U\ast 

do not satisfy fundamental operator-theoretic properties introduced in Section 4, they
are characterized to be partial isometries by (5.11). The following corollary summarize
the operator-theoretic properties of U and U\ast in \scrM t,N .

Corollary 5.9. The forward, and the backward shifts U and U\ast are nilpotent partial
isometries in \scrM t,N with their nilpotences N .

Proof. It is shown by (5.3) and (5.11). \square 

From the partial isometries U and U\ast , if

n1, n2 \in \BbbN \mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{y} n1 + n2 < 2N  - 1,

and (5.12)

Sn1,n2

\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}
= (U\ast )

n1 Un1 + Un2 (U\ast )
n2 = PN - n1 +QN - n2 ,
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in \scrM t,N \setminus \{ ON\} , then

S1,1 = PN - 1 +QN - 1 =

\left(       
1 0

2
. . .

2
0 1

\right)       ,

more generally, if | n1  - n2| > N
2 under the condition of (5.12), then

Sn1,n2 =

\left(                 

1 0
. . .

1
2

| n1 - n2| -times
. . .

2
1

. . .
0 1

\right)                 
,

meanwhile (5.13)

Sn1,n2
=

\left(                 

1 0
. . .

1
0

| n1 - n2| -times
. . .

0
1

. . .
0 1

\right)                 
,

if | n1  - n2| < N
2 under the condition of (5.12).

Proposition 5.10. Under the condition (5.12), an \BbbH t-matrix Sn1,n2 \in \scrM t,N satisfies
that

Sn1,n2
= PN - n1

+QN - n2
= [hi,j ]N\times N ,

with (5.14)

hk,k =

\left\{                   

1 \mathrm{i}\mathrm{f} k = 1, ..., N  - n2, N  - n1, ..., N

2 \mathrm{i}\mathrm{f} | n1  - n2| > N
2 , k = N  - n2 + 1, ..., N  - | n1  - n2| ,

0 \mathrm{i}\mathrm{f} | n1  - n2| < N
2 , k = N  - n2 + 1, ..., N  - | n1  - n2| 

1 \mathrm{i}\mathrm{f} | n1  - n2| = 0, \forall k = 1, ..., N,

and
hk1,k2

= 0 = 0 + 0i+ 0jt + 0kt \in \BbbH t, \mathrm{i}\mathrm{f} k1 \not = k2.

Proof. Under the condition (5.12), an \BbbH t-matrix Sn1,n2
is a non-zero operator of \scrM t,N by

(5.9). Moreover, by (5.13), one can get the resulted \BbbH t-matrix (5.14). In particular, the
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last result of (5.14) for the case where | n1  - n2| = 0 is verified again by (5.13). Remark
that this case can happen only when n1 = n2 in \BbbN , and N = n1 + n2 is even in \BbbN . \square 

By (5.14), one can obtain the following corollary immediately.

Corollary 5.11. Under the condition (5.12), if Sn1,n2
\in \scrM t,N is in the sense of (5.12),

then

Sn1,n2
is a projection in \scrM t,N ,\Leftarrow \Rightarrow | n1  - n2| = 0, or | n1  - n2| < N

2 . (5.15)

Proof. By (5.12), the self-adjointness of Sn1,n2
is guaranteed because

Sn1,n2
= PN - n1

+QN - n2
\in \scrM t,N

is the sum of two projections, and hence,

S\ast 
n1,n2

= (PN - n1
+QN - n2

)
\ast 
= PN - n1

+QN - n2
= Sn1,n2

,

in \scrM t,N . So, to check the projection-property of Sn1,n2
, it is sufficient to check its

idempotence; S2
n1,n2

= Sn1,n2 in \scrM t,N . However, by (5.14), we have that

Sn1,n2
=

\left(                 

1 0
. . .

1
2

. . .
2

1
. . .

0 1

\right)                 
,

or

Sn1,n2
=

\left(                 

1
. . .

1
0

. . .
0

1
. . .

1

\right)                 
,

or
Sn1,n2 = IN ,\Leftarrow \Rightarrow n1 = n2, \mathrm{a}\mathrm{n}\mathrm{d} N = n1 + n2 \mathrm{i}\mathrm{s} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n} \mathrm{i}\mathrm{n} \BbbN .

It is easy to check that the first case where | n1  - n2| > N
2 does not provide Sn1,n2

as
a projection, since S2

n1,n2
\not = Sn1,n2 in \scrM t,N . However, the other two cases give us a

projection Sn1,n2 , satisfying

S2
n1,n2

= Sn1,n2
, \mathrm{i}\mathrm{n} \scrM t,N .

So, the projection-property (5.15) holds for Sn1,n2
, where n1, n2 \in \BbbN satisfy the condition

of (5.12). \square 
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6. Some Statistical-Analytic Data on \scrM t,N

In this section, we establish two different types of statistical-analytic structures on our
\BbbH t-matrix algebra \scrM t,N , for a fixed scale t \in \BbbR , and a fixed quantity N \in \BbbN , acting on
the definite, or indefinite \BbbR -semi-inner-product complete \BbbR -semi-normed space \BbbH N

t . In
particular, we are considering some statistical data up to the two non-equivalent \BbbR -linear
functionals on \scrM t,N . This study is motivated by the well-known free probability theory
(e.g., see [22, 25]). But the free probability theory is established over the complex field \BbbC 
on noncommutative algebras “over \BbbC .” As we have seen above, our structures are “over
the real field \BbbR .” So, we cannot use, or apply the concepts, methods, and languages from
free probability, however, we mimic the free-probabilistic techniques and tools on our
structure \scrM t,N over \BbbR .

6.1. The Noncommutative Statistical Space (\scrM t,N , \varphi 1) over \BbbR . On the \BbbH t-matrix
algebra \scrM t,N , let’s define a \BbbR -linear functional \varphi 1 : \scrM t,N \rightarrow \BbbR by

\varphi 1 (T )
\mathrm{d}\mathrm{e}\mathrm{f}
= [T (\bfv \bfone ) ,\bfv \bfone ]t,N , \forall T \in \scrM t,N ,

where (6.1.1)

\bfv 1 = (1, 0, 0, ..., 0) \in \BbbH N
t ,

where [, ]t,N is the definite, or indefinite semi-inner product (4.10) on \BbbH N
t . Then, by the

bilinearity of [, ]t,N on \BbbH N
t , the morphism \varphi 1 of (6.1.1) is indeed a well-defined \BbbR -linear

functional on \scrM t,N . Moreover, it is bounded since

| \varphi 1 (T )| =
\bigm| \bigm| \bigm| [T (\bfv 1) ,\bfv \bfone ]t,N

\bigm| \bigm| \bigm| \leq \| T\| \| \bfv 1\| 2t,N = \| T\| ,

for all T \in \scrM t,N , where \| \bfv 1\| t,N =
\sqrt{} 

\| 1\| 2t + \| 0\| 2t + ...+ \| 0\| 2t = 1 by (4.11).
By (6.1.1), if T = [hi,j ]N\times N \in \scrM t,N , then we have that

\varphi 1 (T ) =

\left[       [hi,j ]N\times N

\left(       
1
0
0
...
0

\right)       ,

\left(       
1
0
0
...
0

\right)       

\right]       
t,N

=

\left[       

\left(       
h1,1
h2,1
h3,1

...
hN,1

\right)       ,

\left(       
1
0
0
...
0

\right)       

\right]       
t,N

= [h1,1, 1]t + [h2,1, 0]t + [h3,1, 0]t + ...+ [hN,1, 0]t

= \tau (h1,11
\circledast ) + \tau (h2,10

\circledast ) + \tau (h3,10
\circledast ) + ...+ \tau (hN,10

\circledast )

= \tau (h1,1) = \mathrm{R}\mathrm{e} (h1,1),

implying that (6.1.2)

\varphi 1

\Bigl( 
[hi,j ]N\times N

\Bigr) 
= \tau (h1,1) = \mathrm{R}\mathrm{e} (h1,1) .

Thus, we obtain that

\varphi 1 (IN ) = \tau (1) = \mathrm{R}\mathrm{e} (1) = 1, (6.1.3)

Furthermore, one can get that

\varphi 1

\Bigl( 
[hi,j ]

\ast 
N\times N

\Bigr) 
= \mathrm{R}\mathrm{e}

\bigl( 
h\circledast 1,1

\bigr) 
= \mathrm{R}\mathrm{e} (h1,1) = \varphi 

\Bigl( 
[hi,j ]N\times N

\Bigr) 
, (6.1.4)

demonstrating that, indeed, the linear functional \varphi 1 of (6.1.1) is \BbbR -valued up to the
\BbbR -adjoint (\ast ) on \scrM t,N .
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Definition 6.1. The pair (A,\psi ) of a (commutative, or noncommutative) \BbbR -algebra A
and a \BbbR -linear functional \psi on A is called a (commutative, respectively, noncommutative)
statistical space over \BbbR (in short, \BbbR -statistical space). In particular, if the \BbbR -algebra A
contains its unity 1A, and \psi (1A) = 1, then the \BbbR -statistical space (A,\psi ) is said to be
unital. Also, if A is a topological \BbbR -algebra, and if \psi is bounded, then (A,\psi ) is called a
topological \BbbR -statistical space. Similarly, if A is a \BbbR -\ast -algebra, then (A,\psi ) is also called
a \ast -statistical space over \BbbR (in short, \BbbR -\ast -statistical space).

By definition, one can get the following result.

Proposition 6.2. The pair (\scrM t,N , \varphi 1) is a complete semi-normed unital noncommutative
\BbbR -\ast statistical space, satisfying

\varphi 1

\Bigl( 
[hi,j ]

\ast 
N\times N

\Bigr) 
= \mathrm{R}\mathrm{e}

\bigl( 
h\circledast 1,1

\bigr) 
= \mathrm{R}\mathrm{e} (h1,1) = \varphi 1

\Bigl( 
[hi,j ]N\times N

\Bigr) 
.

