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MATRICES INDUCED BY SCALED HYPERCOMPLEX NUMBERS
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OVER THE REAL FIELD R

DANIEL ALPAY AND ILWOO CHO

ABSTRACT. In this paper, we construct, and study a certain type of definite, or indef-
inite inner product spaces over the real field R, induced by the scaled hypercomplex
numbers H; for a fixed scale t € R, and some bounded operators acting on such vector
spaces. In particular, we are interested in the vector spaces H,{V consisting of all
N-tuples of scaled hypercomplex numbers of H¢, and the (N x N)-matrices acting
on HYY whose entries are from Hy, i.e., H-matrices, for all N € N. For an arbitrarily
fixed N € N, we define Hf\’ as a subspace of a certain functional vector space Hy.o
equipped with a well-defined definite (if ¢ < 0), or indefinite (if ¢ > 0) inner product
introduced in [6, 7, 8]. So, one can check immediately that our subspace va becomes
a restricted definite, or indefinite inner product Banach space. Operator-theoretic,
operator-algebraic and free-probabilistic properties of H;-matrices are considered and
characterized on HY.
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For a fixed scale t € R, a t-scaled hypercomplex number is a pair (a,b) € C? of complex
numbers a,b € C, contained in a noncommutative ring,

Ht den:Ote ((C27 +, 't) )

with the identity (0,0) and the unity (1,0), where (+) the usual vector addition on C2,
and (-;) is the t-scaled vector multiplication,

(a1,b1) -t (az,b2) = (alaz + tb1ba, arbs + bl@) )

(1.1)

for all (a;,b;) € C2, for [ = 1,2, where Z are the conjugates of z € C (see [1, 2, 3, 4]). By

the canonical representation ((C

2
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,m¢) of Hy of [1], every hypercomplex number (a,b) € H;
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is realized to be a (2x2)-matrix,

gtb

(@) 2 a0 (§ 0 ) ().

where M; (C) is the matrix algebra acting on C?. The definition of {H;},p is motivated by
the well-known quaternions (e.g., [10, 11, 14, 17, 20, 21, 23, 26]), and the split-quaternions
(e.g., [9, 14, 19]). Indeed, H_; is the noncommutative field H of all quaternions, and Hj is
the noncommutative unital ring of all split-quaternions (e.g., [1, 2, 3]). Algebra, analysis,
and certain free-probabilistic models on {H}},_ are studied in [1, 2, 3, 4, 8]. In particular,
analysis and operator theory on {H;}, g is considered by defining symmetric bilinear
forms {(, >t}t€R on {H;},.p in [3]. In such a case, the pairs {(H;, (, >t)}t<0 form Hilbert
spaces over R (in short, R-Hilbert spaces), meanwhile, the pairs {(Hy, (,),)},~, become
indefinite semi-inner product spaces over R (in short, R-ISIPSs), under the semi-norms,

(@, b)ll, = /lal® + [t [B]*, ¥ (a,b) € Hy, V¢ € R,

where |al, |b|] are the moduli on C, and |¢| is the absolute value on R. Also, it is shown
that H; is (isomorphic to) a complete semi-normed R-*-algebra,

Mt:{mh EBR(Ht) : hEHt},
over R, operator-algebraically. (e.g., see [3, 4]). Especially, all elements of M; are

adjointable over R (in short, R-adjointable) with the adjoint m% Lef mpe € My, for all
h € H;, where (®) is the hypercomplex-conjugate on Hy,

(a,0)® < (@, —b), V(a,b) € H,.

(Remark that, in [1, 2, 3, 4], we denoted h® by h'.)
Meanwhile, different from [1, 2, 3, 4], we introduced-and-studied a new R-adjoint,
denoted by [#], on the t-scaled hypercomplexes H;,

(a,0) = (a,8),  V(a,b) € Hy,

in [6]. Under this new R-adjoint [x], our t-scaled hypercomplexes H; becomes a Pontryagin
space over R, for all “non-zero” scales t € R\ {0}, different from the case where we have
the R-adjoint (®), the hypercomplex-conjugate. On such a Pontryagin space H;, we
constructed a Hardy-like vector space Hy.o [[¢]] in H; whose vectors are functions acting
on the open unit ball Uy of H;, and defined-and-considered block-Toeplitz-like operators
acting on Hy.5 [[q]]. The general constructions and approaches of [5] motivate those of [6].

The similar version of [6] up to the R-adjoint (®) is considered in [7]. Readers can
realize that the constructions and approaches of [7] are similar to those of [6], but the
structures we handled therein are “not” equivalent at all. i.e., the main results of [7] and
those of [6] provide non-equivalent analyses and operator theories. In this paper, we follow
the settings of [7], because the R-adjoint (®) gives a natural (Clifford-algebra-theoretic)
extension from the initial inclusion R C C, compared with the R-adjoint [*] of [6]. However,
it is true that the R-adjoint [*] gives interesting unified (Krein-space-)operator-theoretic
backgrounds on the vector spaces over R (in short, R-vector spaces) induced by H;. In
this paper, we focus on (®)-depending structures.

In Section 2, we review definitions and basic results of scaled hypercomplex numbers.
And then, in Section 3, we re-considered the Hardy-like R-vector space Hy.s [[¢]], called
the Hi-Hardy space, introduced in [7] (which is not equivalent to that of [6]) to understand
our analytic structures of this paper. Note that, just like in, but different from, the usual
operator theory, our H;-Hardy space forms a complete semi-normed, definite or indefinite
semi-inner-product space over R. If ¢ # 0, then it is a complete normed, definite, or
indefinite inner-product space over R.
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In Section 4, we define and study finite-dimensional R-vector space HY “over H;,” as R-
vector subspaces of Hy.» [[¢]], equipped with an inherited definite, or indefinite semi-inner
product, and a restricted complete semi-norm, for N € N. In Section 5, some operators
acting on HY are introduced and considered. Especially, matrices with H;-entries acting
on HY are studied, as “R-linear” transformations.

In Section 6, as in classical free probability theory (over C), we define and study certain
statistical-analytic structures acting on HY over R.

In Section 7, a representation ((CZN , Ht) of H;-matrices of Section 6 is introduced. Our
matrices of Section 6 are realized as (2N x 2N )-matrices over the complex field C, acting
on C?V as R-linear transformations. As application, in Section 8, invariant subspaces
(as a R-vector space) of our Hy-matrices in HYY are constructed, similar to, but different
from, the usual spectral theory (over C).

2. SCALED HYPERCOMPLEX NUMBERS

Let t € R be an arbitrary scale, and let
Ht :SpanR{laivjtvkt} (21)
be the R-vector space spanned by {1,4, j;, k; }, where i = /—1 in C, and j; and k; are

additional ¢-depending imaginary numbers satisfying the relation:
*=-1, ji=t=k,
ije = ki, Jike = —ti, kyi = ji,

and (2.2)

thy = —ji, kije =11, jit = —kg.
Then this R-vector space H; of (2.1) is well-defined under the relation (2.2) on its R-basis
elements {1,4, js, ki }. i.e., every element h € H; is expressed by

h =24yt + ujs + vks, with z,y,u,v € R.
Note that, by the relation (2.2), the vector-multiplication on this R-vector space H; is
well-defined to be
hihy = (2122 — Y1y + turug + tv1va) + (T1Y2 + Y122 — turve + tvrus) i

(Tru2 — Y1v2 + U122 + v1Y2) Ji + (T1v2 + Yrus — urye + vix2) Ky, 23)

2.3

for all hy = z; 4+ yii + wje + viky € Hy for all I = 1,2, by (2.2). Remark that, up to

the representation of [1, 2|, this vector-multiplication (2.3) is equivalent to the t-scaled
multiplication (-;) of (1.1) on H; (e.g., see [3, 4]).

By the well-defined vector multiplication (2.3) on Hy, this R-vector space H; forms an

algebra over R (in short, a R-algebra) (e.g., [1, 2, 3, 4]). On this R-algebra H;, one can

define a unary operation ® : H; — H; by

(z + yi + uje + vkt)®
Then this satisfies that

=z —yi —ujy — vk (2.4)

h®® = h, and (rh)® =rh®,
for all h € H;, and r € R, and
(hy +12)® = h® + 12, and (h1hs)® = ASHY,

for all hy, hy € H;. i.e., this operation (®) of (2.4) becomes an adjoint (or, an involution)
on H; over R (in short, a R-adjoint on H;). It says that the R-algebra H,; forms a
x-algebra over R (in short, R-x-algebra) equipped with its R-adjoint (®) of (2.4) (e.g.,
see [1, 2, 3, 4, 8]) for details).
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Definition 2.1. The R-x-algebra H; of (2.1) equipped with its R-adjoint (®) of (2.4) is
called the t-scaled hypercomplexes for a scale t € R. All elements of H, are called t-scaled
hypercomplex numbers.

Note that, each t-scaled hypercomplex number h = z+yi+uj; +vk; € H; is understood
to be
h=(x+yi)+ (u+vi)j in Hy,
by (2.2). If z + yi and u + vi are denoted by a respectively b in C, then this ¢t-scaled
hypercomplex number A is expressed to be a + bj; in H,. i.e.,

H; = {a+bj; : a,b € C}.
Then one can define an injection 7; : H; — Ms (C) by

tb
ﬂ't(a—l—bjt):( % E ) € M5 (C), VYa+ bj: € Hy, (2.5)

where Z are the conjugate of z € C. Then the pair ((CZ, 7rt) forms a representation of Hy,
satisfying
7t (h1 + ha) = m¢ (hy) + ¢ (ha2) ,
and
Tt (hlhg) = Tt (hl) Tt (hg) s th hg S Ht,
by (2.5), where the right-hand sides are the matrix addition, respectively, the matrix
multiplication on M (C). i.e., H; has its realization,

H (1) = {m, (h) : b€ HY, (2.6)

in M, (C). By (2.6), one can restrict the normalized trace T = tr on M (C) to that on
HE, ie.,

7((h],) ¥ Ler (( . b )) = &8 — % (a), (2.7)

a

by (2.6), where R (a) is the real part of a complex number a in C. However, note here
t o«

that 7 |3 is on H5 “over R,” meanwhile 7 is on M3 (C) “over C.” So, this morphism 7 of
(2.7) is a well-defined trace on the t-scaled realization H of (2.5) “over R, satisfying
T (TTy) = 7 (ToTy), YTy, Ty € Hb.
By (2.6) and (2.7), we define the R-trace, also denoted by 7, directly on Hy, by
7(h) =Re(h), VheH,
where Re (o) is the real part,
Re (z + yi + uj; + vk) = z,
and Im (e) is the imaginary part, (2.8)
Im (2 + yi + ujy + vks) = yi + ujs + vky,
on Hy, for all z,y,u,v € R. So, by (2.7) and (2.8), one can define a bilinear form,
L], : Hy x H, — R,
by (2.9)
b1, hol, € 7 (hhg) = Re (hh$) .
Then this bilinear form (2.9) satisfies that:
[h,h], >0, Vh e H, if t<0,
[h,h], e R, Vh e Hy, if t>0,
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[hl,hg]t = [hQ,hlh, Vhl,hz GHt, Vte R
and (2.10)
[h,h], =0 < |a]> =t[b]*, if h=a +bj; € H,, a,b € C,
for all ¢ € R, where |.| is the modulus on C. Thus, if ¢ < 0, then it forms a R-inner
product on H;, meanwhile, if ¢ > 0, then it forms an R-indefinite semi-inner product on
H; (e.g., see [3, 4, 8] for details). More precisely,
[h,q], =0, forallg e H; = h =0 € H,, Vte R\ {0},

which says that [,], is non-degenerated on Hy, for all ¢ € R\ {0}. Meanwhile, if ¢ = 0,
then

[th]ozoa Vg € Ho = h = 0+ 0i + ujo + vko € Ho, (211)
for any w,v € R, which implies that [, ], is “not” non-degenerated on H.