Proof. By definition, the \BbbH t-matrix algebra \scrM t,N is a well-defined complete (operator-
)semi-normed(-topological) noncommutative \BbbR -\ast -algebra. Also, by (6.1.1), the linear
functional \varphi 1 is bounded, and unital by (6.1.3). Thus, the pair (\scrM t,N , \varphi 1) forms a
complete semi-normed unital \BbbR -\ast -statistical space. The formula is shown by (6.1.2) and
(6.1.4). \square 

The above proposition characterizes the structure (\scrM t,N , \varphi 1) as a noncommutative
topological unital \BbbR -\ast -statistical space. On it, let’s consider some statistical data on
\scrM t,N up to \varphi 1.

Theorem 6.3. Let Tl =
\Bigl[ 
h
(l)
i,j

\Bigr] 
N\times N

\in (\scrM t,N , \varphi 1), for l = 1, ..., n, for n \in \BbbN . Then

\varphi 1

\biggl( 
n\prod 

l=1

Tl

\biggr) 
= \mathrm{R}\mathrm{e}

\Biggl( \sum 
(k1,...,kn - 1)\in \{ 1,...,N\} n - 1

h
(1)
1,k1

h
(2)
k1,k2

h
(3)
k2,k3

...h
(n)
kn - 1,1

\Biggr) 
. (6.1.5)

Proof. Under hypothesis, one has that
n\prod 

l=1

Tl =
n\prod 

l=1

\Bigl[ 
h
(l)
i,j

\Bigr] 
N\times N

=

\biggl( \Bigl[ 
h
(1)
i,j

\Bigr] 
N\times N

\Bigl[ 
h
(2)
i,j

\Bigr] 
N\times N

\biggr) 
(T3...Tn)

=

\Biggl( \Biggl[ 
N\sum 

k1=1

h
(1)
i,k1

h
(2)
k1,j

\Biggr] 
N\times N

\Bigl[ 
h
(3)
i,j

\Bigr] 
N\times N

\Biggr) 
(T4...Tn)

=

\Biggl[ 
N\sum 

k2=1

\Biggl( 
N\sum 

k1=1

h
(1)
i,k1

h
(2)
k1,k2

\Biggr) 
h
(3)
k2,j

\Biggr] 
N\times N

(T4...Tn)

=

\Biggl[ \sum 
(k1,k2)\in \{ 1,...,N\} 2

h
(1)
i,k1

h
(2)
k1,k2

h
(3)
k2,j

\Biggr] 
N\times N

(T4...Tn) = ...

... =

\Biggl[ \sum 
(k1,...,kn - 1)\in \{ 1,...,N\} n - 1

h
(1)
i,k1

h
(2)
k1,k2

...h
(n)
kn - 1,j

\Biggr] 
N\times N

,

in \scrM t,N , having its (1, 1)-entry, (6.1.6)\sum 
(k1,...,kn - 1)\in \{ 1,...,N\} n - 1

h
(1)
1,k1

h
(2)
k1,k2

h
(3)
k2,k3

...h
(n)
kn - 1,1

\in \BbbH t.

Thus,

\varphi 1

\Biggl( 
n\prod 

l=1

Tl

\Biggr) 
= \mathrm{R}\mathrm{e}

\left(  \sum 
(k1,...,kn - 1)\in \{ 1,...,N\} n - 1

h
(1)
1,k1

h
(2)
k1,k2

...h
(n)
kn - 1,1

\right)  ,

by (6.1.2) and (6.1.6). Therefore, the analytic data (6.1.5) holds. \square 
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The analytic data (6.1.5) provides a general tool to compute the statistical information
on (\scrM t,N , \varphi 1).

Theorem 6.4. Let Mhl
\in M (\BbbH t) with hl \in \BbbH t, for l = 1, ..., s, for s \in \BbbN , isomorphic to

Tl = hlIN \in (\scrM t,N , \varphi 1), for all l = 1, ..., s. Then, for any

(l1, ..., ln) \in \{ 1, ..., s\} n , \forall n \in \BbbN ,

we have (6.1.7)

\varphi 1

\Biggl( 
n\prod 

k=1

Tlk

\Biggr) 
= \mathrm{R}\mathrm{e}

\Biggl( 
n\prod 

k=1

hlk

\Biggr) 
= \tau 

\Biggl( 
n\prod 

k=1

hlk

\Biggr) 
.

Proof. Recall that every multiplication operator Mh \in M (\BbbH t) acting on \BbbH N
t is isomorphic

to the \BbbH t-matrix hIN \in \scrM t,N , for all h \in \BbbH t. So, under hypothesis, we have that
n\prod 

k=1

Tlk =

n\prod 
k=1

(hlkIN ) =

\Biggl( 
n\prod 

k=1

hlk

\Biggr) 
IN \in \scrM t,N ,

by (6.1.6), having its (1, 1)-entry,
n\prod 

k=1

hlk \in \BbbH t, \forall (l1, ..., ln) \in \{ 1, ..., s\} n , \forall n \in \BbbN .

Thus, by (6.1.2), one has that

\varphi 1

\Biggl( 
n\prod 

k=1

Tlk

\Biggr) 
= \mathrm{R}\mathrm{e}

\Biggl( 
n\prod 

k=1

hlk

\Biggr) 
,

for all (l1, ..., ln) \in \{ 1, ..., s\} n, for all n \in \BbbN . Therefore the analytic data (6.1.7) holds. \square 

If we understand the pair (\BbbH t, \tau ) as a complete semi-normed unital \BbbR -\ast -statistical
space in the sense of Definition 42, then one can conclude from (6.1.7) as follow.

Corollary 6.5. If \scrM (\BbbH t) = \{ hIN : h \in \BbbH t\} is a \BbbR -\ast -subalgebra of \scrM t,N , consisting of
all \BbbH t-constant matrices, then\bigl( 

\scrM (\BbbH t) , \varphi 1 = \varphi 1 | \scrM (\BbbH t)

\bigr) \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}
= (\BbbH t, \tau ) ,

in the sense that: (6.1.8)

\exists isometric isomorphism \Psi : \scrM (\BbbH t) \rightarrow \BbbH t,

such that
\tau (\Psi (T )) = \varphi 1 (T ) , \forall T \in \scrM (\BbbH t) .

Proof. By (4.19), the family \scrM (\BbbH t) = \{ hIN : h \in \BbbH t\} is isometrically isomorphic to
M (\BbbH t). Note and recall that M (\BbbH t) is isometrically isomorphic to \BbbH t. So, there exists
an isometric isomorphism,

\Psi : hIN \in \scrM (\BbbH t) \mapsto  - \rightarrow h \in \BbbH t.

Moreover, by (6.1.7), one has that

\varphi 1 (hIN ) = \mathrm{R}\mathrm{e} (h) = \tau (h) = \tau (\Psi (hIN )) \in \BbbR , \forall h \in \BbbH t.

Therefore, the equivalence (6.1.8) of (\scrM (\BbbH t) , \varphi 1) and (\BbbH t, \tau ) holds. \square 

The equivalence (6.1.8) seems trivial, but it means that the statistical data on (\BbbH t, \tau )
are applicable into those on (\scrM t,N , \varphi 1), via the isomorphic relation,

\BbbH t
\mathrm{i}\mathrm{s}\mathrm{o}
= \scrM (\BbbH t)

\mathrm{i}\mathrm{s}\mathrm{o}
= M (\BbbH t) , \mathrm{o}\mathrm{n} \BbbH N

t .
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Proposition 6.6. Let U and U\ast be the forward, and the backward shifts of (\scrM t,N , \varphi 1),
and let n1, n2 \in \BbbN . Then

\varphi 1 (U
n) = 0 = \varphi ((U\ast )

n
) , \forall n \in \BbbN ; (6.1.9)

Also, we have that

n1 = n2
\mathrm{s}\mathrm{a}\mathrm{y}
= n < N =\Rightarrow \varphi 1 ((U

\ast )
n
Un) = 1, \varphi 1 (U

n (U\ast )
n
) = 0

meanwhile, (6.1.10)

\varphi 1 (U
n1 (U\ast )

n2) = 0 = \varphi 1 ((U
\ast )

n1 Un2) , otherwise.

Proof. By definition, the \BbbH t-matrices \{ Un, (U\ast )
n\} n\in \BbbN have their (1, 1)-entries 0 = 0 +

0i+ 0jt + 0kt in \BbbH t. So, the analytic data (6.1.9) holds by (6.1.2). Recall that

(U\ast )
n1 Un2 =

\left\{           
(U\ast )

n1 - n2 PN - n2
\mathrm{i}\mathrm{f} n1 + n2 < 2N  - 1, n1 \geq n2

PN - n1
Un2 - n1 \mathrm{i}\mathrm{f} n1 + n2 < 2N  - 1, n1 \leq n2

ON \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},

and

(U\ast )
n1 Un2 =

\left\{           
QN - n1U

n1 - n2 \mathrm{i}\mathrm{f} n1 + n2 < 2N  - 1, n1 \geq n2

PN - n1 (U
\ast )

n2 - n1 \mathrm{i}\mathrm{f} n1 + n2 < 2N  - 1, n1 \leq n2

ON \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},

by (5.9). So, if n1 \not = n2, then the forward, or the backward shift is involved in computing
(U\ast )

n1 Un2 , and Un1 (U\ast )
n2 , making their (1, 1)-entries be 0 \in \BbbH t, because they “shift”

the main-diagonals of the \BbbH t-diagonal matrices Pk’s, or Qk’s, for k = 1, ..., N . So, if
n1 \not = n2 in \BbbN , then

\varphi 1 ((U
\ast )

n1 Un2) = 0 = \varphi 1 (U
n1 (U\ast )

n2) ,

by (6.1.9). Meanwhile, if n1 = n = n2 < N in \BbbN , then

\varphi 1 ((U
\ast )

n
Un) = \varphi 1 (PN - n) = \mathrm{R}\mathrm{e} (1) = 1,

but
\varphi 1 (U

n (U\ast )
n
) = \varphi 1 (QN - n) = \mathrm{R}\mathrm{e} (0) = 0,

since the projections Pk have their (1, 1)-entries 1 \in \BbbH t, while, the projections Qk have
their (1, 1)-entries 0 \in \BbbH t, whenever k = 1, ..., N  - 1. Of course, if n1 = n2 \geq N , then, by
the nilpotent-property of both U and U\ast ,

\varphi 1 ((U
\ast )

n
Un) = 0 = \varphi 1 (U

n (U\ast )
n
) .

Therefore, the analytic data (6.1.10) holds, too. \square 

The above proposition allows us to verify that “most of” the analytic data of \{ U,U\ast \} ,

\varphi 1

\Biggl( 
n\prod 

l=1

Uel

\Biggr) 
= \varphi 1 (U

e1Ue2 ...Uen) ,

for all (e1, ..., en) \in \{ 1, \ast \} n, for all n \in \BbbN , become 0, by (6.1.9) and (6.1.10). In particular,
if n is odd in \BbbN , the above quantities would be 0. The possible non-zero data would be
only

\varphi 1

\Biggl( 
k\prod 

l=1

(U\ast )
nl Unl

\Biggr) 
= \varphi 1

\Biggl( 
k\prod 

l=1

PN - nl

\Biggr) 
= \mathrm{R}\mathrm{e} (1) = 1,

with (6.1.11)

n1, ..., nk < N, \mathrm{i}\mathrm{n} \BbbN , \forall k \in \BbbN .
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Theorem 6.7. Let U and U\ast be the forward, resp., the backward shifts of (\scrM t,N , \varphi 1).
Then the “only” “non-zero” analytic (or, distributional) data of \{ U,U\ast \} (up to \varphi 1) are

\varphi 1

\Biggl( 
k\prod 

l=1

(U\ast )
nl Unl

\Biggr) 
= 1,

whenever (6.1.12)

n1, ..., nk < N \mathrm{i}\mathrm{n} \BbbN , \forall k \in \BbbN .

Proof. As we discussed in the very above paragraph, by (6.1.2) and (6.1.9), if n is odd in
\BbbN , then

\varphi 1

\Biggl( 
n\prod 

l=1

Uel

\Biggr) 
= 0, \forall (e1, ..., en) \in \{ 1, \ast \} n , \forall n \in \BbbN ,

because the \BbbH t-matrices
n\prod 

l=1

Uel have their (1, 1)-entries 0 \in \BbbH t, whenever nis odd in \BbbN .

So, let’s focus on the cases where n is even in \BbbN . However, as one can check in (5.9) and
(6.1.10), the only possible non-zero analytic data would be

\varphi 1

\Biggl( 
k\prod 

l=1

(U\ast )
nl Unl

\Biggr) 
, \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} n1, ..., nk < N.

Indeed, in such a case,

\varphi 1

\Biggl( 
k\prod 

l=1

(U\ast )
nl Unl

\Biggr) 
= \varphi 1

\Biggl( 
k\prod 

l=1

PN - nl

\Biggr) 
= \mathrm{R}\mathrm{e} (1) = 1,

because the (1, 1)-entry of
k\prod 

l=1

PN - nl
is 1 \in \BbbH t. Therefore, the analytic data (6.1.12) holds

on (\scrM t, \varphi 1). \square 

The above theorem characterizes the distributional data of U (equivalently, that of
U\ast ) in (\scrM t,N , \varphi 1).

6.2. The Noncommutative \BbbR -\ast -Statistical Space (\scrM t,N , \varphi ). In this section, we
define a new bounded \BbbR -linear functional \varphi on the \BbbH t-matrix algebra \scrM t,N , and construct
a new noncommutative topological \BbbR -\ast -statistical space (\scrM t,N , \varphi ). And then some
analytic data on \scrM t,N are studied up to \varphi . Define a \BbbR -linear functional \varphi on \scrM t,N by

\varphi 
\Bigl( 
[hi,j ]N\times N

\Bigr) 
\mathrm{d}\mathrm{e}\mathrm{f}
= 1

N

N\sum 
k=1

\tau (hk,k) , \forall [hi,j ]N\times N \in \scrM t,N . (6.2.1)

Since \tau is a bounded \BbbR -linear functional on \BbbH t, the morphism \varphi of (6.2.1) is indeed a
bounded \BbbR -linear functional on \scrM t,N . Also, it satisfies the unital property,

\varphi (IN ) = 1
N

N\sum 
n=1

\tau (1) = N
N = 1. (6.2.2)

Proposition 6.8. The pair (\scrM t,N , \varphi ) of the \BbbH t-matrix algebra \scrM t,N and the bounded
\BbbR -linear functional \varphi of (6.2.1) forms a unital \BbbR -semi-normed \BbbR -\ast -statistical space.

Proof. The proof is done by the very definition (6.2.1) and the unital property (6.2.2). \square 

One can realize that if we restrict the \BbbR -linear functional \varphi to the \BbbR -\ast -subalgebra,

\scrM (\BbbH t) = \{ hIN : h \in \BbbH t\} 
\mathrm{i}\mathrm{s}\mathrm{o}
= M (\BbbH t) ,

of \scrM t,N , then the sub-structure
\bigl( 
\scrM (\BbbH t) , \varphi = \varphi | \scrM (\BbbH t)

\bigr) 
is equivalent to the \BbbR -\ast -statisti-

cal space (\BbbH t, \tau ).



MATRICES INDUCED BY SCALED HYPERCOMPLEX NUMBERS... 295

Theorem 6.9. The \BbbR -semi-normed \BbbR -\ast -statistical spaces (\scrM (\BbbH t) , \varphi ) and (\BbbH t, \tau ) are
equivalent in the sense that there exists an isometric isomorphism,

\Psi : h \in \BbbH t \mapsto  - \rightarrow hIN \in \scrM (\BbbH t) ,

such that (6.2.3)

\varphi (\Psi (h)) = \tau (h) , \forall h \in \BbbH t.

Proof. Observe first that, the morphism \Psi in (6.2.3) is an isometric \BbbR -\ast -algebra-isomor-
phism satisfying the bijectivity, and the \BbbR -linearity,

\Psi (r1h1 + r1h2) = (r1h1 + r2h2) IN = r1\Psi (h1) + r2\Psi (h2) ,

for all r1, r2 \in \BbbR and h1, h2 \in \BbbH t, and the multiplication-preserving property,

\Psi (h1h2) = h1h2IN = (h1IN ) (h2IN ) = \Psi (h1)\Psi (h2) ,

for all h1, h2 \in \BbbH t, and the adjoint-perserving property,

\Psi 
\bigl( 
h\circledast 
\bigr) 
= h\circledast IN = h\circledast I\ast N = (hIN )

\ast 
= \Psi (h)

\ast 
, \forall h \in \BbbH t,

in \scrM (\BbbH t) \subset \scrM t,N , and the isometric property,

\| \Psi (h)\| = \| hIN\| = \| h\| t , \forall h \in \BbbH t.

Moreover, for any hl \in \BbbH t assigning to \Psi (hl) = hlIN \in \scrM (\BbbH t), for all l = 1, ..., s, for
any s \in \BbbN , one has that

\varphi 

\Biggl( 
\Psi 

\Biggl( 
n\prod 

k=1

hlk

\Biggr) \Biggr) 
= \varphi 

\Biggl( \Biggl( 
n\prod 

k=1

hlk

\Biggr) 
IN

\Biggr) 
=

1

N

N\sum 
n=1

\tau 

\Biggl( 
n\prod 

k=1

hlk

\Biggr) 
,

i.e.,

\varphi 

\Biggl( 
\Psi 

\Biggl( 
n\prod 

k=1

hlk

\Biggr) \Biggr) 
= \tau 

\Biggl( 
n\prod 

k=1

hlk

\Biggr) 
,

for all (l1, ..., ln) \in \{ 1, ..., s\} n, for all n \in \BbbN . Therefore, the equivalence (6.2.3) holds. \square 

The above theorem shows that if we define a bounded \BbbR -linear functional \varphi t,N :
M (\BbbH t) \rightarrow \BbbR on M (\BbbH t) by

\varphi t,N (Mh)
\mathrm{d}\mathrm{e}\mathrm{f}
= \varphi (hIN ) , \forall Mh \in M (\BbbH t) ,

then the pairs (M (\BbbH t) , \varphi t,N ), (\scrM (\BbbH t) , \varphi ), and (\BbbH t, \tau ) are equivalent \BbbR -semi-normed
\BbbR -\ast -statistical spaces.

Now, let U and U\ast be the forward, and the backward shifts on \BbbH N
t . Then

\varphi (Un) = 0 = \varphi ((U\ast )
n
) , \forall n \in \BbbN , (6.2.4)

because (i) if n \geq N , then Un = O = (U\ast )
n in \scrM t,N , whose main diagonal \BbbH t-entries

are 0 = 0+ 0i+ 0jt + 0kt in \BbbH t, by the nilpotent property of U and U\ast , and (ii) if n < N
in \BbbN , then the \BbbH t-matrices Un and (U\ast )

n have their main diagonal \BbbH t-entries 0 \in \BbbH t.
Recall that

(U\ast )
n1 Un2 =

\left\{           
(U\ast )

n1 - n2 PN - n2
\mathrm{i}\mathrm{f} n1 + n2 < 2N  - 1, n1 \geq n2

PN - n1U
n2 - n1 \mathrm{i}\mathrm{f} n1 + n2 < 2N  - 1, n1 \leq n2

ON \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},
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and (6.2.5)

Un1 (U\ast )
n2 =

\left\{           
Un1 - n2QN - n2

\mathrm{i}\mathrm{f} n1 + n2 < 2N  - 1, n1 \geq n2

QN - n1
(U\ast )

n2 - n1 \mathrm{i}\mathrm{f} n1 + n2 < 2N  - 1, n1 \leq n2

ON \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},

by (5.9). By (6.2.5), one obtains the general results of (6.2.4).