Proposition 2.2. Let H; be the t-scaled hypercomplexes, and [,],, the bilinear form (2.9)
on Hy, for allt € R. Then

(1) If t <0, then (Hy,[,],) is a R-inner product space.

(2) If t > 0, then (Hy, [,],) is a R-indefinite inner product space.

(3) If t = 0, then (Ho,[,],) is a R-indefinite semi-inner product space in the sense of
[3, 4, 6, 8]. More precisely, the form [,], is a positive semidefinite and degenerated.

Proof. The proof is done by (2.10) and (2.11). O

By the above proposition, for any scale t € R, the pair (Hy, [,],) becomes a definite, or
indefinite semi-inner-product R-vector space in general. Thus, one can define a function,

I, : H, — R,
by (2.12)

la+bjell, = /lal” + [¢] b, Va+ bji € Hy,

where a,b € C, and |.| in (2.12) is the absolute value on R.

Proposition 2.3. Let H; be the t-scaled hypercomplexes, and ||.||,, the function (2.12),
for allt € R. Then

(1) If t <0, then (Hy,|.||,) is a R-Hilbert space.

(2) If t > 0, then (Hy,|.||,) is a R-Pontryagin space (i.e., R-Krein space with the finite-
dimensional anti-Hilbert space).

(3) If t = 0, then (Ho, |.||y) is a complete R-semi-normed space, where the completeness
means that all Cauchy sequences are convergent in Hy.

Proof. See [8] for details. O

Let H; be the t-scaled hypercomplexes as a R-x-algebra with its R-adjoint (®). Then
this algebra H; acts on the R-vector space (Hy,[,],) = (H, ||.|[,) via an action m,

m:hEHtMthBR(Ht),
defined by (2.13)

my, (q) & hg € Hy, VqeH, VheH,

where Bg (Y) means the operator algebra of all “bounded” R-linear operators on a
semi-normed R-vector space Y = (Y ||.||y-) with its operator semi-norm,

1T = sup {ITylly - [lylly =1}, VT € B (Y).
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It is not difficult to check that, in our case,
[y (@)l = [[Rgll, < IRl llglly,  Vh,q € H,
implying that (2.14)
|my| = [|h]|, < oo, in Br (Hy), Vh e H.
Also, it can be checked that
[(my, (h1), ha], = [hhi, hol, = [hl,h@)hQ]t = [h1,mpe (h2)],,
for all h, hy, hy € H;.

Theorem 2.4. The t-scaled hypercomplexes H; forms a complete R-semi-normed R-x-
algebra equipped with its R-adjoint (®) of (2.4).

Proof. If we define a subset M of By (H;) by

MY (my, : heH,},

where m is the action (2.13), then it forms a complete semi-normed R-x-subalgebra of
Bg (Hy). It is easy to check that H; and M are isometrically isomorphic by (2.13) and
(2.14). Indeed, there exists an isometric *-isomorphism,

h € H; — my, € M.

3. THE H;-HARDY SPACE Hi.s [[q]]

In this section, we define theH;-Hardy space Hy.z [[¢]] in a H;-variable ¢ = z + wjy,
with the C-variables z = x 4 yi and w = u + vi, where z,y, u,v are R-variables, for an
arbitrarily fixed scale t € R. Since the t-scaled hypercomplexes H; is a R-semi-normed
R-x-algebra (and hence, it is a ring), one can construct the corresponding (pure-algebraic)

formal-series ring H; [[¢q]] (without considering topology),
H, [[q] & { > ¢ hy :he € Hy, Vn € Ng=NU {0}}, (3.1)
having the functional addition (+),
def > n
(f+9) (@ = F@)+9@=>_a" (fa+gn),
k=0
and the Cauchy product (*),
def =
(f*g)( ) an Z fnlgN2 ’
n=0 ni,m2€Ng,n1+na=n
for all - -
= d"fnr 9(0) =D _q"gn € Hy|[g]
n=0 n=0
equivalently,
d £
(f*9)(q) = Zq ), Vf () € Hy [[q]]-
This formal-series ring H, [[q]] = (Ht [[¢]]; +,%) of (3.1) is well-defined as a R-algebra

pure-algebraically, because the R-scalar product,

r (anfn> « <q0r + Zq”0> * (anfn> => " (rfa),
n=0 n=1 n=0 n=0
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is well-defined on H; [[¢]], for all r € R.
Proposition 3.1. The formal-series ring H; [[¢]] of (3.1) forms a R-algebra.

Proof. By definition, the family H; [[¢]] of (3.1) forms a ring having a well-defined R-scalar
product, introduced in the above paragraph, making H; [[¢]] be a R-vector space. So,
H, [[¢]] is both a ring and a R-vector space, and hence, it forms a R-algebra. O

Recall that ||.||, be the R-semi-norm (2.12) on H; (i.e., it is a R-norm if ¢ # 0, while
it is a R-semi-norm if ¢t = 0). Now, let f(¢) = > ¢"fn € H, [[q]] with f,, € H, for all
n=0
n € Ng = NU{0}. Observe that, for an arbitrary g, € H;, one may / can have
f(g) = Zq:}fn € H;, or, undefined in Hj,

n=0

satisfying (3.2)

lim sup {/[|¢7 full, < llgoll, (lim sup j, |fn||t> .
n— o0 n—00

Proposition 3.2. Let f(q) = > q¢"f, € Hi[lq]], with f,, = an + bpjr € H; with
n=0
an, by € C, for all n € Ny. If q, € H; satisfies

—1
laoll, < (nmsup c/nfnnt) ,
n—o0

then f(qo) is convergent in Hy in the sense that: f(q,) € Hy < ||f (go)]| < 0.
Proof. By (3.2) and the root test, if

tim sup ¢/llaz £ull, < ol (hm sup q/nfnt) <1,
n—oo n—o0

equivalently, if

1
I19oll; < -
b limsup /1l
n— oo
then || f (¢0)|l; < 00, i.e., f(qo) € Hy. O

Motivated by the above proposition, we consider the analyticity on the R-algebra
H [[q]]-

Definition 3.3. Let U be an open subset of H; under the [|.|[,-semi-norm topology.
Define the H-analytic algebra 7 [[U]] by

def

A (U] = {f(q) e He [[q]] : f(q0) € H, Vg0 € U}. (3.3)

All elements f (q) of 5 [[U]] are said to be H;-analytic functions on a domain U. If
U = H,, then 54 [[H,]] is called the H;-entire algebra, and all elements of 4 [[H,]] are
said to be Hy-entire functions (on Hy).

Observe that
f(@),g9(q) e AUl = fla)+9(a), fa)xg(q) € A [U]],
and (3.4)
reR, f(q) € (U]l = rf(q) € 24U,
since, for any g, € U, one has

1f (20) + 9 (go)ll, < I1f (g0)lly + [lg (g0) I, < o0,
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lIf (20) *Q(QO)”t <|f (QO)”t lg (QO)”t < 00,
and

I (go)ll; = Irl1I.f (g0)ll; < o0, Vr€R.
Thus, indeed, the H;-analytic algebra 7 [[U]] of a domain U forms a R-algebra by (3.4).
By (3.3), one can define a morphism,

e s (U] = R,

by (3.5)

£ (@)l < sup [If (W],
heU

for all f (q) € 4 [[U]]. Then it is a well-defined complete R-semi-norm on % [[U]]. More
precisely, if ¢ # 0, then ||.||, ;; of (3.5) is a complete R-norm, meanwhile, if ¢ = 0, then
[[-l; 7 forms a complete R-semi-norm on 7 [[U]], because ||.||, is a complete R-norm on
H if ¢ # 0, while, [|.||, is a complete R-semi-norm on Hy.

Theorem 3.4. The H;-analytic algebra 4 [[U]] on a domain U C H; is a complete
R-semi-normed R-algebra.

Proof. By (3.4), the H;-analytic algebra /7 [[U]] of (3.3) on a domain U is a well-defined
R-algebra, equipped with the R-semi-norm ||.|[, ;; of (3.5). As we discussed in the above
paragraph, this R-semi-norm |.[[, ;; is complete on J; [U]]. O

Now, we define a new R-vector space Hy.o [[¢]] in H;.

Definition 3.5. Let U; = {h € H; : ||h]|, < 1} be the open unit ball of H; up to the
||.||;-semi-norm topology. Define a R-vector space Hy.s [[¢q]] by

H;-[[q]] = { ioq”fn : q acts on Uy, ij:o ||fn||f < oo} , (3.6)

where ¢ is the Hy-variable acting on Uy in H;. We call Hy.5 [[q]], the H;-Hardy (R-vector-
)space.

Consider that if
F@=>a"fn 9(0) =D _q"gn € Hiz [[q]],
n=0 n=0
then (3.7

<Z||fn+gnllf> S(ZIIMI?) +<Z||gn|?> ,
n=0 n=0 n=0

by the Minkowski’s inequality, implying that

f(@), 9(q) € Hez[lql] = [ (q) + 9(q) € Hea [[q]], (3.8)
by (3.7). Also, one has
r€R, f(q) € Hyz[[q]] = rf (q) € Hy2 [[g]], (3.9)
since
n=0 n=0 n=0
for all r € R. So, our H;-Hardy space Hy.o [[¢]] is a well-defined R-vector space by (3.8)
and (3.9).

Define now a form, ¢; on Hy.s [[¢]] by
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O (iOQ”fm iOQ"gn) = i [frs 9nls > (3.10)

where [,], is the symmetric bilinear form (2.9) on Hy, especially, if ¢ < 0, then it is a
definite R-inner product, or if ¢ > 0, then it is a R-indefinite inner product, or if t = 0,
then it is a R-indefinite semi-inner product on H;. Note that, on Hy,

|7 B, = |7 (RR) < |7 R, = Ihh® |, Vh € H, (3.11)
where ||7|| o sup {|7 (¢)| : ||l¢||, = 1} = 1, since 7 (1) = Re (1) = 1, and hence, one has
15 Blel < IR 1821, = WBIE ¥h € H, (3.12)

by (3.11). Thus, similar to (3.12), if f(¢) = >. ¢"fn, 9(¢) = >_ ¢"gn € 4 [[U]], then
n=0 n=0

we have that

(e (F @9 @< 3 [[Fngdd < 3 1Full loal (3.13)

It shows that the morphism ¢, of (3.10) is bounded from H;.s [[g]] X Hy.2 [[¢]] into R in
the sense that

o0 (£ (@), F (@) <D NI fall} < o0
n=0

by (3.12) and (3.13). Moreover, we have

ot (rif(q) +r29(q), p(q) =r19: (f (@), 2 (q) +7200¢ (9 (), 0 (q))
and (3.14)

ot (p(q),m1f (@) +r29 () =110 (P (@), f (@) + 72006 (P (q) 9 (0)),

for all 1,72 € R, and f(q),g(q) € Hy:2[[¢]], by the bilinearity of [,], on H;. And, we
have that

o (F@),9@) = 3 U gnle = > [gns Fale = 21 (9 (@) £ ()- (3.15)

n=0 n=0

i.e., the form ¢; is a symmetric bilinear form on the H;-Hardy space Hy.2 [[q]], by (3.14)
and (3.15).

This symmetric bilinear form ; of (3.10) on the H;-Hardy space Hy.o [[¢]] also satisfies
that: for any fixed f (q) € Hy.2 [[q]], if

v (f(q),9(q)) =0, "for all" g(q) € He2[[q]],
then

fl@)=) q"0=0, if t#0,
n=0

while, (3.16)
f(q) #0, in general, if t =0,

by Proposition 2, i.c., by the non-degenerated-ness of {[,];},cp\ 1oy o0 {Ht}ep oy Te-
spectively, by the degenerated-ness of [,], on Hp. i.e.,

t # 0 = ¢, is non-degenerated on Hy.o [[g]]
meanwhile, (3.17)
t =0 = g is not non-degenerated on Hy.3 [[q]]
by (3.16).
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Theorem 3.6. Let Hy.5 [[q]] be the H;-Hardy space (3.6), and ¢y, the form (3.10). Then
t < 0= Hy2[[q]],¥t) is a definite R-inner-product space,

t>0= Hy2[[q]], o) is a R-indefinite-inner-product space,
and (3.18)

t=0= Ho2[[q]],®0) is a R-indefinite-semi-inner-product space,

in the sense of [3, 4, 6, 8]. i.e., the form ¢q is a positive semidefinite and degenerated.
Moreover, the form ¢, is bounded on Hy.o [[g]] in the sense that:

lpe (f (@), f(9)] < oo, Yf(q) € Heallg]], Vt € R. (3.19)

Proof. By (3.14) and (3.15), the form ¢; of (3.10) is a symmetric bilinear form on Hy.5 [[¢]],
for all scales t € R.