Theorem 6.10. If U and U\ast are the forward, resp., the backward shifts of (\scrM t,N , \varphi ),
then

\varphi (Un) = 0 = \varphi ((U\ast )
n
) , \forall n \in \BbbN ,

\varphi ((U\ast )
n1 Un2) =

\left\{   
N - n1

N \mathrm{i}\mathrm{f} n1 = n2 < N

0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},

and (6.2.6)

\varphi (Un1 (U\ast )
n2) =

\left\{   
N - n2

N \mathrm{i}\mathrm{f} n1 = n2 < N

0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},

for all n1, n2 \in \BbbN . So, the “possible non-zero” analytic data of \{ U,U\ast \} in (\scrM t,N , \varphi ) are

\varphi 

\Biggl( 
n\prod 

k=1

((U\ast )
nk Unk)

\Biggr) 
=

N  - \mathrm{m}\mathrm{a}\mathrm{x}
k=1,...,n

\{ nk\} 

N
,

and (6.2.7)

\varphi 

\Biggl( 
n\prod 

k=1

(Unk (U\ast )
nk)

\Biggr) 
=

N  - \mathrm{m}\mathrm{a}\mathrm{x}
k=1,...,n

\{ nk\} 

N
,

for all n1, n2 \in \{ 1, ..., N  - 1\} , for all n \in \BbbN ; and if

S1 (k) = (U\ast )
n
Un, S2 (n) = Un (U\ast )

n
, \forall k \in \{ 1, ..., N  - 1\} ,

then (6.2.8)

\varphi 

\Biggl( 
n\prod 

l=1

Skl
(nl)

\Biggr) 
\in 
\biggl\{ 
0,

1

N
,
2

N
, ...,

N  - 1

N
, 1

\biggr\} 
,

for all (k1, ..., kn) \in \{ 1, 2\} n, for all n \in \BbbN .

Proof. The first-lined analytic data of (6.2.6) holds by the analytic data (6.2.4) on
(\scrM t,N , \varphi ). By the formulas of (6.2.5), if n1 \not = n2 in \BbbN , and (U\ast )

n1 Un2 \not = ON in \scrM t,N ,
then the \BbbH t-matrix (U\ast )

n1 Un2 is either (U\ast )
k1 Pk1

, or Pk1
Uk2 , for suitable k1, k2 \in \BbbN .

Note that such non-zero \BbbH t-matrices have their main-diagonal \BbbH t-entries 0 \in \BbbH t. Thus, if
n1 \not = n2, then the \BbbH t-matrices \{ (U\ast )

n1 Un2\} n1 \not =n2
have their main-diagonal \BbbH t-entries

0 \in \BbbH t. Similarly, if n1 \not = n2 in \BbbN , and if Un1 (U\ast )
n2 \not = ON in \scrM t,N , then the \BbbH t-matrix

Un1 (U\ast )
n2 is either Uk1Qk2 , or Qk1 (U

\ast )
k2 , for suitable k1, k2 \in \BbbN , by (6.2.5), and these

\BbbH t-matrices have their mian-diagonal \BbbH t-entries 0 \in \BbbH t. It implies also that if n1 \not = n2 in
\BbbN , then the \BbbH t-matrices \{ Un1 (U\ast )

n2\} n1 \not =n2
have their main-diagonal \BbbH t-entries 0 \in \BbbH t.

Therefore,
n1 \not = n2 \in \BbbN =\Rightarrow \varphi ((U\ast )

n1 Un2) = 0 = \varphi (Un1 (U\ast )
n2) .

Suppose now that n1 = n2
\mathrm{s}\mathrm{a}\mathrm{y}
= n < N in \BbbN . Then

(U\ast )
n
Un = PN - n, \mathrm{a}\mathrm{n}\mathrm{d} Un (U\ast )

n
= QN - n,



MATRICES INDUCED BY SCALED HYPERCOMPLEX NUMBERS... 297

having (N  - n)-many non-zero main-diagonal \BbbH t-entries 1 = 1 + 0i+ 0jt + 0kt \in \BbbH t. It
implies that

\mathrm{i}\mathrm{f} n1 = n2
\mathrm{s}\mathrm{a}\mathrm{y}
= n < N \mathrm{i}\mathrm{n} \BbbN ,

then

\varphi ((U\ast )
n
Un) = \varphi (PN - n) =

1

N

N - n\sum 
l=1

\tau (1) =
N  - n

N
,

and
\varphi (Un (U\ast )

n
) = \varphi (QN - n) =

N  - n

N
.

Of course,
\mathrm{i}\mathrm{f} n1 = n2

\mathrm{s}\mathrm{a}\mathrm{y}
= n \geq N \mathrm{i}\mathrm{n} \BbbN ,

then
\varphi ((U\ast )

n
Un) = \varphi (ON ) = 0 = \varphi (Un (U\ast )

n
) .

Therefore, the analytic data (6.2.6) on (\scrM t,N , \varphi ) hold true.
By the analytic data (6.2.6), if we consider the analytic data of \{ U,U\ast \} in \scrM t,N up

to \varphi , determined by

\varphi 

\Biggl( 
n\prod 

l=1

Uel

\Biggr) 
, \forall (e1, ..., en) \in \{ 1, \ast \} n , \forall n \in \BbbN ,

have the only “non-zero” data from either

\varphi 

\Biggl( 
n\prod 

k=1

((U\ast )
nk Unk)

\Biggr) 
= \varphi 

\Biggl( 
n\prod 

k=1

PN - n

\Biggr) 
= \varphi 

\biggl( 
PN - \mathrm{m}\mathrm{a}\mathrm{x}

k=1,...,N - 1
nk

\biggr) 
,

and (6.2.9)

\varphi 

\Biggl( 
n\prod 

k=1

(Un1 (U\ast )
n2)

\Biggr) 
= \varphi 

\Biggl( 
n\prod 

k=1

QN - n

\Biggr) 
= \varphi 

\biggl( 
QN - \mathrm{m}\mathrm{a}\mathrm{x}

k=1,...,N - 1
nk

\biggr) 
,

by (5.8). Remark that, by (5.8), if n1 + n2 < 2N  - 1 in \BbbN , then

PN - n1
PN - n2

= PN - \mathrm{m}\mathrm{a}\mathrm{x}\{ n1,n2\} \in \scrM t,N ,

and
QN - n1

QN - n2
= QN - \mathrm{m}\mathrm{a}\mathrm{x}\{ n1,n2\} \in \scrM t,N .

So, the formulas of (6.2.9) hold inductively. Since

\varphi (PN - k) =
N  - k

N
= \varphi (QN - k) , \forall k \in \{ 1, ..., N  - 1\} ,

by (5.8), the formulas of (6.2.9) go to

\varphi 

\Biggl( 
n\prod 

k=1

((U\ast )
nk Unk)

\Biggr) 
= \varphi 

\biggl( 
PN - \mathrm{m}\mathrm{a}\mathrm{x}

k=1,...,N - 1
nk

\biggr) 
=

N  - \mathrm{m}\mathrm{a}\mathrm{x}
k=1,...,N - 1

nk

N
,

and

\varphi 

\Biggl( 
n\prod 

k=1

(Un1 (U\ast )
n2)

\Biggr) 
= \varphi 

\biggl( 
QN - \mathrm{m}\mathrm{a}\mathrm{x}

k=1,...,N - 1
nk

\biggr) 
=

N  - \mathrm{m}\mathrm{a}\mathrm{x}
k=1,...,N - 1

nk

N
.

It shows that the “non-zero” analytic data (6.2.7) hold.
By (6.2.6) and (6.2.7), one can verify that the other “possible” “non-zero” analytic data

of \{ U,U\ast \} in (\scrM t,N , \varphi ) would be

\varphi 

\Biggl( 
n\prod 

l=1

Skl
(nl)

\Biggr) 
= \varphi (Sk1 (n1)Sk2 (n2) ...Skn (nn)) ,



298 DANIEL ALPAY AND ILWOO CHO

for all (k1, ..., kn) \in \{ 1, 2\} n, and (n1, ..., nn) \in \{ 1, ..., N  - 1\} n, for all n \in \BbbN , where

S1 (n) = (U\ast )
n
Un = PN - n, \forall n = 1, ..., N  - 1,

and
S2 (n) = Un (U\ast )

n
= QN - n, \forall n = 1, ..., N  - 1,

including the cases of (6.2.7). Clearly, it contains the case where

S1 (n1)S2 (n2) = ON = S2 (n2)S1 (n1) , \mathrm{i}\mathrm{f} n1 >
N

2
, \& n2 >

N

2
.

(For example, if N = 3, then

S1(2) = P3 - 2 = P1, \mathrm{a}\mathrm{n}\mathrm{d} S2 (2) = Q3 - 2 = Q1,

where

P1Q1 =

\left(  1 0 0
0 0 0
0 0 0

\right)  \left(  0 0 0
0 0 0
0 0 1

\right)  = ON = Q1P1,

in \scrM t,3.) So, it is possible that \varphi 
\biggl( 

n\prod 
l=1

Skl
(nl)

\biggr) 
= 0. It not,

n\prod 
l=1

Skl
(nl) \in \{ Pk, Qk\} N - 1

k=1 \cup 

\left\{   Pn1Qn2 = Qn2Pn1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
n1, n2 \in \{ 1, ..., N  - 1\} 

N
2 < n1 + n2 < 2N  - 1

\right\}   ,

in \scrM t,N , satisfying

\varphi 

\Biggl( 
n\prod 

l=1

Skl
(nl)

\Biggr) 
\in 
\biggl\{ 

1

N
,
2

N
, ...,

N  - 1

N

\biggr\} 
,

because if N
2 < n1 + n2 < 2N  - 1, then

Pn1
Qn2

= Qn2
Pn1

=

\left(                    

0 0
. . .

0
1

. . .\underbrace{}  \underbrace{}  
| n1 - n2| 

1
0

. . .
0 0

\right)                    

,

in \scrM t,N , satisfying

\varphi (Pn1Qn2) =
| n1  - n2| 

N
\in 
\biggl\{ 

1

N
,
2

N
, ...,

N  - 1

N

\biggr\} 
.

In summary,

\varphi 

\Biggl( 
n\prod 

l=1

Skl
(nl)

\Biggr) 
\in 
\biggl\{ 
0,

1

N
,
2

N
, ...,

N  - 1

N

\biggr\} 
,

for all (k1, ..., kn) \in \{ 1, 2\} n, (n1, ..., nn) \in \{ 1, ..., N  - 1\} n, for all n \in \BbbN . Therefore, the
“only” possible non-zero analytic data (6.2.8) is obtained in (\scrM t,N , \varphi ). \square 
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If we compare the only possible non-zero analytic data (6.2.8) (including (6.2.7)) of
\{ U,U\ast \} in the \BbbR -\ast -statistical space (\scrM t,N , \varphi ) and the only non-zero analytic data (6.1.12)
of \{ U,U\ast \} in the \BbbR -\ast -statistical space (\scrM t,N , \varphi 1) of Section 6.1, then it is clear that two
\BbbR -\ast -statistical spaces (\scrM t,N , \varphi ) and (\scrM t,N , \varphi 1) are “not” equivalent.

7. A Certain Representation of \BbbH t-matrices of \scrM t,N

In this section, we fix N \in \BbbN and t \in \BbbR , and the corresponding \BbbH t-matrix algebra
\scrM t,N =MN (\BbbH t), and study how our structure \scrM t,N acts in the usual operator-theoretic,
or matrix-theoretic settings “over the complex field \BbbC .” i.e., we consider a realization of
\scrM t,N over \BbbC . To consider such a usual setting, we recall the canonical representation\bigl( 
\BbbC 2, \pi t

\bigr) 
of \BbbH t, introduced in [1, 2, 3, 4]. If

h = x+ yi+ ujt + vkt = (x+ yi) + (u+ vi) jt \in \BbbH t,

re-expressed to be

h = a+ bjt \in \BbbH t, \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} a = x+ yi, b = u+ vi \in \BbbC ,

one can define an action \pi t : \BbbH t \rightarrow M2 (\BbbC ) of \BbbH t acting on \BbbC 2 by

\pi t (a+ bjt)
\mathrm{d}\mathrm{e}\mathrm{f}
=

\biggl( 
a tb

b a

\biggr) 
\in \pi t (\BbbH t) , \mathrm{i}\mathrm{n}M2 (\BbbC ) , \forall a, b \in \BbbC . (7.1)

Then, as one can check from [1, 2], this morphism \pi t satisfies

\pi t (r1h1 + r2h2) = r1\pi t (h1) + r2\pi t (h2) ,

and (7.2)

\pi t (h1h2) = \pi t (h1)\pi t (h1) , \forall r1, r2 \in \BbbR , h1, h2 \in \BbbH t,

where the right-hand sides of (7.2) mean the matrix-addition, respectively, the matrix-
multiplication on M2 (\BbbC ). So, indeed, the morphism \pi t of (7.1) is a \BbbR -algebra-action of
the \BbbR -algebra \BbbH t acting on \BbbC 2. By (7.1), we also have that

\pi t

\Bigl( 
(a+ bjt)

\circledast 
\Bigr) 
= \pi t (a - bjt) =

\biggl( 
a t ( - b)
 - b a

\biggr) 
, \forall a, b \in \BbbC ,

satisfying (7.3)

\pi t (h)
\circledast \circledast 

= \pi t
\bigl( 
h\circledast \circledast 

\bigr) 
= \pi t (h) , \forall h \in \BbbH t,

\pi t (rh)
\circledast 
= r\pi t (h)

\circledast 
, \forall r \in \BbbR , h \in \BbbH t,

\pi t (h1 + h2)
\circledast 
= \pi t (h1)

\circledast 
+ \pi t (h2)

\circledast 
, \forall h1, h2 \in \BbbH t,

and
\pi t (h1h2)

\circledast 
= \pi t (h2)

\circledast 
\pi t (h1)

\circledast 
, \forall h1, h2 \in \BbbH t,

by (7.2) and (7.3). Thus, this \BbbR -algebra-action \pi t becomes a \BbbR -\ast -algebra action of \BbbH t

acting on \BbbC 2.
By applying this canonical action \pi t of (7.1), we define an action \Pi t of \scrM t,N acting

on \BbbC 2N ,
\Pi t : \scrM t,N \rightarrow M2N (\BbbC ) ,

by (7.4)

\Pi t

\Bigl( 
[hi,j ]N\times N

\Bigr) 
\mathrm{d}\mathrm{e}\mathrm{f}
= [\pi t (hi,j)]2N\times 2N \in M2N (\BbbC ) , \forall [hi,j ]N\times N \in \scrM t,N .

Then, since \pi t of (7.1) is a well-defined \BbbR -\ast -algebra-action of \BbbH t by (7.2) and (7.3), the
morphism \Pi t of (7.4) is a well-defined \BbbR -algebra-action of \scrM t,N acting on \BbbC 2N .
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Proposition 7.1. The pair
\bigl( 
\BbbC 2N ,\Pi t

\bigr) 
is a well-determined \BbbC -vector-space representation

of the \BbbH t-matrix \BbbR -algebra \scrM t,N , i.e., the morphism \Pi t of (7.4) forms a \BbbR -algebra-action
of \scrM t,N acting on \BbbC 2.

Proof. Observe that

\Pi t

\Bigl( 
[hi,j ]N\times N + [fi,j ]N\times N

\Bigr) 
= \Pi t

\Bigl( 
[hi,j + fi,j ]N\times N

\Bigr) 
= [\pi t (hi,j + fi,j)]2N\times 2N = [\pi t (hi,j) + \pi t (fi,j)]2N\times 2N

since \pi t is an action of \BbbH t acting on \BbbC 2

= [\pi t (hi,j)]2N\times 2N + [\pi t (fi,j)]2N\times 2N = \Pi t

\Bigl( 
[hi,j ]N\times N

\Bigr) 
+\Pi t

\Bigl( 
[fi,j ]N\times N

\Bigr) 
,

where (+) is the matrix addition on M2N (\BbbC ); and

\Pi t

\Bigl( 
r [hi,j ]N\times N

\Bigr) 
= [\pi t (rhi,j)]2N\times 2N = r [\pi t (hi,j)]2N\times 2N = r\Pi t

\Bigl( 
[hi,j ]N\times N

\Bigr) 
,

for all r \in \BbbR ; and

\Pi t

\Bigl( 
[hi,j ]N\times N [fi,j ]N\times N

\Bigr) 
= \Pi t

\Biggl( \biggl[ 
N\sum 

k=1

hi,kfk,j

\biggr] 
N\times N

\Biggr) 

=

\biggl[ 
\pi t

\biggl( 
N\sum 

k=1

hi,kfk,j

\biggr) \biggr] 
2N\times 2N

=

\biggl[ 
n\sum 

k=1

\pi t (hi,kfk,j)

\biggr] 
2N\times 2N

=

\biggl[ 
n\sum 

k=1

\pi t (hi,j)\pi t (fi,j)

\biggr] 
2N\times 2N

since \pi t is an action of \BbbH t acting on \BbbC 2

= [\pi t (hi,j)]2N\times 2N [\pi t (fi,j)]2N\times 2N = \Pi t

\Bigl( 
[hi,j ]N\times N

\Bigr) 
\Pi t

\Bigl( 
[fi,j ]N\times N

\Bigr) 
,

where the multiplication (\cdot ) means the matrix multiplication on M2N (\BbbC ). Therefore, our
\BbbH t-matrix algebra \scrM t,N acts on \BbbC 2N via the action \Pi t of (7.4), equivalently, the pair\bigl( 
\BbbC 2N ,\Pi t

\bigr) 
forms a \BbbC -vector-space representation of \scrM t,N . \square 

The above proposition shows that every element [hi,j ]N\times N \in \scrM t,N is regarded as
the (2N \times 2N)-\BbbC -matrix [\pi t (hi,j)]2N\times 2N \in M2N (\BbbC ) via the action \Pi t of (7.4). Remark
that, since the canonical action \pi t of \BbbH t is injective from \BbbH t into M2 (\BbbC ) (which is not
surjective, e.g., see [1, 2]), the action \Pi t of \scrM t,N is injective from \scrM t,N into M2N (\BbbC ).
Remark also that the matrix algebra M2N (\BbbC ), which is defined “over \BbbC ,” is understood
to be a “\BbbR -algebra” in the sense that:

T1, T2 \in M2N (\BbbC ) =\Rightarrow T1 + T2, T1T2 \in M2N (\BbbC ) ,
and (7.5)

r \in \BbbR , T \in M2N (\BbbC ) =\Rightarrow rT = (rI2N )T \in M2N (\BbbC ) .
So, by regarding M2N (\BbbC ) as a \BbbR -algebra satisfying (7.5), one can define a \BbbR -subalgebra
Mt,N by

Mt,N
\mathrm{d}\mathrm{e}\mathrm{f}
= \Pi t (\scrM t,N ) = \{ \Pi t (T ) \in M2N (\BbbC ) : T \in \scrM t,N\} . (7.6)

Meanwhile, if [hi,j ]N\times N \in \scrM t,N has its \BbbR -adjoint [hi,j ]
\ast 
N\times N =

\bigl[ 
h\circledast j,i
\bigr] 
N\times N

in \scrM t,N , then

\Pi t

\Bigl( 
[hi,j ]

\ast 
N\times N

\Bigr) 
= \Pi t

\Bigl( \bigl[ 
h\circledast j,i
\bigr] 
N\times N

\Bigr) 
=
\bigl[ 
\pi t
\bigl( 
h\circledast j,i
\bigr) \bigr] 

2N\times 2N
\in M2N (\BbbC ) , (7.7)

where \pi t
\bigl( 
h\circledast j,i
\bigr) 

are in the sense of (7.3). It shows that the \BbbR -adjoint (\ast ) on the \BbbH t-matrix
algebra \scrM t,N is closed on its realization Mt,N of (7.6) by (7.7).
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Proposition 7.2. The \BbbH t-matrix algebra \scrM t,N is isometrically isomorphic to the \BbbR -
subalgebra Mt,N of M2N (\BbbC ) as \BbbR -algebras. i.e.,

\scrM t,N
\mathrm{i}\mathrm{s}\mathrm{o}
= Mt,N , as \BbbR -algebras. (7.8)

Remark that
\Pi t (T

\ast ) \not = \Pi t (T )
\ast 
, in M2N (\BbbC ) , in general,

where (\ast ) on the right-hand side means the usual \BbbC -adjoint of \BbbC -matrices, i.e., the
conjugate-transpose on M2N (\BbbC ).