If t > 0, then this symmetric bilinear form ¢, is non-degenerated by (3.17), and
hence, it forms a R-indefinite inner product on Hy.s [[¢]]. i.e., the pair (Hy2[[¢]], ¢t)
forms a R-indefinite-inner-product space. If t = 0, then g is not non-degenerated (or,
degenerated) by (3.17). So, the form ¢¢ becomes a R-indefinite “semi-inner” product on
H.. [[q]], saying that the pair (Hg.2 [[q]], ¢0) is a R-indefinite-semi-inner-product space.
If ¢ < 0, then this symmetric bilinear form ¢; is not only non-degenerated, but also,
satisfying that

00 (f (), f(@)=0=f(q) =0=" ¢"0 € Hys[[q]],
n=0

since [,], is a definite R-inner product on H;. So, the non-degenerated symmetric bilinear
form ¢ becomes a definite R-inner product on Hy.s [[¢]]. Thus, if ¢ < 0, then the pair
(H:2 [[q]], ¢+) forms a definite R-inner-product space. Therefore, the structure theorem
(3.18) holds.

Also, for any arbitrary scale ¢t € R, the form ¢, is bounded on H;.5 [[¢g]] in the sense
that

loe (f (@), f(g)] < oo, Vf(q) € Hialg]l,
by (3.12) and (3.13), i.e.,

2 qnfnv qnfn < fn 2 < o0.
(z s )](3_13) SInk g,

Therefore, the boundedness (3.19) of ¢; on Hy.s [[¢]] is shown. O
By (3.18) and (3.19), if we define a map |||, , : Hi:2 [[¢]] = R by

LS A2 Y3 ¢ f € Hio [lg] (3.20)
H;.» n=0 n=0

then it is a well-defined complete R-semi-norm on the H;-Hardy space Hy.5 [[g]]. More
precisely, if ¢ # 0, then the map ||.|g, , becomes a R-norm on Hy.s [[g]], meanwhile, if
t = 0, then it is a R-semi-norm on Hy.s [[¢]], because ||.||, is a R-norm if ¢ # 0, while,
[[Ilo is a R-semi-norm on Hy if ¢ = 0. The completeness of the R-semi-norm |.|g, , on
H,.» [[¢]] is guaranteed by that of ||.||, on Hy, for all ¢t € R.

Theorem 3.7. If ||.||y, , is the morphism (3.20) on the H;-Hardy space Hy.o [[q]], then
the pair (Hyz [[q]], ||.lg, ) is a complete R-semi-normed space. More precisely,

t# 0= (Hu2[[q]], ””th) is a R-Banach space,
meanwhile, (3.21)

o
Zoq"fn

t=0= (Hoz[[q]], I-lgg,,) s a complete R-semi-normed space.
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Proof. The structure theorem (3.21) of Hy.2 [[¢]] up to the complete R-semi-norm ||.[|g, ,
is shown by (3.20) and Proposition 3. O

By (3.18), (3.19) and (3.21), one obtains the following corollary.

Corollary 3.8. If t # 0, then the H;-Hardy space Hy.5 [[q]] is a complete R-normed
definite, or indefinite R-inner-product space. Meanwhile, if t = 0, then Ho.2 [[q]] is a
complete R-semi-normed R-indefinite-semi-inner-product space.

Proof. Tt is shown by (3.18), (3.19) and (3.21). O

The above corollary characterizes the H;-Hardy space Hy.2 [[¢]] as a complete R-semi-
normed definite, or indefinite R-semi-inner-product space, for all ¢t € R.
Define now an action M of H; acting on the H;-Hardy space Hy.2 [[¢]] by

M :h € H, —s M (k) “2* M), € Bg (Hy2 [[q]]) ,
where (3.22)
M, (an) =N " (),
n=0 n=0

where Bg (Hy.2 [[q]]) is the operator R-algebra consisting of all bounded R-linear operators
on H;. [[¢]], equipped with its operator semi-norm .||,

1A] < sup {4 (f (@), < 1F (@)llgr,., = 1} VA € B (Hia [[g])) -

Then this function M of (3.22) satisfies that
My by 4rohy = 11 Mp, +12My,,, Vri,re €R,
and (3.23)
My, hy, = My, My,, Vhy, hy € Hy,

in Bgr (H:.2 [[¢]]), by (3.22). Moreover, for any h € H; and f (¢) = § q" fn € Hyo [[q]]
n=0
with || f ())llg,, =1,

2

= 3 Ihfl?

H;.2 n=0

& 2 2 2 2 2
< E_IO\Ith [ fally = IRl 1 (D, = IR

1340 (F (@) s, = || X " (0)

implying that (3.24)
[ Myl = lIRll,, VA€ H.

Theorem 3.9. The function M of (3.22) is an action of the complete R-semi-normed
R-x-algebra H; acting on Hy.s [[q]]. Equivalently, the subset

= { My, M (h) : b € Hi | € Br (Hu [[a]])
forms a complete R-semi-normed R-x-algebra equipped with the R-adjoint (®) on My,

M® % Mo € Bg (Hyo[[q]]), Vh € H,.
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Proof. Tt is shown by (3.23), (3.24) and the definition of the R-adjoint (®): M;? = Mye,
for all h € H;. Indeed, the family 97; forms a R-semi-normed R-*-algebra by an isometric
isomorphism,

hGHtHMhemta

satisfying
[Mp]l = [IAll, , in Br (Hy2[[q]]), Vh € H,
and
Mf? = Me € Br (Hy2[[q]]), Vh e H,,
because H; is a complete R-semi-normed R-x-algebra. g

The above theorem illustrates that how the t-scaled hypercomplexes H; acts as operators
of M, inside Bg (Hy.2 [[q]]). Define the set 12 (H,) of all square-summable H;,-sequences
by

12 (H,) % {(hm:"_o CHP: 3 [hal? < oo} , (3.25)
n=0

equipped with the addition (+) by

(fn)zozo + (gn)zo:() = (fn + gn)»zo:o s
and the R-scalar product by

r(fa)oeo = (Tfn)ory, VreR.
Then it is indeed a well-defined R-vector space, equipped with the R-inner product (if

t < 0), or the R-indefinite inner product (if ¢ > 0), or the R-indefinite semi-inner product
(if t = 0), also denoted by ¢,

o0

Pt ((fn)zo:oa (gn)zo:o) = [fmgn]t- (3.26)

n=0

under the complete R-semi-norm ||.|;... defined by

1) e 2 i:: 1fll2. (3.27)

Theorem 3.10. Let 12 (H;) be a R-vector space of (3.5) equipped with the bilinear sym-
metric form ¢, of (3.26), and the R-semi-norm ||.|| .2 of (3.27). Then

(l2 (Hy) ,cpt) iso (Hyo [[q]], ¢¢) , isometrically, (3.28)
as complete R-semi-normed definite, or indefinite R-semi-inner-product spaces.
Proof. The bijection,

anfn € Hya [[q]] — (fn)ZO:o e (Hy) ,

n=0
is an isometric R-vector-space isomorphism in the sense that: it is a R-vector-space
isomorphism satisfying

1 (anfm Zq”gn) = s gnly = @1 (Fa)n s (9n)no) »
n=0 n=0 n=0

and
o0

Z anHf = ||(fn)f:o\|1t:z 5

n=0

00
anfn
n=0 H;.2

by (3.16), (3.20), (3.21), (3.25), (3.26) and (3.27). O
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The above theorem provides an isometrically isomorphic R-vector space 12 (H;) of the
H;-Hardy space Hy.o [[g]] by (3.28). By the isomorphism theorem (3.28), we also call the
R-vector space 12 (H;) of (3.25), the H;-Hardy space.

Assumption and Notation 3.1. (in short, AN 3.1 from below) If there are no confu-
sions, then we denote the H;-Hardy spaces Hy.s [[¢]] and 12 (H;) simply by Hy.o, respec-
tively, by 1¥2, from now on.

4. CERTAIN SUBSPACES OF THE H;-HARDY SPACE

In this section, we construct a certain type of R(-vector)-subspaces of our H;-Hardy
space Hy.o = 152 for a fixed scale t € R. Throughout this section, fix N € N, and define
a subset 152 of 12 by

I S {(fa)o €17 ¢ fi = 0 € H, Wk > N},

n=0
ie., (4.1)
157 = {(fo, f1, -, fnN-1,0,0,0,..) : 1 € Hy, VI =0,..., N —1}.
Then the family 152 becomes a R-subspace of 142, because
(foy s JN=-1,0,0,..) + (905 .-, gN—-1,0,0, ...) = (fo + g0, - fN-1 + gN-1,0,0,...),
and (4.2)
r(fo, f1, s fN-1,0,0,...) = (rfo,7f1, -, 7 fn-1,0,0,0,...)

in 142, for all r € R. So, by the isomorphism theorem (3.28), we have the isomorphic
R-subspace Hy.0.n of Hy.o,

def [ N21
Ht:2:N :{ Z qnfn c Ht:2 : fn S Ht, Vn = 0717"'7N -1 ) (43)

n=0
ie.,
N-1 N-1 )
Ht:Q:N = anfn = <anfn> + (an()) € Ht:2-
n=0 n=0 n=N

By the definitions (4.1) and (4.3), these R-vector spaces 15? and H.o.y have their bounded
definite, or indefinite R-semi-inner product ¢y,

N—-1
Pt,N ((f07 (EE) fN—la 0707 ) 5 (907 ey N -1, O’ 07 )) = [f"“gn]t ’
n=0
and (4.4)
N-1 N-1 N—-1
©t,N <anfn7 Zq”%) = [furgnl;-
n=0 n=0 n=0

Similarly, they have their complete R-semi-norm,

denote
||(f07"'7fN7170707"')Ht:N :t H(f()a~"afN7170107~~)||]t:27
and (4.5)

N—-1 N—-1
> q"fa > q"fa
n=0 n=0

satisfying (4.6)

N-1 N-1
ST =S a
n=0 n=0

denote
- )

H;.2

t:N

H(f07 (X3} fN—la 07 07 )”tN =

)

t:IN
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by (4.5). So, up to subspace topology, the R-subspaces 15? and H;..y form complete
R-semi-normed definite, or indefinite R-semi-inner-product spaces inside 1¥2, respectively,
H..5, by (4.4) and (4.6).

Corollary 4.1. For N € N, the R-subspaces 157 C 1¥2 of (4.1) and Hyo.y C Hyo
of (4.3) are isometrically isomorphic as complete R-semi-normed definite, or indefinite
R-semi-inner-product spaces. i.e.,

152 2 Hypy, VNEN. (4.7)

Proof. As we seen in the above paragraph, two R-vector spaces 157 and Hy.o.y are well-
defined complete R-semi-normed definite, or indefinite R-semi-inner-product spaces in the
H,-Hardy space 12 = Hy.,. Similar to the proof of (3.25), one can define an isometric
isomorphism,

N-1
anfn S Ht:2:N — (.an ceey fN—la Oa 07 ) S 15\:72a
n=0
by (4.2), (4.4) and (4.6). Therefore, the structure theorem (4.7) holds. O

The above corollary confirms that the H,-Hardy space 12 iso H;.o contains its R-
subspaces {1’5\}2 2 H,o N} . Define now the Cartesian product set H,{V of N-copies of
Ne

the t-scaled hypercomplexes H;, by
HY = {(f1, f2y - fn) : L €Hy, VI=1,2,..., N}. (4.8)

Then, this Cartesian product set HY of (4.8) becomes a R-vector space under the vector-
addition,

(fla 7fN) + (917"'791\/) = (fl +gla afN +gN> 5
and the R-scalar-product, (4.9)

r(fi,. [N) = (rf1,.srfN), VreR

Also, one can define a definite, or indefinite R-semi-inner product [, ]t) N

(R SR S o A (4.10)

In particular, if ¢ < 0, then the form [ ]t,N of (4.10) becomes a R-inner product on HY,
since [, ], is a R-inner product on Hy; if ¢ > 0, then |, ]t, ~ is a R-indefinite inner product on
HY, since [,], is a R-indefinite inner product on Hy; and if ¢ = 0, then it is a R-indefinite
semi-inner product on HY', since [,], is a R-indefinite semi-inner product on Hy. Clearly,
one can define the R-semi-norm on HY by

N
1 ) e 554 55 A (411)

Especially, if t # 0, then [|.[|, y of (4.11) becomes a R-norm on HY, since ||.||, is a R-norm
on Hy; and if ¢ = 0, then it is a R-semi-norm on HY, since l|.llp is a R-semi-norm on Hy.

Theorem 4.2. The Cartesian-product set HY of (4.8) forms a definite, or indefinite
R-semi-inner-product complete R-semi-normed space. In particular,

HYN 2152 2 H,yy, VNEN. (4.12)
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Proof. Recall that, by (4.7), the R-subspaces 15? and H;.o.y are isometrically isomorphic
as definite, or indefinite R-semi-inner-product complete R-semi-normed spaces. So, if we
show the first relation of (4.12) holds, then one can conclude that the set HY of (4.8) is a
definite, or indefinite R-semi-inner-product complete R-semi-normed space equipped with
the form [,], y of (4.10), and the morphism |.[[, 5 of (4.11).

Define a bijective morphism ¥, n : HY — 152 by
Uy n (10 ) % (90,91, 0 gn—1,0,0,..)
with (4.13)
gn = fnt1 €Hy, Yn=0,1,...,. N —1.
Then this bijection ¥, y satisfies that
Uy N (r W +1roWa) =m Uy (W) + 120 v (Wa),

for all 1,72 € R and Wi, Wy € HY, and hence, it is a R-vector-space-isomorphism.
Moreover, it is isometric in the sense that

orN (VN (W), Uy (W2)) = Wi, W), v,
and
W, n (W)l = Wl v

where ¢, x and |.||,. are in the sense of (4.4) and (4.5), respectively, and where [, ], 5
and .||, y are in the sense of (4.10) and (4.11), respectively. So, the R-vector-space

isomorphism W, x of (4.13) is isometric, too. Therefore, HYY and 14? are isometrically
isomorphic over R, and hence, the isomorphic relation (4.12) holds true. O

By (4.12), one can understand HY, 152 and Hy..y as isomorphic definite, or indefinite
R-semi-inner-product complete R-semi-normed spaces embedded in the H;-Hardy space
142 2 H,.,, for all N € N. In this paper, we focus on the R-vector space HY of (4.8).

Let Bg (Hi\' ) be the operator R-algebra consisting of all bounded R-linear operators
on HY equipped with its operator-semi-norm,

I = sup {IIT @)l < 0l =1} ¥ € Br ().

Now, we are interested in a certain type of operators of By (H;). Define a subset My (H;)
by

Moy “E% My () = {hi )y + hig € Hi, (4.14)
where
hii hig -+ hin
hagx  hea -+ hon '
[hivj]NxN = . , with hiJ' S Ht,
hni hy2 -+ hnnw
acts on
f
N fa
HY = S feH,Vi=1,.,NY,
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canonically under the usual block-matrix action, i.e.,

N
> hakfr
f1 M
fo > horfx
[hi,j]NxN . = k=1 )
N N
> hn Sk
=1

having its operator-semi-norm,
H[hifj]NxNH — max {||(hk,1, S PR S N} < 0,
and hence, [h; ;]\, y € Br (H,{V), implying indeed that
M,,n = My (Hy) € Bg (HY).

Definition 4.3. The family M; Cf My (H,) of (4.14) is called the H;-matrix algebra
(for N € N).

As we discussed above, the H;-matrix algebra M, y is a subset of Br (Hi\’ ) Also,
under the usual block-matrix addition,

fiilnxn T 1900l nwn = Uid + gislyen
and the R-scalar product,
rfiilnsxy = [Pfislysn, VreER,

and the block-matrix multiplication,

N
([fi,j]NxN) ([gujlzvm) = [dijlyyn > Withdij = firge,
k=1

indeed, our H;-matrix algebra forms a R-algebra embedded in By (Hiv ) Moreover, one
can get that

Fidlnn W), Wa| =W, [f5] y (WR)| (4.15)
t,N t,N

for all Wy, W5 € Hiv.
Theorem 4.4. The H;-matriz algebra My n of (4.14) is a complete R-semi-normed
R-x-algebra under the R-operator-semi-normed subspace topology for Bg (Hiv) i.e.,

M N is a complete R-semi-normed R-x-algebra. (4.16)

Proof. As we discussed above, the H;-matrix algebra M, y is a R-operator-semi-normed
R-algebra consisting of all bounded block matrices in H; over R. If we define an operation
(¥) on M, n by

def

[hi’j]*NxN = [hjg?i]NxN € My N, V[hi,j]NxN € M N, (4.17)
then it satisfies that
T =T, (rT)"=rT*, YT € My n, r € R,
and
(i +T2)" =17 + T3, ('Te)" =T517,
for all Ty, Ty, € My n, by (4.15). i.e., this operation (x) of (4.17) forms a R-adjoint on
M n. Therefore, the structure theorem (4.16) holds. O
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The above theorem shows that the H;-matrix algebra M; y = My (H,) acts on HY
as a complete R-operator-semi-normed R-x-algebra of all adjointable bounded operators
of Bg (H}"), in the sense of (4.17), by (4.16).

Now, let M be the action (3.19) of the t-scaled hypercomplexes H; acting on the

H,-Hardy space 162 %

My (fa)22g) = ()22 2 S 0" (hf) = My (Zq"fn> |
n=0

n=0

Ht:27 Le.,

By (4.12), one can restrict the action M of (3.19) as an action of H; acting on HY, i.e.,
M :h€H; — M, € B (HY),
where (4.18)
M, (h, oo b)) = (hha, ..., hhy), Vh € H,.

Then the family {M}, : h € H;} forms a well-defined R-x-algebra on HY, as a realization
of H; acting on H.

Theorem 4.5. Let M be the action (4.18) of Hy; acting on HY, as a restriction of the
action M of (3.19). Then the realization M (H;) = {Mp, : h € H;} satisfies that

x-subalgebra

M(H,) = {hleBg (HN):heH,} C M, (4.19)
where I is the identity operator satisfying I (W) =W, for all W € HY.
Proof. By (4.18), clearly, the realization M (H) is equipotent to
{hI:h e H,} C Bg (H).

So, the set-equality of (4.19) holds. Note that the identity operator I is identified with
the identity matrix In € My v,

10 0 - 0
01 0 0

In=100 1 . € My,
T
00 -~ 0 1

NXxXN
where 1 =1+ 0 + 0j; + Ok; € H;. It shows that

M (Hy) =2 {hly € My :h € Hy} C My,

as the collection of all Hj-constant matrices of M . So, the family M (H;) is -
homomorphic to M; y, satisfying
(hIN)* = INh® = h®Iy € M (H,), in M, y.
Therefore, the relation in (4.19) holds, too. O
It is clear that M (H;) ° H, realized on HY as H;-constant matrices by (4.19).
Since our Hy-matrix algebra M, y is a R-x-algebra, one can have the following opera-
tor-theoretic properties of H;-matrices.

Definition 4.6. Let M, y be the H;-matrix algebra.
1) T is self-adjoint in My n, if T* =T on H}".
2) T is a projection in My n, if T* =T = T2 on HY.
3) T is normal in M, v, if T*T = TT* on HY.
4) T is an isometry in M, y, if T*T = Iy on HY.

)

(
(
(
(
(5) T is unitary in My n, if T*T = Iy = TT* on HY.
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The following result characterizes the self-adjointness on M; .
Theorem 4.7. An Hi-matriz [h; j] . s self-adjoint in My n, if and only if
hji=h$; € Hy, Vi,je{l,.., N},

if and only if (4.20)
hia h§1 h3®J e h%l
hax  haa h3y - h% .2
higlaan = | P31 hsz hss o hRs | with hE, = e
hni hn2 -+ hnnN-1 hnnN

Proof. By the R-adjoint (4.17) on My n, one has [h; ], 5 is self-adjoint in M n, if
and only if

ULiJ]j\/'XN = [h?Z]NXN - [hi’j]NXN ,
if and only if

he =hi; €Hy, Vi,je{l,..,N}.

Therefore, the characterization (4.20) holds. O

The above theorem characterizes the self-adjointness on M, y in terms of H;-entries
by (4.20).

Corollary 4.8. An element My, € M (H;) is self-adjoint in My n, if and only if h is
®-self-adjoint in Hy, i.e.,

My, € M (H) is self-adjoint in My n, <= h® = h in H;. (4.21)
Proof. By (4.19), the realization M (H;) is isomorphic to the x-subalgebra {hly : h € H;}

1S0

of H;-constant matrices in M, n. So, by (4.20), M), = hly is self-adjoint in M, y, if
and only if h® = h, in H;. So, the relation (4.21) holds. O

Let T' = [h; j] oy € M~ be an Hi-matrix. Observe that

N
T? = [dij]yyy > With dij = high;.
k=1

So, if T' is self-adjoint in M; x, then
N

T? = [diglyyn > with dij = Zhi’khfk’
k=1

where (4.22)
h%,k =hgr €y, Vk=1,..,N.

Theorem 4.9. An H;-matriz [h; ;]\, v 95 a projection in My n, if and only if
N
hij=h$; = hi,khgf?k €H, Vij=1,.. N. (4.23)
k=1

Proof. Without loss of generality, assume that an H-matrix T = [h; ;] v is self-adjoint
in My n, ie.,

hS;=hij €Hy, Vi, j=1,..,N,
by (4.20). Then, such a self-adjoint H;-matrix T is a projection, if and only if

T°=T, in My,
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if and only if

N
hij =Y high®, € Hy, ¥ij=1,..N,
k=1
by (4.22). Therefore, the projection-property (4.23) holds on M, . 0

The above theorem characterizes the projection-property on M, x by (4.23).
Corollary 4.10. An operator My, € M (H;) with h € H; is a projection on HY , if and
only if

either My, = My 2 I, or My, = My 22 Oy, (4.24)
where O s the zero Hi-matriz of My n whose Hy-entries are 0 = 0 4 0i + 05 + Ok in
H;.

Proof. By applying (4.23), one has that M} 5o hly is a projection, if and only if
M} = Mye =2 h®Iy = hly = B2Iy 2 My = M2,
on HY | if and only if
h® =h=h? in H,.
The first equality h® = h implies that h is a real number in Hy, i.e., h = h+ 0i + 05; + Ok;
in H; with h € R. So, the second equality implies that

h?=h<=h=1,0r0, in R.
So, the operator M}, is a projection, if and only if
cither My, = My 2 Iy, or My = My 2 Oy, in My .
Thus, the relation (4.24) holds. O

As a special case of (4.23), one obtains the projection-property (4.24) on M (H;) in
M n.

Now, let T' = [h; j] v v € M¢,n be an H;-matrix with its adjoint 7% = [hfi]NxN €
M n. Then
N
T*T = [d; j] sy > With dij = > A b j,
k=1
and (4.25)
N
TT* = [eijlyyn» Witheij =Y hixhS),
k=1
by the straightforward computations.
Theorem 4.11. An H;-matriz T = [h ;] 5 n 5 normal in My n, if and only if
N
5> (Bihes — hikh$y) = 0= 0400 +0j, + Ok, (4.26)
k=1

in Hy, for alli,7=1,...,N.