Proof. By the above proposition, the morphism \Pi t of (7.4) is a well-defined \BbbR -algebra-
action of the \BbbH t-matrix algebra \scrM t,N acting on M2N (\BbbC ). Moreover, by the injectivity
of \Pi t, the \BbbR -subalgebra Mt,N = \Pi t (\scrM t,N ) of (7.6), satisfying (7.5), is a isomorphic to
\scrM t,N in M2N (\BbbC ). So, the structure theorem (7.8) holds true.

It is immediately checked that

\Pi t (T
\ast ) \not = \Pi t (T )

\ast 
, \mathrm{i}\mathrm{n} \mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l},

in M2N (\BbbC ), for all T \in \scrM t,N , where (\ast ) in the left-hand side is the \BbbR -adjoint (4.17)
on \scrM t,N , and (\ast ) in the right-hand side is the usual \BbbC -matrix-adjoint, the conjugate-
transpose on M2N (\BbbC ). So, even though the isomorphic relation (7.8) is satisfied, two
\BbbR -algebras \scrM t,N and its injective realization Mt,N are not \ast -isomorphic over \BbbR . \square 

The above proposition shows that inside the matrix algebra M2N (\BbbC ), there exists a
well-established \BbbR -subalgebra Mt,N , isomorphic to our \BbbH t-matrix algebra \scrM t,N by (7.8).
So, motivated by the above theorem, we define an operation, denoted by < \ast > on the
realization Mt,N of \scrM t,N by\Bigl( 

\Pi t

\Bigl( 
[hi,j ]N\times N

\Bigr) \Bigr) <\ast > \mathrm{d}\mathrm{e}\mathrm{f}
= \Pi t

\Bigl( 
[hi,j ]

\ast 
N\times N

\Bigr) 
=
\bigl[ 
\pi t
\bigl( 
h\circledast j,i
\bigr) \bigr] 

N\times N
\in Mt,N , (7.9)

for all [hi,j ]N\times N \in \scrM t,N , where \pi t
\bigl( 
h\circledast j,i
\bigr) 

are in the sense of (7.3), for all i, j = 1, ..., N .
Then this operation (< \ast >) of (7.9) is a well-defined \BbbR -adjoint on the \BbbR -algebra Mt,N ,
by the injectivity of \pi t and \Pi t, because (\circledast ) is a \BbbR -adjoint on \BbbH t, and hence, that on
\pi t (\BbbH t) in the sense of (7.3).

Theorem 7.3. The \BbbH t-matrix algebra \scrM t,N and the \BbbR -algebra Mt,N of (7.6), equipped
with the \BbbR -adjoint (< \ast >) of (7.9) are \ast -isomorphic over \BbbR . i.e.,

\scrM t,N
\ast -\mathrm{i}\mathrm{s}\mathrm{o}
= Mt,N , as \BbbR - \ast -algebras. (7.10)

Proof. By (7.8), the \BbbH t-matrix algebra \scrM t,N and its injective realization Mt,N are
isomorphic as \BbbR -algebras. By defining the \BbbR -adjoint (< \ast >) of (7.9) on Mt,N , the
\BbbR -algebra Mt,N becomes a well-defined \BbbR -\ast -algebra. Indeed, the operation (7.9) satisfies\bigl( 

\Pi t (T1)
<\ast >\bigr) <\ast >

= \Pi t (T
\ast 
1 )

<\ast >
= \Pi t (T

\ast \ast 
1 ) = \Pi t (T1) ;

(r\Pi t (T2))
<\ast >

= \Pi t (rT2)
<\ast >

= \Pi t (rT
\ast 
2 ) = r\Pi t (T

\ast 
2 ) = r\Pi t (T2)

<\ast >
;

(\Pi t (T1) + \Pi t (T2))
<\ast >

= \Pi t (T
\ast 
1 + T \ast 

2 ) = \Pi t (T1)
<\ast >

+\Pi t (T2)
<\ast >

;

and
(\Pi t (T1)\Pi t (T2))

<\ast >
= \Pi t (T

\ast 
2 T

\ast 
1 ) = \Pi t (T2)

<\ast >
\Pi t (T1)

<\ast >
,

on Mt,N , for all T1, T2 \in \scrM t,N , and r \in \BbbR . Since the isomorphic \BbbR -algebra action \Pi t

satisfies
\Pi t (T

\ast ) = \Pi t (T )
<\ast >

, by definition (7.9),
two \BbbR -\ast -algebras \scrM t,N and Mt,N are \ast -isomorphic, too. Therefore, the structure theorem
(7.10) holds with help of (7.9). \square 
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By (7.10), we understand the \BbbR -subalgebra Mt,N = \Pi t (\scrM t,N ) of M2N (\BbbC ) as a
\BbbR -\ast -algebra equipped with its \BbbR -adjoint (< \ast >) of (7.9).

Since Mt,N is a \BbbR -\ast -algebra itself, one can obtain the following result immediately.
Since Mt,N is a \BbbR -\ast -algebra under (7.9), one can define the following operator-theoretic
properties on Mt,N ;

(i) S is < \ast >-self-adjoint in Mt,N , if S<\ast > = S in Mt,N ,
(ii) S is a < \ast >-projection in Mt,N , if S<\ast > = S = S2 in Mt,N ,
(iii) S is < \ast >-normal in Mt,N , if S<\ast >S = SS<\ast > in Mt,N ,
(iv) S is a < \ast >-isometry in Mt,N , if S<\ast >S = I2N in Mt,N ,
(v) S is < \ast >-unitary in Mt,N , if S<\ast >S = I2N = SS<\ast > in Mt,N ,

where I2N is the identity \BbbC -matrix of M2N (\BbbC ), which becomes the unity of the \BbbR -\ast -algebra
Mt,N .

By the structure theorem (7.10), one can realize that the operator-theoretic properties
on \scrM t,N of Section 5 up to the \BbbR -adjoint (\ast ) of (4.17) have their equivalent properties
on Mt,N up to the \BbbR -adjoint (< \ast >) of (7.9).

Corollary 7.4. Let M1,N = \Pi t (\scrM t) be the \ast -isomorphic realization of the \BbbH t-matrix
algebra \scrM t,N in M2N (\BbbC ).
(1) \Pi t

\Bigl( 
[hi,j ]N\times N

\Bigr) 
is < \ast >-self-adjoint in Mt,N , if and only if (4.20) holds.

(2) \Pi t

\Bigl( 
[hi,j ]N\times N

\Bigr) 
is a < \ast >-projection in Mt,N , if and only if (4.23) holds.

(3) \Pi t

\Bigl( 
[hi,j ]N\times N

\Bigr) 
is < \ast >-normal in Mt,N , if and only if (4.26) holds.

(4) \Pi t

\Bigl( 
[hi,j ]N\times N

\Bigr) 
is a < \ast >-isometry in Mt,N , if and only if (4.29) holds.

(5) \Pi t

\Bigl( 
[hi,j ]N\times N

\Bigr) 
is < \ast >-unitary in Mt,N , if and only if (4.31) holds

Proof. By (7.9) and (7.10), an element \Pi t (T ) satisfies an operator-theoretic property in
Mt,N up to the \BbbR -adjoint (< \ast >), if and only if T satisfies the same operator-theoretic
property in \scrM t,N up to the \BbbR -adjoint (\ast ) of (4.17). \square 

Note that the \BbbH t-matrix algebra \scrM t,N is acting on the complete \BbbR -semi-normed
definite, or indefinite \BbbR -semi-inner-product space,

\BbbH N
t =

\Bigl\{ 
(hk)

N
k=1 : hk \in \BbbH t

\Bigr\} 
.

So, it is natural to consider where the \ast -isomorphic realization Mt,N of \scrM t,N is acting.
Remark now that, by the very construction of Mt,N , it acts on the (4N)-dimensional
\BbbR -vector space \BbbC 2N \mathrm{i}\mathrm{s}\mathrm{o}

= \BbbR 4N over \BbbR , as a sub-structure of M2N (\BbbC ). However, such a
vector space \BbbC 2N is not directly related to \BbbH N

t where \scrM t,N is acting structurally, because
\BbbC 2N is over \BbbC , and \BbbH N

t is over \BbbR . Thus, we need to consider the isomorphic \BbbR -vector
space of \BbbH N

t where the \BbbR -\ast -algebra Mt,N is acting.
From the canonical action \pi t of \BbbH t acting on \BbbC 2, define a \BbbR -vector-space action \pi N

t of
\BbbH N

t by

\pi N
t

\mathrm{d}\mathrm{e}\mathrm{f}
= \pi \times N

t = \pi t \times \pi t \times \pi t \times ...\times \pi t\underbrace{}  \underbrace{}  
N-times

,

i.e., (7.11)

\pi N
t

\Bigl( 
(hk)

N
k=1

\Bigr) 
= \pi N

t

\left(     
\left(     

h1
h2
...
hN

\right)     
\right)     =

\left(     
\pi t (h1)
\pi t (h2)

...
\pi t (hN )

\right)     = (\pi t (hk))
N
k=1 ,
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in \pi N
t

\bigl( 
\BbbH N

t

\bigr) 
, for all (hk)

N
k=1 \in \BbbH N

t . Note that, by the injectivity of the canonical action
\pi t, this morphism \pi N

t of (7.11) is also injective (and hence, bijective) from \BbbH N
t onto

\pi t
\bigl( 
\BbbH N

t

\bigr) 
. Then, by (7.3) and (7.11), the image \pi N

t

\bigl( 
\BbbH N

t

\bigr) 
is actually a subset of the

(2N \times 2)-\BbbC -matrix set,

M2N\times 2 (\BbbC ) =
\Bigl\{ 
[zi,j ]2N\times 2 : zi,j \in \BbbC 

\Bigr\} 
.

Note that this \BbbC -matrix set M2N\times 2 (\BbbC ) is not a \BbbC -algebra because the matrix-multiplica-
tion is undefined on it, however, it is a well-defined “\BbbC -vector” space satisfying

z1, z2 \in \BbbC , A1, A2 \in M2N\times 2 (\BbbC ) =\Rightarrow z1A1 + z2A2 \in M2N\times 2 (\BbbC ) .
Therefore, the subset \pi N

t

\bigl( 
\BbbH N

t

\bigr) 
of the \BbbC -vector space M2N\times 2 (\BbbC ) forms a well-determined

“\BbbR -vector” space, i.e.,

r1, r2 \in \BbbR , V1, V2 \in \pi N
t

\bigl( 
\BbbH N

t

\bigr) 
=\Rightarrow r1V1 + r2V2 \in \pi t

\bigl( 
\BbbH N

t

\bigr) 
. (7.12)

Indeed, the \BbbR -vector-space property (7.12) holds by (7.11), i.e.,

\pi N
t

\Bigl( 
(hk)

N
k=1

\Bigr) 
+ \pi N

t

\Bigl( 
(fk)

N
k=1

\Bigr) 
= \pi N

t

\Bigl( 
(hk + fk)

N
k=1

\Bigr) 
= (\pi t (hk) + \pi t (fk))

N
k=1 ,

and (7.13)

r\pi N
t

\Bigl( 
(hk)

N
k=1

\Bigr) 
= r (\pi t (hk))

N
k=1 = (r\pi t (hk))

N
k=1 = (\pi t (rhk))

N
k=1 ,

are well-defined vectors of \pi N
t

\bigl( 
\BbbH N

t

\bigr) 
, too, for all (hk)

N
k=1 , (fk)

N
k=1 \in \BbbH N

t , and r \in \BbbR .

Definition 7.5. The \BbbR -vector space \pi N
t

\bigl( 
\BbbH N

t

\bigr) 
, satisfying (7.12) or (7.13), is denoted

simply by \frakH N
t from below, where \pi N

t is the \BbbR -vector-space action (7.11) of \BbbH N
t in

M2N\times 2 (\BbbC ). i.e.,

\frakH N
t

\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}
= \pi N

t

\bigl( 
\BbbH N

t

\bigr) \mathrm{s}\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{t}
\subset M2N\times 2 (\BbbC ) . (7.14)

And we call \frakH N
t of (7.14), the \BbbH N

t -realization (by \pi N
t ).

By (7.11) and (7.14), one has the following result.

Proposition 7.6. The \BbbR -vector spaces \BbbH N
t and its \BbbH N

t -realization \frakH N
t of (7.14) are

isomorphic. i.e.,

\BbbH N
t

\mathrm{i}\mathrm{s}\mathrm{o}
= \frakH N

t , as \BbbR -vector spaces. (7.15)

Proof. Since \BbbH N
t and \frakH N

t are well-defined \BbbR -vector spaces, the isomorphic relation (7.15)
holds by (7.14) and the injectivity of \pi N

t into M2N\times 2 (\BbbC ) (and hence, the bijectivity of it
onto \pi N

t

\bigl( 
\BbbH N

t

\bigr) 
= \frakH N

t ). \square 

By (7.10) and (7.15), we have the following result showing how the realization Mt,N =
\Pi t (\scrM t,N ) naturally acts on the \BbbH t-realization \frakH t,N of (7.14).

Theorem 7.7. The realization Mt,N = \Pi t (\scrM t,N ) of the \BbbH t-matrix algebra \scrM t,N acting
on \BbbH N

t is acting on the \BbbH N
t -realization \frakH N

t of (7.14). And such an action is identical to the
action of (2N \times 2N)-matrices on (2N \times 2)-matrices up to the usual matrix multiplication.

Proof. Since our \BbbH t-matrix algebra \scrM t,N acts on \BbbH N
t under the block-matrix action, the

realization Mt,N = \Pi t (\scrM t,N ) acts on \frakH N
t = \pi N

t

\bigl( 
\BbbH N

t

\bigr) 
, by (7.10) and (7.15). \square 

As one can see, all main results of this section are summarized by the above theorem,
i.e., the main results of this section illustrate that the \BbbH t-matrix algebra \scrM t,N acting on
\BbbH N

t is realized to be Mt,N = \Pi t (\scrM t,N ) acting on \frakH N
t = \pi N

t

\bigl( 
\BbbH N

t

\bigr) 
.

We finish this section with an example. Let

T = [hi,j ]2\times 2 \in \scrM t,2, \mathrm{f}\mathrm{o}\mathrm{r} hi,j = ai,j + bi,jjt \in \BbbH t,
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where ai,j , bi,j \in \BbbC , for all i, j = 1, 2. Then

\pi t (hi,j) =

\biggl( 
ai,j tbi,j
bi,j ai,j

\biggr) 
, \forall i, j = 1, 2,

and hence,

\Pi t (T ) =

\left(    
a1,1 tb1,1 a1,2 tb1,2
b1,1 a1,1 b1,2 a1,2
a2,1 tb2,1 a2,2 tb2,2
b2,1 a2,1 b2,2 a2,2

\right)    \in Mt,2 = \Pi t (\scrM t,2) .

And let

v =

\biggl( 
q1
q2

\biggr) 
=

\biggl( 
c1 + d1jt
c2 + d2jt

\biggr) 
\in \BbbH 2

t , \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} c1, c2, d1, d2 \in \BbbC ,

where q1 = c1 + d1jt, q2 = c2 + d2jt \in \BbbH t. Then

\pi 2
t (v) =

\left(    
c1 td1
d1 c1
c2 td2
d2 c2

\right)    \in \frakH 2
t = \pi 2

t

\bigl( 
\BbbH 2

t

\bigr) 
.

Observe that

T (v) =

\biggl( 
h1,1 h1,2
h2,1 h2,2

\biggr) \biggl( 
q1
q2

\biggr) 
=

\biggl( 
h1,1q1 + h1,2q2
h2,1q1 + h2,2q2

\biggr) 
,

with

\pi t (hi,jql) = \pi t (hi,j)\pi t (ql) =

\Biggl( 
ai,jcl + tbi,jdl t (ai,jdl + bi,jcl)

ai,jdl + bi,jcl ai,jcl + tbi,jdl

\Biggr) 
,

for all i, j, l = 1, 2. Thus, by (7.10), (7.15), and the above theorem, we have that

\Pi t (T )
\bigl( 
\pi N
t (v)

\bigr) 

=

\left(     
a1,1c1 + a1,2c1 + t

\bigl( 
b1,1d1 + b1,2d1

\bigr) 
t (a1,1d1 + a1,2d1 + b1,1c1 + b1,2c1)

a1,1d1 + a1,2d1 + b1,1c1 + b1,2c1 a1,1c1 + a1,2c2 + t
\bigl( 
b1,1d1 + b1,2d1

\bigr) 
a2,1c2 + a2,2c2 + t

\bigl( 
b2,1d2 + b2,2d2

\bigr) 
t (a2,1d2 + a2,2d2 + b2,1c2 + b2,2c2)

a2,1d2 + a2,2d2 + b2,1c2 + b2,2c2 a2,1c2 + a2,2c2 + t
\bigl( 
b2,1d2 + b2,2d2

\bigr) 
\right)     ,

in \frakH 2
t .

8. Certain Invariant \BbbR -Subspaces of \BbbH N
t Induced by \BbbH t-Matrices

In this section, as a continuation of Section 7, we apply the usual spectral theory
on M2N (\BbbC ), and then we consider certain invariant \BbbR -subspaces of \BbbH N

t induced by
\BbbH t-matrices of the \BbbH t-matrix algebra \scrM t,N . By (7.10), (7.15) and Theorem 58, every \BbbH t-
matrix T = [hi,j ]N\times N \in \scrM t,N acting on the \BbbH t-vectors v = (qk)

N
k=1 \in \BbbH N

t is equivalent
(or, isomorphic) to the matrix,

\Pi t (T ) = [\pi t (hi,j)]2N\times 2N \in Mt,N , \mathrm{i}\mathrm{n} M2N (\BbbC ) ,

acting on
\pi N
t (v) = (\pi t (qk))

N
k=1 \in \frakH N

t , \mathrm{i}\mathrm{n} M2N\times 2 (\BbbC ) .
Note that, by the usual spectral theory, every \BbbC -matrix A of M2N (\BbbC ) has its non-empty
spectrum \mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c} (A) \subset \BbbC , inducing its eigenspace \scrE \lambda \subset \BbbC 2N , satisfying

A (v) = \lambda v, \mathrm{f}\mathrm{o}\mathrm{r} v \in \scrE \lambda , \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r} \lambda \in \mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c} (A) .



MATRICES INDUCED BY SCALED HYPERCOMPLEX NUMBERS... 305

Then such an eigenspace \scrE \lambda for \lambda \in \mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c} (\itA ) forms an invariant subspace of \BbbC 2N (over
\BbbC ), satisfying

A (\scrE \lambda ) \subseteq \scrE \lambda , \forall \lambda \in \mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c} (A) .

It means that the realization \Pi t (T ) \in Mt,N of an \BbbH t-matrix T \in \scrM t,N has its spectrum
\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c} (\Pi t (T )) as an element of M2N (\BbbC ). Motivated by this observation, we consider
certain invariant “\BbbR -subspaces of \BbbH N

t ” induced by \BbbH t-matrices of \scrM t,N .

Theorem 8.1. For an \BbbH t-matrix T \in \scrM t,N , there exist v \in \BbbH N
t and q \in \BbbH t, such that

T (v) = vq. i.e.,

\forall T \in \scrM t,N , \exists v \in \BbbH N
t , \mathrm{a}\mathrm{n}\mathrm{d} q \in \BbbH t, \mathrm{s}.\mathrm{t}., T (v) = vq,

where (8.1)

vq =

\left(     
q1
q2
...
qN

\right)     q =

\left(     
q1q
q2q
...

qNq

\right)     , \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r} v = (qk)
N
k=1 .