Proof. By definition, a given H;-matrix 7" is normal in M, y, if and only if T*T = TT*
in M; n, if and only if

N N
> hiheg =Y high$y, in Hy, Vi j=1,..,N,
k=1 k=1

by (4.25), if and only if the relation (4.26) holds, for all i,5 =1, ..., N. O
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The above theorem characterizes the normality on M; x in terms of the H;-entries of
H;-matrices of M, n, by (4.26).

Corollary 4.12. Every element My, € M (H;) for h € H; is normal on HY . i.e.,
All elements of M (H;) are normal on HY . (4.27)

Proof. Recall again that if M, € M (H,;), then it is isomorphic to hly € M n. So,

M; 2 (hIy)* = h®In 2 Mye, on HY.
Thus, one can get that: M} is normal on ]HI{V7 if and only if hly is normal in M; y, if
and only if
(hIn)" (RIn) = (h®h) Iy = (hh®) In = (hIy) (hIN)",
in My n, if and only if (4.28)
h®h =hh®, in H,.

However, every t-scaled hypercomplex number h = a+bj; € H; with a, b € C automatically
satisfies that

Beh = o> — t|b* = (|af* = ¢[b]") +0i + 0j, + Ok, = hh®,

in H;. It implies that every operator M), € M (H;), isomorphic to hly € M, y, satisfies
(4.28). Therefore, the normality (4.27) on M (H;) holds. O

The above corollary shows that every operator of M (H;) is normal on HY by (4.26)
and (4.28).
Also, by (4.25), we obtain the following isometry-property on M .

Theorem 4.13. An H;-matriz T = [h; j| . 5 an isometry in My n, if and only if

1 ifi=je{l,.,N}
hig il = (4.29)
1 0 ifi£je{l,...N},

in Hy, foralli,j=1,....N.

M=

k

Proof. By definition, a given H-matrix 7" is an isometry in My n, if and only if T*7T = Iy
in My n, if and only if all main-diagonal H-entries of T*T are identical to 1 =1+ 0i +
0j¢ +0k; in Hy, and all off-diagonal H-entries of T*T are identical to 0 = 04 0¢ 4 0j; + 0k,
in Hy, if and only if the relation (4.29) holds by (4.25). O

The above theorem characterizes the isometry-property on M, y by (4.29). So, one
obtains a following special case.

Corollary 4.14. An operator My, € M (H;), with h = a+bj; for a,b € C, is an isometry
on HY, if and only if

la)* =1+t [b*, in C. (4.30)

Proof. Since My, s hly in My n, it is an isometry on HY, if and only if hly is an
isometry in M; y, if and only if
(}7,11\])>~< (hIN) = (h®h) IN = IN, in Mt,Na
if and only if
h®h =1, in H,
if and only if
h®h =la|* —t[b]> =1, in Hy,
if and only if the relation (4.30) holds. O
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The above corollary characterizes the isometry-property on M (H;) on HY by (4.30).
Let’s consider an interesting application of (4.30). Suppose h = z + uj; with z,u € R in
H;. i.e., his a t-hyperbolic number in the sense of [3]. Recall that, in [3], we considered a
sub-structure,

Dt:{:ﬂ+0i+ujt+0ktGHt:x,ueR}CHt,

called the t-scaled hyperbolics. Remark that D_; is isomorphic to the complex field C;
and ID; is isomorphic to the classical hyperbolic numbers D = {x +uj:z,u€R, j2= 1};
and Dy is isomorphic to the dual numbers D = {eruJ cxu#R, J? = O}. Ifw=
x4+ ujy € Dy in H; with z,u € R, then

®

w®w = 2?2 — tu? = ww®, in Dy C Hy,

as a R-quantity. So, by (4.30), M,, 50wy is an isometry on HY, if and only if 22 —tu? = 1
in R, if and only if
2?2+ |tju? =1 ift=—t|<0
22 —tu? =1 ift>0
22=1 if ¢ =0,

for t € R. It shows that: M, is an isometry on HY, if and only if (i) (z,u) € R? is
contained in the boundary of the oval figure {(z,u) : 2% 4 [t|u? = 1} in R? if ¢ < 0; (ii)
(z,u) € R? is contained in the hyperbolic lines {(z,u): 2% = tu?} if ¢ > 0; and (iii)
(z,u) € R? is contained in the vertical straight lines {(£1,u) : u € R} in R? if t = 0.

Theorem 4.15. An H;-matriz T = [h ;] y 5 unitary in My n, if and only if
v v 1 ifi=je{l,.,N}
SR = X (hish$y) = (4.31)
E=1 R=1 0 ifi#je{l,..,N},

i Hy, foralli,j=1,...,N.

Proof. By definition, a given H;-matrix T is unitary in M, y, if and only if it is both a
normal operator, and an isometry in M, y, if and only if

N N
Zhgihk’j = Z (hlkh?k) )
k=1 k=1
and
N 1 ifi=je{l,.,N}
Zh?ihm =
Pt 0 ifi#je{l,. N},
by the normality (4.26), respectively, by the isometry-property (4.29), for all 4,5 =1,..., N,
if and only if the condition (4.31) holds. O

The unitarity on M, y is characterized by (4.31).

Corollary 4.16. An operator My € M (H;), with h = a + bj; € H; for a,b € C, is
unitary on HY, if and only if it is an isometry in the sense of (4.30).

Proof. By (4.27), every element of M (H) is automatically normal on HY. So, an operator
M, is unitary on HY, if and only if it is an isometry. And the isometry-property on
M (H,) is characterized by (4.30). O
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5. H;-TOEPLITZ MATRICES ON ]HI?’

In this section, we construct, and study a special type of H;-matrices of M; n =
My (H;) acting on the definite, or indefinite R-semi-inner-product complete R-semi-
normed space HYY for a fixed N € N. In particular, we are interested in Toepliz-like
matrices. Also, the construction of such H;-matrices are motivated by those of so-called
H-Toeplitz operators of [6, 7].

Let’s define an H;-matrix U by

00 0 O 0
10 0 O 0
01 0 O 0
U=1o0 1 o € Miw,
9
0 0 0 1 0/)y.n
having its R-adjoint U*,
o010 0 --- 0
oo1 0 --- 0
000 1
U* = . GMt,N,
00 0 O 0
000 - 0 0/y .y

where 1= 1+ 0i + 0j; + Ok;, 0= 0+ 0i + 0j; + Ok; € Hy. i.e.,
U ((f1, f2s - In-1,fN)) = (0, f1, forrs fN—1),
and (5.1)
U™ ((f1s fas s =1, fN)) = (f2, o fn—1, [N, 0)
on HY, for all (fi,..., fx) € HN.

Definition 5.1. We call the H;-matrices U and U* of (5.1), the forward, respectively,
the backward shifts on H.

It is not hard to check that
UN =0y =U")", in My,
more generally, (5.2)
UNtF = Oy = (UM, in My, Vk € Ng = NU{0}.

Equivalently, the forward, and the backward shifts U and U* of (5.1) are nilpotent in
M, n with their nilpotences N, in the sense that: the quantity N € N is the smallest

quantity making U = Oy = (U*)N in M; n.

Proposition 5.2. Let U, U* € M, n be the forward, respectively, the backward shifts of
(5.1).

U and U* are nilpotent with their nilpotences N. (5.3)

Proof. By the definition (5.1) of the shifts U, U* € M, n, there exists N € N, such that
UNtF = Oy = UV e My n, VkeN,.

Therefore, the nilpotent property (5.3) holds in M, y. O
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From the forward shift U of (5.1) and its R-adjoint U*, the backward shift of (5.1),
satisfying (5.3), we define a certain type of H;-matrices.

Definition 5.3. Let U and U* be the forward, and the backward shifts (5.1) in M, y.
An H;-matrix,

N-1 N-1
7= (U (hordn) + Y U (hily) € Myy
k=1 k=0
with axiomatization: (5.4)

UO =Iy= (U*)O GM,@N,

is called a H-Toeplitz matrix, where h; € Hy, for all j € {0,+£1,...,+ (N —1)}. i.e, an
H;-matrix,

ho hoy ho -+ h_(n_y
hy ho hoy :
T=1| hy, m  hy - hoy € M,
: : . h_1
hy-1 hy—o -+ M ho

is called an H-Toeplitz matrix of M, .

By (5.4), every Hy-Toeplitz matrix T' = [h;_;] y v € My, N is isomorphic to
N-1 N-1
T=> (U) M, +> UM, € Bz (H}),
k=1 k=0
where M}, € Bg (Hév) are in the sense of (3.22), isomorphic to hly € M, y, for all
h € H;.
If tthe readers check the forward shift U, and the backward shift U* acting on the

H,-Hardy space 1*2 50, in 6, 7], i.e.,

00 0 - 010
1 0 O o0 1 .
U: 0 1 0 ,andU - 0 0 0 ’
on (5:5)
fo
: h >
12 = fo : Z ”fn”f <0,
. n=0

then they are “not” nilpotent in the sense that: there does not exist any natural quantity
n € N, such that U" = O = (U*)" on 1*? 22 H,.,, where O is the zero operator on

162 = H;.5. Also, the readers can check, in [7], that the H;-Toeplitz operators T are
defined by

T =S (U (hoad) + S U (),
n=1

n=0

with (5.6)
(h*WI)oo (hn):;O:O € 100’

n=1">
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satisfying
o0
sup{ Zq"h_n 1q € Ut} < 00,
n=1 t
and
o0
sup{ Zq”hn 1q € Ut} < 00,
n=0 t

on the H;-Hardy space 142 e H;.5, where U and U* are in the sense of (5.5) and Uy is
the unit open ball of H;, and where I is the identity operator on 152 3 H;.5. So, if we
compress the H;-Toeplitz operators (5.6) acting on the H;-Hardy space 142 iso H,;.- to
those on 1%,{,2 o H;o.n so H{V , then the compressions of H;-Toeplitz operators becomes
our H;-Toeplitz matrices of My y.

Theorem 5.4. Let T € Bg (12) be an H,-Toeplitz operator (5.6), introduced in [7]. For
N eN, if

1 0 0
0 1
0 0 0
def 1 0
P[N] = ~~ ,
(N,N)-th
0 0 0
0 0

in Bg (1"%), then
P[N]TP[N] € Br (12}\[2) ,

and (5.7)

P TPy so T, the H;-Toeplitz matriz (5.4) in My N.

Proof. By (5.5) and (5.6), one has

ho hoi h_y h_j
hi  ho h_i h_s

T=| hy hi ho h € Bg (1"?),
ha  hi ho

h3
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and hence, if Py) € Br (lm) is the above projection, satisfying P[”}V] = PN = P[QN] on
142 (e.g., see |7]), then

ho hoy - h—(N—l) 0
hi  hy : :
B : . . h_1 :
PMTEN = poy oo b he 0 )
0 cee e 0 0

identified with

PnTPN = ( g g > , as a operator-block matrix,

where T is the H;-Toeplitz matrix (5.4) in My y. Thus, this compression PyjT Py is a
well-defined on the R-subspace 15? of the H;-Hardy space 12, and hence,

PyTPyx 2T, on HY 2152

Therefore, the compressions P;nT Py of H;-Toeplitz operators T of (5.6) by the projec-
tion Py} are (isomorphic to) our Hy-Toeplitz matrices 7" of (5.4). O

The above theorem shows the relation between H;-Toeplitz operators of [7] and our
H;-Toeplitz matrices by (5.7). The H,-Toeplitz operators (5.4) of M, n are (isomorphic
to) the Pyyj-compression of H;-Toeplitz operators (5.6) of Bg (1°2).

Now, consider the following projections P, and Qj of M n,

1
1 0
1
Pk = ~ € Mt,N7
(k,k)-th
0
0
0 NXxXN
and (5.8)
0 0
0
1
Qr = ~~ € My,
(N—k,N—Fk)-th
1
0 1 NXxN

for all k € {1,...,N}.
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Theorem 5.5. If P, and Q. are the projections (5.8) in My n, for k=1,...,N, then
the forward, and the backward shifts U and U* of (5.1) satisfy that:

(U*)nlinQ Py_p, ifny +ne <2N -1, n; >ng
(U*)nl Unz — PanlUnQ_nl if ny + no <2]\/‘_17 ny < nsy
On otherwise,
and (5.9)
UM QN —n, if ny +no < 2N —1, ny > ny
Uum (U*)n2 = QN—nl (U*)nz_nl if ny +n9 <2N —1, ny < ngy
On otherwise,

for all ny,ny € N.
Proof. By (5.1), one obtains that
U*U = Py_1, and UU* =Qn_1, iIn Myn.
Inductively, one can get that
(UH"U™ = Pn_p, U (U*)" =QN—n, Yn=1,...,N, (5.10)
and, by the nilpotent-property (5.3), if either n; > N, or ny > N, then
(U™ U™ =0N =U™ (U™ .
Equivalently, if ny +ny > 2N — 1, then
(U*)" U™ =0y = (U*)" U™, in My.
Now, suppose ny + ng < 2N — 1. If ny > no, then
()" 0" = (U () U7 = (077 Py,
and
un(Un)t=umtm (Ut (U)) = UM QN
by (5.10). Meanwhile, if ny < ng, then
(U™ U™ = (U U™)U™ ™ = Py_,, U™ ™,
and
U () = (U (U)) (O = Qo ()
in My n, by (5.10). Therefore, the formulas in (5.9) hold true. O

The formulas of (5.9) illustrate the following properties of U and U* on M; n.

Corollary 5.6. (1) The forward, and the backward shifts U and U* are not self-adjoint
in Myn, and hence, they are not projections in My, either.

(2) U and U* are not normal in My .

(3) U and U* are not isometries in My n, and hence, they are not unitary in My n,
either.

Proof. Clearly, the forward shift U is not self-adjoint, since its R-adjoint is the backward
shift U* in M; n. By the non-self-adjointness, these H;-matrices cannot be projections
in Mt,N-

By (5.8) and (5.9), one has that

U'U=Pn_1#Qn-1=UU", in Mnp,
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implying the non-normality of both U and U* in M; . It implies also that neither U
nor U* is an isometry in M, y, and hence, they cannot be unitary in M; y. O

The above corollary shows that the generating operators {U, U*} of all H;-Toeplitz
matrices (5.4) of M, y disobey the fundamental operator-theoretic properties, self-
adjointness, projection-property, normality, isometry-property, and unitarity. However,
such a nilpotent H;-matrices satisfy the following additional property.

Definition 5.7. An Hi-matrix T' € M; y is said to be a partial isometry, if 7T is a
projection in M.

As in the usual operator theory, by definition, it is not difficult to check that T is a
partial isometry, if and only if T*T is a projection, if and only if TT™ is a projection, if
and only if 7™ is a partial isometry, in M, y, if and only if T' = TT*T, if and only if
T* =T*TT*, in M n.

Theorem 5.8. The forward shift U is a partial isometry in My n, equivalently, the
backward shift U* is a partial isometry in My n. i.e.,

U and U™ are partial isometries in My . (5.11)

Proof. The operator-theoretic property (5.11) is immediately proven by (5.9), especially,
by the special case (5.10). Indeed, the operators U*U and UU* are identified with the
projections Py_1, respectively, Qn—_1 of (5.8), in M, n. Therefore, the relation (5.11)
holds true.

Independently, one can check that

U(flaf?w"va) - (Oafla'“,fol)a

and
UU*U (f1, fN) =UPn_1(f1,., [N)
- U(fla "'afolvo)
= (0, f1,.., fn-1),

for all (f1,..., fx) € HY, implying that
U=UU"U, in Mn.

Thus, the forward shift U is a partial isometry, and hence, its R-adjoint U*, the backward
shift, is a partial isometry, too. Therefore, the relation (5.11) is re-proven. O

The above corollary and theorem show that even though the H;-matrices U and U*
do not satisfy fundamental operator-theoretic properties introduced in Section 4, they
are characterized to be partial isometries by (5.11). The following corollary summarize
the operator-theoretic properties of U and U* in My y.

Corollary 5.9. The forward, and the backward shifts U and U* are nilpotent partial
isometries in My n with their nilpotences N.

Proof. Tt is shown by (5.3) and (5.11). O

From the partial isometries U and U*, if
ni,ng € N satisfy n; +ne < 2N —1,
and (5.12)

thnz dcréotc (U*)rn U'm + Un=2 (U*)n2 — Panl + Qanw



288 DANIEL ALPAY AND ILWOO CHO

in Mg n \ {On}, then

S11=Pnv_1+ QN1 = )

0 1

more generally, if [n; — ns| > & under the condition of (5.12), then

1 0
1
2
th’nz = ni—ng|-times ’
2
1
0 1
meanwhile (5.13)
1 0
1
0
Sn1,n2 = ni—mngz|-times ’
0
1
0 1

if [n1 — no| < & under the condition of (5.12).

Proposition 5.10. Under the condition (5.12), an Hy-matriz Sy, n, € Myn satisfies
that

thng =PN_ny + QNony, = [hi7j]N><N’
with (5.14)

1 ifk‘z1,...,N—’I’LQ,N—77/1,...,N

2 if ny—mnal>5, k=N-na+1,..,N—|n; —nal,
ik =

o

if ng—no|l <L, k=N-na+1,..,N—|ng —no

1 if |TL1—TL2|:O, szl,...,N,

and
hiy ks =0 =0+ 0¢ + 05, + Ok, € Hy, if ky # ko.

Proof. Under the condition (5.12), an H;-matrix Sy, ,, is a non-zero operator of M, y by
(5.9). Moreover, by (5.13), one can get the resulted H;-matrix (5.14). In particular, the
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last result of (5.14) for the case where |n; — na| = 0 is verified again by (5.13). Remark
that this case can happen only when n; = ns in N, and N = nq 4 ng is even in N. O

By (5.14), one can obtain the following corollary immediately.

Corollary 5.11. Under the condition (5.12), if Sp, n, € My n is in the sense of (5.12),
then

S ons 18 @ projection in My n, <= [n1 —na| =0, or [ng —no| < §. (5.15)
Proof. By (5.12), the self-adjointness of Sy, n, is guaranteed because
Snime = PNen, +QN_pn, € My N
is the sum of two projections, and hence,
Sy ime = (PNeny + QN-ny)” = PNony + QNeny = Snynas

in My n. So, to check the projection-property of S, it is sufficient to check its

1,29

idempotence; S2 . = Sy, n, in My . However, by (5.14), we have that
1 0
1
2
Snl Mo — T 5
2
1
0 1
or
1
1
0
S’ﬂl ;N2 = T . I
0
1
1
or

Snime = IN, <= n1 =ng, and N =nj + ny is even in N.

It is easy to check that the first case where |ny —ns| > &' does not provide Sy, n, as
a projection, since S2 . # Sp,n, in My y. However, the other two cases give us a
projection S, n,, satisfying

2 .
S =Snne, I M.

ni,n2

So, the projection-property (5.15) holds for Sy, n,, where ni,ne € N satisfy the condition
of (5.12). O
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6. SOME STATISTICAL-ANALYTIC DATA ON M, n

In this section, we establish two different types of statistical-analytic structures on our
H;-matrix algebra M; y, for a fixed scale t € R, and a fixed quantity N € N, acting on
the definite, or indefinite R-semi-inner-product complete R-semi-normed space HY. In
particular, we are considering some statistical data up to the two non-equivalent R-linear
functionals on M, n. This study is motivated by the well-known free probability theory
(e.g., see [22, 25]). But the free probability theory is established over the complex field C
on noncommutative algebras “over C.” As we have seen above, our structures are “over
the real field R.” So, we cannot use, or apply the concepts, methods, and languages from
free probability, however, we mimic the free-probabilistic techniques and tools on our
structure M, y over R.

6.1. The Noncommutative Statistical Space (M n, 1) over R. On the H;-matrix
algebra M; y, let’s define a R-linear functional ¢ : My — R by

o1 (T) [T (va),vil, s YT € My,

where (6.1.1)
vi = (1,0,0,...,0) € HY,

where [, ]t’N is the definite, or indefinite semi-inner product (4.10) on HY. Then, by the
bilinearity of [, ]t’ ~ on HY, the morphism 7 of (6.1.1) is indeed a well-defined R-linear
functional on M, n. Moreover, it is bounded since

2
1 ()] = |7 (va) val, x| S ITHIMAIE 3 = T

for all T € My, where [[vil, v = \/ILIZ + 07 + ... + [|0]> = 1 by (4.11).
By (6.1.1), if T = [hi ;] o 5 € M¢,n, then we have that

1 1 hi1 1
0 0 ha 1 0
1 (T) = |hijlnen 01,10 = hsp [ ] O
0 0 t,N hN,l 0 LN

= [hl,la 1]t + [h2,17 O]t + [h3,170]t + ...+ [hN,lvo]t
=T (h1711®> + 7 (h2,10®) + 7 (h3710®) + ...+ T (hNJO@)
=T (h171) = Re (hl,l)y
implying that (6.1.2)
®1 ([hi’j]NXN> =T (hl,l) = Re (hl,l) .
Thus, we obtain that
p1(In)=7(1)=Re(1) =1, (6.1.3)
Furthermore, one can get that
@1 (Ihislyen) = Re (hE1) = Re (h1) = ¢ ([l ) (6.1.4)

demonstrating that, indeed, the linear functional p; of (6.1.1) is R-valued up to the
R-adjoint (*) on M, y.
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Definition 6.1. The pair (A4,%) of a (commutative, or noncommutative) R-algebra A
and a R-linear functional ¢ on A is called a (commutative, respectively, noncommutative)
statistical space over R (in short, R-statistical space). In particular, if the R-algebra A
contains its unity 14, and ¢ (14) = 1, then the R-statistical space (A, 1)) is said to be
unital. Also, if A is a topological R-algebra, and if ¢ is bounded, then (A, ) is called a
topological R-statistical space. Similarly, if A is a R-x-algebra, then (A4, 1) is also called
a *-statistical space over R (in short, R-*-statistical space).

By definition, one can get the following result.

Proposition 6.2. The pair (M N, ¢1) is a complete semi-normed unital noncommutative
R-xstatistical space, satisfying

©1 ([hz’,j]}kvwv> =Re (h¥;) = Re(h11) = 1 ([hiJ]NxN) :

Proof. By definition, the H;-matrix algebra M, y is a well-defined complete (operator-
)semi-normed (-topological) noncommutative R-x-algebra. Also, by (6.1.1), the linear
functional ¢ is bounded, and unital by (6.1.3). Thus, the pair (M, n, 1) forms a
complete semi-normed unital R--statistical space. The formula is shown by (6.1.2) and
(6.1.4). O

The above proposition characterizes the structure (Mg n, 1) as a noncommutative
topological unital R-*-statistical space. On it, let’s consider some statistical data on
M, N up to ;.

Theorem 6.3. Let T = [hiﬂN N € Myn,p1), forl=1,...,n, forn € N. Then
g X

! (1H1Tl> = Re <( 2 hglklhgl k2h1(€?;)k3 h(: L 1) (6.1.5)
= ki,....,k

,,,,, n,l)e{l,...,N}"—l
Proof. Under hypothesis, one has that

7= 10 = (B0 B2, ) )

L@ )
[ ) h? j] 1! vamv) (T)..T,)
k=1 NxN

l % ( S A klh,g?h) hgijl (Ty...T},)

ki=1

1) ;. (2 3)
2h§ klhh),wh;? J] (Ty..T,) =
k‘l,k2)€{1 LN} NxN

1) n
= [ Z 71h£ klhkl ko “hgﬂn)l1j‘| ’
(K1seeskn—1)€{1,....N}" NxN
in My n, having its (1, 1)-entry, (6.1.6)

1) (2 ;3 (n
Z hl /)Clhl(ﬁ kzhkz)/% h n) 1 € H.