Proof. Let T = [hi,j ]N\times N \in \scrM t,N be an arbitrary \BbbH t-matrix with

hi,j = ai,j + bi,jjt \in \BbbH t, \mathrm{f}\mathrm{o}\mathrm{r} ai,j , bi,j \in \BbbC , \forall i, j = 1, ..., N.

Consider the realization \Pi t (T ) \in Mt,N of T , as an element of M2N (\BbbC ). Then, by
the usual spectral theory on M2N (\BbbC ), this \BbbC -matrix \Pi t (T ) has its non-empty spectrum
\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c} (\Pi t (T )) as a subset of \BbbC , and if \lambda \in \mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c} (\Pi t (T )), then there exists the corresponding
eigenspace \scrE \lambda , satisfying

\Pi t (T ) (\scrE \lambda ) \subseteq \scrE \lambda , \mathrm{i}\mathrm{n} \BbbC 2N .

i.e., for \Pi t (T ) \in Mt,N \subset M2N (\BbbC ), there exist V \in \BbbC 2N and \lambda \in \BbbC , such that

\Pi t (T ) (V ) = \lambda V = V \lambda , \mathrm{i}\mathrm{n} \BbbC 2N . (8.2)

Now, for convenience, we write the vector V \in \BbbC 2N by

V =
\bigl( 
a1, b1, a2, b2, ..., aN , bN

\bigr) 
=

\left(           

a1
b1
a2
b2
...
aN
bN

\right)           
,

and define a new vector W \in \BbbC 2N by

W = (tb1, a1, tb2, a2, ..., tbN , aN ) =

\left(           

tb1
a1
tb2
a2
...
tbN
aN

\right)           
\in \BbbC 2N .
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Remark that the new vector W in terms of the eigenvector V is constructed to establish

\bigl( 
V W

\bigr) \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}
=

\left(           

a1 tb1
b1 a1
a2 tb2
b2 a2
...

...
aN tbN
bN aN

\right)           
\in \frakH N

t = \pi N
t

\bigl( 
\BbbH N

t

\bigr) 
,

having its pre-image,

\bigl( 
\pi N
t

\bigr)  - 1 \bigl( 
V W

\bigr) 
=

\left(     
a1 + b1jt
a2 + b2jt

...
aN + bN jt

\right)     \in \BbbH N
t .

Remark that, since \pi N
t is bijective from \BbbH N

t onto \frakH N
t , actually, the above pre-image is

uniquely determined in \BbbH N
t .

By the straightforward computation, one can re-write the above relation (8.2) by its
equivalent relation,

N\sum 
k=1

\biggl( 
ai,k tbi,k
bi,k ai,k

\biggr) \biggl( 
ak
bk

\biggr) 
= \lambda 

\biggl( 
ai
bi

\biggr) 
, \forall i = 1, ..., N. (8.3)

This relation (8.3) is equivalent to
N\sum 

k=1

\bigl( 
ai,kak + tbi,kbk

\bigr) 
= \lambda ai, \forall i = 1, ..., N

and (8.4)
N\sum 

k=1

\bigl( 
bi,kak + ai,kbk

\bigr) 
= \lambda bi, \forall i,= 1, ..., N.

By the formulas of (8.4), we have that
N\sum 

k=1

\bigl( 
ai,kbk + bi,kbk

\bigr) 
= \lambda bi, \forall i = 1, ..., N,

and (8.5)
N\sum 

k=1

\bigl( 
bi,kbk + ai,kak

\bigr) 
= \lambda ai, \forall i = 1, ..., N,

implying that (8.6)
N\sum 

k=1

\biggl( 
ai,k tbi,k
bi,k ai,k

\biggr) \biggl( 
tbk
ak

\biggr) 
= \lambda 

\biggl( 
bi
ai

\biggr) 
, \forall i = 1, ..., N,

by (8.5). However, by (8.3) and (8.6), we have that

\Pi t (T )
\bigl( 
V W

\bigr) 
=
\bigl( 
V W

\bigr) \biggl( \lambda 0

0 \lambda 

\biggr) 
,

where (8.7)\biggl( 
\lambda 0

0 \lambda 

\biggr) 
=

\biggl( 
\lambda t(0)

0 \lambda 

\biggr) 
\in \pi t (\BbbH t) .
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Therefore, by (8.7), one can conclude that, for any realization \Pi t (T ) \in Mt,N of an
\BbbH t-matrix T \in \scrM t,N , there exists \pi N

t (v) \in \frakH N
t with v \in \BbbH N

t , and \lambda \in \BbbC regarded as

\lambda + (0 + 0i) jt \in \BbbH t,

such that
\Pi t (T )

\bigl( 
\pi N
t (v)

\bigr) 
= \pi N

t (v)\lambda \in \frakH N
t \Leftarrow \Rightarrow T (v) = v\lambda \in \BbbH N

t .

Therefore, the relation (8.1) holds true. \square 

The above theorem shows that, for every \BbbH t-matrix T \in \scrM t,N , there exist v \in \BbbH N
t

and \lambda \in \BbbC \subset \BbbH t, such that T (v) = v\lambda in \BbbH N
t , by (8.1).

Theorem 8.2. Suppose T \in \scrM t,N satisfies T (v) = v\lambda \in \BbbH N
t , for v \in \BbbH N

t and \lambda \in \BbbC \subset 
\BbbH t as in (8.1). Define a \BbbR -subspace \scrE (T, v, \lambda ) of \BbbH N

t by

\scrE (T, v, \lambda )
\mathrm{d}\mathrm{e}\mathrm{f}
= \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\BbbR 

\bigl( \bigl\{ 
v\lambda n \in \BbbH N

t : n \in \BbbN 0

\bigr\} \bigr) 
, (8.8)

where \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\BbbR X is the \BbbR -vector space spanned by a subset X of \BbbH N
t . Then

T (\scrE (T, v, \lambda )) \subseteq \scrE (T, v, \lambda ) , \mathrm{i}\mathrm{n} \BbbH N
t ,

i.e., (8.9)

\scrE (T, v, \lambda ) is T -invariant in \BbbH N
t .

Proof. By (8.1), for any T \in \scrM t,N , there are v \in \BbbH N
t and \lambda \in \BbbC satisfying \lambda +(0 + 0i) jt \in 

\BbbH t, such that T (v) = v\lambda in \BbbH N
t . Now, note that

\Pi t (T ) is a (2N \times 2N) -matrix over \BbbC ,

\pi N
t (v) is a (2N \times 2) -matrix over \BbbC ,

and
\pi t (\lambda ) is a (2\times 2) -matrix over \BbbC ,

satisfying the matrix multiplication,

(\Pi t (T ))
\bigl( 
\pi N
t (v)

\bigr) 
=
\bigl( 
\pi N
t (v)

\bigr) 
(\pi t (\lambda )) ,

in the sense of (8.7) by (8.1). So, one can get that

(\Pi t (T ))
2 \bigl( 
\pi N
t (v)

\bigr) 
= (\Pi t (T ))

\bigl( 
\pi N
t (v)

\bigr) 
(\pi t (\lambda )) =

\bigl( 
\pi N
t (v)

\bigr) 
(\pi t (\lambda ))

2
,

as in (8.7), and

(\Pi t (T ))
3 \bigl( 
\pi N
t (v)

\bigr) 
= (\Pi t (T ))

2 \bigl( 
\pi N
t (v)

\bigr) 
(\pi t (\lambda )) =

\bigl( 
\pi N
t (v)

\bigr) 
(\pi t (\lambda ))

3
,

up to the “associative” matrix multiplication. So, inductively, we have that

(\Pi t (T ))
n \bigl( 
\pi N
t (v)

\bigr) 
=
\bigl( 
\pi N
t (v)

\bigr) 
(\pi t (\lambda ))

n
, \forall n \in \BbbN ,

up to the matrix multiplication. Equivalently,

Tn (v) = v\lambda n \in \BbbH N
t , \forall n \in \BbbN ,

by the injectivity of \Pi t, \pi N
t and \pi t. Thus, if we define a \BbbR -vector space,

\scrE (T, v, \lambda ) = \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\BbbR \{ v\lambda n : n \in \BbbN 0\} \subset \BbbH N
t ,

as in (8.8), then it is not only a well-defined \BbbR -subspace of \BbbH N
t , but also a T -invariant

subspace in the sense that:

T (V ) \in \scrE (T, v, \lambda ) , \forall V \in \scrE (T, v, \lambda ) .

Therefore, the relation (8.9) holds true. \square 

The above theorem shows that our \BbbH t-matrices of \scrM t,N have their invariant subspaces
of \BbbH N

t by (8.9).
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Corollary 8.3. Every \BbbH t-matrix T \in \scrM t,N has its T -invariant \BbbR -subspace in \BbbH N
t .

Proof. The proof is done by (8.9). Indeed, one can take a T -invariant \BbbR -subspace \scrE (T, v, \lambda )
of (8.8) by (8.1). \square 

\bfD \bfe \bfc \bfl \bfa \bfr \bfa \bft \bfi \bfo \bfn .

\bfE \bft \bfh \bfi \bfc \bfa \bfl \bfS \bft \bfa \bft \bfe \bfm \bfe \bfn \bft . This submitted paper is the very original, not published, or sub-
mitted to elsewhere in any form or language, partially, or fully.

\bfC \bfo \bfm \bfp \bfe \bft \bfe \bfi \bfn \bfg \bfI \bfn \bft \bfe \bfr \bfe \bfs \bft \bfs . None.

\bfA \bfu \bft \bfh \bfo \bfr \prime \bfs \bfC \bfo \bfn \bft \bfr \bfi \bfb \bfu \bft \bfi \bfo \bfn . The co-author, Ilwoo Cho and Daniel Alpay, contributed to
this manuscript equally, in theoretic and structural points.

\bfF \bfu \bfn \bfd \bfi \bfn \bfg . No fund for authors.

\bfD \bfa \bft \bfa \bfA \bfv \bfa \bfi \bfl \bfa \bfb \bfi \bfl \bfi \bft \bfy \bfS \bft \bfa \bft \bfe \bfm \bfe \bfn \bft . The co-authors confirms that no data known is used in
the manuscript.
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