(k1seekn—1)€{L,..., N}~

Thus,
1 2 n
. (Hg) = Re 3 RN P I

=1 (F1yeeoskn—1)€{l,...,N}"~*

by (6.1.2) and (6.1.6). Therefore, the analytic data (6.1.5) holds. O
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The analytic data (6.1.5) provides a general tool to compute the statistical information
on (Mg N, 1)

Theorem 6.4. Let My, € M (H;) with hy € Hy, forl=1,...;s, for s € N, isomorphic to
Ty =hly € (Myn,p1), for alll =1,...,s. Then, for any

(I1,.ln) € {1,...,8}", VneN,
we have (6.1.7)

o) e {1 ) < (110

Proof. Recall that every multiplication operator M, € M (H;) acting on HY is isomorphic
to the Hy-matrix hiy € M, n, for all h € H;. So, under hypothesis, we have that

Hle = H (hi,In) = (H’M) In € My n,
k=1

k=1 k=1
by (6.1.6), having its (1, 1)-entry,

[1h. €8, Vi, .iln) €41,..,8}", VneN.
k=1

Thus, by (6.1.2), one has that

ol (1)

for all (11, ...,1,,) € {1,...,s}", for all n € N. Therefore the analytic data (6.1.7) holds. [

If we understand the pair (H, 7) as a complete semi-normed unital R-*-statistical
space in the sense of Definition 42, then one can conclude from (6.1.7) as follow.

Corollary 6.5. If M (H;) = {hIy : h € H;} is a R-*-subalgebra of My n, consisting of
all H;-constant matrices, then

equi

(M (HL) 1 = o1 [mqmy) = (Hi,7),
in the sense that: (6.1.8)
Jisometric isomorphism ¥ : M (H;) — Hy,
such that
T(U(T) =1 (T), VT € M(H,).

Proof. By (4.19), the family M (H;) = {hly : h € H;} is isometrically isomorphic to
M (H;). Note and recall that M (H;) is isometrically isomorphic to H;. So, there exists
an isometric isomorphism,

U hly € M(H;) —> h € H,.
Moreover, by (6.1.7), one has that
o1 (hIy) = Re (h) = 7 (h) = 7 (¥ (hly)) € R, Vh € H.
Therefore, the equivalence (6.1.8) of (M (H;), 1) and (H;, 7) holds. O

The equivalence (6.1.8) seems trivial, but it means that the statistical data on (H, 7)
are applicable into those on (M n,¢1), via the isomorphic relation,

H, % M (H,) = M (H,), on HY.
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Proposition 6.6. Let U and U* be the forward, and the backward shifts of (M n, 1),
and let ny,ny € N. Then

o1 (U")=0=p(U""), VneN; (6.1.9)
Also, we have that
ni=ngs 2 n<N= ¢ (U)"U") =1, ¢, (U (U)")=0
meanwhile, (6.1.10)
o1 (U™ (U*)™) =0= 1 (U™ U™), otherwise.

(
Proof. By definition, the Hy-matrices {U™, (U*)"}, oy have their (1,1)-entries 0 = 0 +
0i + 0j; + Ok; in H;. So, the analytic data (6.1.9) holds by (6.1.2). Recall that

(U*)nl_n2 Prn_p, ifny +ne <2N —1, n; >ny
(U*)nl Un: = PN_nlUnzfnl if ny+ng < IN — 17 ny < no
On otherwise,
and
Q]\[_nlljnlin2 if ny +n9 < 2N — 1, n1 > ne
(U*)nl Un2 — Panl (U*)nzfnl 1f ny + na < 2N _ 17 n S Ny
On otherwise,

by (5.9). So, if ny # ng, then the forward, or the backward shift is involved in computing
(U*)"™ U™, and U™ (U*)"*, making their (1,1)-entries be 0 € Hy, because they “shift”
the main-diagonals of the H;-diagonal matrices Py’s, or Qy’s, for kK = 1,...,N. So, if
n1 # no in N, then

1 (U U™) =0=¢ (U™ (U)"™),
by (6.1.9). Meanwhile, if ny =n =ny < N in N, then

¥1 ((U*)n U") =¢1(Pn-n) =Re(1) =1,
but

e1 (U™ (U")") = ¢1(@Nn-n) = Re(0) =0,
since the projections Py have their (1, 1)-entries 1 € H;, while, the projections Qj have
their (1,1)-entries 0 € H;, whenever k = 1,..., N — 1. Of course, if n; = ny > N, then, by
the nilpotent-property of both U and U™,

e1((U)"U™) =0=¢ (U"(U")").
Therefore, the analytic data (6.1.10) holds, too. O
The above proposition allows us to verify that “most of” the analytic data of {U, U*},

n
o1 (HU&l> =y (UT LU,
=1

for all (eq,...,e,) € {1,x}", for all n € N, become 0, by (6.1.9) and (6.1.10). In particular,
if n is odd in N, the above quantities would be 0. The possible non-zero data would be

only
k k
¥1 <H (U*)”l Um) = Y1 <HPN—TLL> = Re (1) = 1,

=1 =1
with (6.1.11)

Nni,...,np < N, in N, Vk € N.
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Theorem 6.7. Let U and U* be the forward, resp., the backward shifts of (M N, @1)-
Then the “only” “non-zero” analytic (or, distributional) data of {U,U*} (up to ¢1) are

k
o ([l -

1=1
whenever (6.1.12)
ny,...np <N in N, VkeN.

Proof. As we discussed in the very above paragraph, by (6.1.2) and (6.1.9), if n is odd in
N, then

n
01 <HU€l> =0, V(er,....,en) € {1,*}", Vn €N,
=1
because the Hi-matrices [[U® have their (1, 1)-entries 0 € H;, whenever nis odd in N.
=1
So, let’s focus on the cases where n is even in N. However, as one can check in (5.9) and
(6.1.10), the only possible non-zero analytic data would be

k
©1 (H (U™ U"’) , with nq,...,n, < N.

I=1
Indeed, in such a case,

k k
o1 <H (U*)TLL Um) = <HPNT”> = Re (1) = 1’
=1

=1

k
because the (1,1)-entry of [[ Pn_n, is 1 € H;. Therefore, the analytic data (6.1.12) holds
=1
on (Mg, p1). O
The above theorem characterizes the distributional data of U (equivalently, that of
U*) in (My,n, 1)

6.2. The Noncommutative R-+-Statistical Space (M, n,¢). In this section, we
define a new bounded R-linear functional ¢ on the H;-matrix algebra M, y, and construct
a new noncommutative topological R-x-statistical space (M n,®). And then some
analytic data on M y are studied up to ¢. Define a R-linear functional ¢ on M, n by

N
def
@ ([hm]zvxzv) = %k;T (k) s Vihiglyun € Min (6.2.1)

Since 7 is a bounded R-linear functional on Hy, the morphism ¢ of (6.2.1) is indeed a
bounded R-linear functional on M; . Also, it satisfies the unital property,

o(In) =+ 2]::17'(1) =8 =1 (6.2.2)

Proposition 6.8. The pair (M n,¢) of the H,-matriz algebra My n and the bounded
R-linear functional ¢ of (6.2.1) forms a unital R-semi-normed R-x-statistical space.

Proof. The proof is done by the very definition (6.2.1) and the unital property (6.2.2). O
One can realize that if we restrict the R-linear functional ¢ to the R-x-subalgebra,
M (Hy) = {hiy : h € H;} = M (Hy),

of M, n, then the sub-structure (M (Hy), ¢ = ¢ |rqm,)) is equivalent to the R-#-statisti-
cal space (Hg, 7).
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Theorem 6.9. The R-semi-normed R-x-statistical spaces (M (H;),¢) and (Hy,7) are
equivalent in the sense that there exists an isometric isomorphism,

WhGHtHhINGM(Ht),
such that (6.2.3)
(W (h)=7(h), VheH,.

Proof. Observe first that, the morphism ¥ in (6.2.3) is an isometric R-x-algebra-isomor-
phism satisfying the bijectivity, and the R-linearity,

U (rihy +71h2) = (rihy + rohe) Iy = r1¥ (hy) + 12V (ha)
for all 1,72 € R and hq, hy € H;, and the multiplication-preserving property,
U (h1hg) = hiholn = (h1In) (holn) = U (hy) ¥ (he),
for all hy, hy € Hy, and the adjoint-perserving property,
U (h®) =h®Iy = h®Iy = (hIy)" =V (h)", Vh € Hy,
in M (H;) C My n, and the isometric property,
19 ()] = [BIn] = [Bll,, Vi e H,

Moreover, for any h; € H; assigning to ¥ (h;) = hyIy € M (H,), for alll = 1,...,s, for
any s € N, one has that

()= () ) -
(e )) = (fr)

for all (Iy,...,1,) € {1,...,s}", for all n € N. Therefore, the equivalence (6.2.3) holds. [

==

ie.,

The above theorem shows that if we define a bounded R-linear functional ¢; v :
M(Ht) — R on M(Ht) by

oin (Mp) L o (hIy), VM, € M (H,),

then the pairs (M (H,), ¢ n), (M (H,;), ), and (Hy, 7) are equivalent R-semi-normed
R-x-statistical spaces.
Now, let U and U* be the forward, and the backward shifts on HY. Then

e(U")=0=0p((U")"), VneN, (6.2.4)

because (i) if n > N, then U" = O = (U*)" in M, n, whose main diagonal H;-entries

are 0 = 0+ 0¢ + 0j; + Ok; in Hy, by the nilpotent property of U and U*, and (ii) if n < N

in N, then the H;-matrices U™ and (U*)" have their main diagonal H;-entries 0 € H;.
Recall that

(U*)nl_nQ PN—ng if ny +no < 2N — 17 ny > No
(U*)nl Un: = PanlUnz_nl if ny+ng < IN — 1’ ny < no

On otherwise,
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and (6.2.5)
Un1—n2QN_n2 if ny +n9 <2N —1, ny > ny
Uun (U*)n2 = QN—nl (U*)n27n1 if ny +n9 < 2N — 1, n1 < neo
On otherwise,

by (5.9). By (6.2.5), one obtains the general results of (6.2.4).

Theorem 6.10. If U and U* are the forward, resp., the backward shifts of (M n,®),
then

p(U")=0=0p((U")"), VneN,

% ifny=nag <N
P ()" U") =
0 otherwise,
and (6.2.6)
% ifni=ng <N
P (U™ (U")"™) =
0 otherwise,

for all ny,ne € N. So, the “possible non-zero” analytic data of {U,U*} in (My n,p) are

N — max {ng}

¢<H<<U*>"kw>>= T
k=1

and (6.2.7)

n N — kirllaxn{nk}
0 (H G (U*)"’c)) - N

k=1
for all ny,ng € {1,..., N — 1}, for all n € N; and if
S1(k)=U""U", Sy(n)=U"U"",Vke{l,..N —1},
then (6.2.8)

- 1 2 N-1
QO (ESk,(”l)) E {0, N, N,...7 N71}7

for all (k1,...,k,) € {1,2}", for all n € N.

Proof. The first-lined analytic data of (6.2.6) holds by the analytic data (6.2.4) on
(M N, ). By the formulas of (6.2.5), if ny # ng in N, and (U*)" U2 # Oy in My N,
then the Hy-matrix (U*)™ U™ is either (U*)** Py, , or Py, U*2, for suitable ki, ky € N.
Note that such non-zero H;-matrices have their main-diagonal H;-entries 0 € H;. Thus, if
ni1 # na, then the Hy-matrices {(U*)"* U2 }ryon, have their main-diagonal Hi-entries
0 € H. Similarly, if ny # ng in N, and if U™ (U*)" # Oy in M, y, then the H;-matrix
U™ (U*)"* is either UF1Qy,, or Qg, (U*)kQ7 for suitable k1, ks € N, by (6.2.5), and these
H;-matrices have their mian-diagonal Hj-entries 0 € H;. It implies also that if ny # ng in
N, then the H;-matrices {U™ (U*)"*} have their main-diagonal H;-entries 0 € Hj.
Therefore,

ni#na

ni#ny EN= o ((U*)""U™)=0=p U™ (U*)").
Suppose now that n; = ngy 2 n < N in N. Then
(US"U™ = Pn_p, and U™ (U*)" = QN _n,
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having (N — n)-many non-zero main-diagonal H;-entries 1 = 1 4 0i + 0j; + Ok, € H;. It
implies that
if ni=ns=n<N in N,

then
1 N—n
U UM = g (P = 5 7 ,
=1
and N
n *\ T —n
o (U (U")") = ¢ (@n-n) =
Of course,
if n1:n252’n2N in N,
then

e ((U)"U") =9 (0N)=0=9U"([U")").
Therefore, the analytic data (6.2.6) on (M, n, ) hold true.
By the analytic data (6.2.6), if we consider the analytic data of {U,U*} in My y up
to ¢, determined by

¥ (HU81> ’ v(elv"ven) € {1,*}"7 Vn € Na
=1

have the only “non-zero” data from either

(U )" U™ ) = <kl_11PN-”> =7 (PN—k=1T%§v1"k> ’

and (6.2.9)

¢ (H o™ (U*>"2>) —¢ (gQN_n> ¢ (@n-, )

k=1  /  Xk= /N~
by (5.8). Remark that, by (5.8), if ny + no < 2N — 1 in N, then

PN—nle—ng - PN—rnax{nl,nz} S Mt,Na
and
Qanl QN—nQ = QN—max{nl,nQ} € Mt,N~
So, the formulas of (6.2.9) hold inductively. Since
N —k
o (Pn-k) = T ¢ (Q@n-k), Vke{l,.,N -1},
by (5.8), the formulas of (6.2.9) go t

n N — kilma)ﬁr lnk
<H nk U’nk > =y <PN_k1ma)§v1nk> — —],\}., ’

k=1
and
n N—k_lmau]i] lnk
(L) s e )
k=1 / ~

It shows that the “non-zero” analytic data (6.2.7) hold.
By (6.2.6) and (6.2.7), one can verify that the other “possible” “non-zero” analytic data
of {U,U*} in (My,n, ) would be

@ (HSkz (nz)> = ¢ (Sk, (n1) Sk, (n2) .Sk, (1)) ,
=1
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for all (ki,...,kn) € {1,2}", and (n1,...,n,) € {1,..., N —1}", for all n € N, where
Sl (n) = (U*)n Ur = Pana Vn = 17...,N — ].,
and
So(n)=U"U""=QN_n, Vn=1,..,N—1,
including the cases of (6.2.7). Clearly, it contains the case where
. N N
S (nl) Sy (’I’Lg) =0On =055 (77,2) S1 (nl), if nqg > 57 & ng > 5
(For example, if N = 3, then
S1(2)=Ps_2 =P, and S5 (2) = Q32 = Q1,
where
100 0 00
P@Qi=(0 0 0 0 0 0 |=0Nn=1P,
0 0 0 0 01
in My 3.) So, it is possible that ¢ (Hskl (m)) = 0. It not,
I=1

n N niy,Ng € {1, ey N — 1}

—1
Hskl (nl) S {Pk7 Qk}k:l U Pleng = Qngpnl 5
=1 %<n1+n2<2N—1

- 1 2 N-1
QO (HSkl (m)) 6 {N, N,..., N},

because if % <ni+ng <2N —1, then

in My n, satisfying

0 0

Ple’rLQ :anpnl = v

[n1—nz|

in My n, satisfying

ny—n 1 2 N -1
oPu@u) = {2 LT

- 1 N-1
2 <E5kl (nl)> S {0; Na Na ceey N}7

for all (ki,...,kn) € {1,2}", (n1,...,n,) € {1,..., N —1}", for all n € N. Therefore, the
“only” possible non-zero analytic data (6.2.8) is obtained in (M, n, ). O

In summary,
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If we compare the only possible non-zero analytic data (6.2.8) (including (6.2.7)) of
{U,U*} in the R--statistical space (M, v, ) and the only non-zero analytic data (6.1.12)
of {U,U*} in the R-x-statistical space (M n, 1) of Section 6.1, then it is clear that two
R-s*-statistical spaces (M n, @) and (M n, 1) are “not” equivalent.

7. A CERTAIN REPRESENTATION OF H;-MATRICES OF M; x

In this section, we fix N € N and ¢ € R, and the corresponding H;-matrix algebra
My n = My (H,), and study how our structure M, y acts in the usual operator-theoretic,
or matrix-theoretic settings “over the complex field C.” i.e., we consider a realization of
M, n over C. To consider such a usual setting, we recall the canonical representation
((C277rt) of H;, introduced in [1, 2, 3, 4]. If

h =+ yi+uj + vk = (z +yi) + (u+vi) jr € Hy,
re-expressed to be
h=a+0bj; € Hy, witha=x+yi, b=u+vi € C,

one can define an action 7, : Hy — My (C) of H; acting on C? by
e (a+ bj,) ( ‘5‘ tab ) € m (Hy), in My (C), Va,b € C. (7.1)

Then, as one can check from [1, 2], this morphism 7; satisfies
m (riha + r2ha) = rimg (hy) + rame (ha)
and (7.2)
my (hihe) = m (he) w1 (he), Vri,re € R, hy,ho € Hy,

where the right-hand sides of (7.2) mean the matrix-addition, respectively, the matrix-
multiplication on M; (C). So, indeed, the morphism 7 of (7.1) is a R-algebra-action of
the R-algebra H; acting on C2. By (7.1), we also have that

: o a t(-b
Wt((aJFb]t)@)Wt(ath)(_ab (a )>a Va,b € C,
satisfying (7.3)
m (h)®® =7 (h®®) = (h), VheH,

7 (rh)® = rmy (R)®,  VreR, heHy,
i (hn + he)® = m (h1)® + 7 (ha)®, Vhy, by € Hy,
and
e (hihe)® =7 (ho)® 7 (h1)®, Vhy, hy € Hy,

by (7.2) and (7.3). Thus, this R-algebra-action m; becomes a R-x-algebra action of H;
acting on C2.

By applying this canonical action 7, of (7.1), we define an action II,; of M, n acting
on C?V,

Ht : Mt,N — MQN ((C) N
by (7.4)
def
IT; ([hi,j]NxN) = [me (hij)lonxon € Man (C), Vhijlyn € Min.

Then, since m; of (7.1) is a well-defined R-x-algebra-action of H; by (7.2) and (7.3), the
morphism II; of (7.4) is a well-defined R-algebra-action of M, x acting on C?V.
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Proposition 7.1. The pair ((CQN, Ht) is a well-determined C-vector-space representation
of the H;-matriz R-algebra M, n, i.e., the morphism I, of (7.4) forms a R-algebra-action
of My N acting on C2.

Proof. Observe that
IT; ([hi,j]NxN + [fiJ]NxN) =1L ([hu + fiyj]NxN)

= [7Tt (hiyj + fiaj)}QNx2N = [7Tt (hi,j) + T (fi,j)]szgN

since m; is an action of H; acting on C?

= [me (hi)lanxan + 7t (fi)lonxon = e <[hivj]N><N) 1L ([fivj]NxN>’
where (+) is the matrix addition on Myn (C); and

IT; (7" [hi,j]NXN) = [m (Thi,j)]QNsz =rm (hi,j)]szgN =rll ([hi,j}NxN) )
for all r € R; and

I ([hi,j]NxN [fi’j]NXN) = I ([éhi’kfk’j] N><N>

N n
{Wt <Zhi,kfk,j)] = {Zﬁt (hi,kfk,j)]
k=1 2N x2N k=1 2N x2N

- Li:lm (hij) (fz‘,j)]

2N x2N

since m; is an action of H; acting on C?

= m1 (i) ansaw 17 Ui awan = T (il ) e (il )

where the multiplication (-) means the matrix multiplication on Msy (C). Therefore, our
H;-matrix algebra M, x acts on C?V via the action II; of (7.4), equivalently, the pair
(C2N , Ht) forms a C-vector-space representation of M; n. d

The above proposition shows that every element [h; ;]\, y € M; N is regarded as
the (2N x 2N)-C-matrix [7; (hi j)]on con € Man (C) via the action II; of (7.4). Remark
that, since the canonical action m; of Hy is injective from H; into My (C) (which is not
surjective, e.g., see [1, 2|), the action II; of M, y is injective from M, n into Moy (C).
Remark also that the matrix algebra Msy (C), which is defined “over C,” is understood
to be a “R-algebra” in the sense that:

Ty, Ty € Moy (C) =T +Ts, T1T5 € Moy ((C),
and (7.5)
reR, Te MQN((C) =l = (TIQN)T € Msn ((C)
So, by regarding Msy (C) as a R-algebra satisfying (7.5), one can define a R-subalgebra
My N by

'%t,N déf Ht (Mt,N) = {Ht (T) - M2N ((C) T e Mt,N} . (76)

Meanwhile, if [h; ;] v, v € M¢,n has its R-adjoint [hi’j]ijN = [h?i]NxN in My n, then

I (el ) = T (B8] o) = [ (B8] sy € Mon (€), (77)
where 7y (h®

j’i) are in the sense of (7.3). It shows that the R-adjoint (*) on the H;-matrix
algebra M, n is closed on its realization .#; n of (7.6) by (7.7).
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Proposition 7.2. The H;-matriz algebra M n is isometrically isomorphic to the R-
subalgebra Ay n of Man (C) as R-algebras. i.e.,

MyN iso My N, as R-algebras. (7.8)

Remark that

I, (T*) # U (T)", in Man (C), in general,
where (x) on the right-hand side means the usual C-adjoint of C-matrices, i.e., the
conjugate-transpose on Moy (C).

Proof. By the above proposition, the morphism IT; of (7.4) is a well-defined R-algebra-
action of the H-matrix algebra M, n acting on My (C). Moreover, by the injectivity
of II;, the R-subalgebra .#; n = II; (M n) of (7.6), satisfying (7.5), is a isomorphic to
M n in May (C). So, the structure theorem (7.8) holds true.

It is immediately checked that

0, (T*) # 1, (T)", in general,

in Man (C), for all T € M, n, where (*) in the left-hand side is the R-adjoint (4.17)
on My n, and (x) in the right-hand side is the usual C-matrix-adjoint, the conjugate-
transpose on Man (C). So, even though the isomorphic relation (7.8) is satisfied, two
R-algebras M; n and its injective realization .#; y are not *-isomorphic over R. O

The above proposition shows that inside the matrix algebra Msy (C), there exists a
well-established R-subalgebra .#; n, isomorphic to our H;-matrix algebra M, y by (7.8).
So, motivated by the above theorem, we define an operation, denoted by < * > on the
realization .4 n of M N by

(Ht ([hi,j]NxN))<*> « 11, ([hiﬁj]*NxN> = [Wt (h®i)]N><N € AN, (7.9)

for all [h; ;] . v € Mt,n, where 7; (h® ) are in the sense of (7.3), for all i,j = 1,..., N.
Then this operation (< * >) of (7.9) is a well-defined R-adjoint on the R-algebra ///t N
by the injectivity of m; and II;, because (®) is a R-adjoint on H;, and hence, that on
m¢ (Hy) in the sense of (7.3).

Theorem 7.3. The H;-matriz algebra My n and the R-algebra 4 n of (7.6), equipped
with the R-adjoint (< % >) of (7.9) are x-isomorphic over R. i.e.,

M N * o My.n,  as R-x -algebras. (7.10)

Proof. By (7.8), the H;-matrix algebra M, x and its injective realization .#; y are
isomorphic as R-algebras. By defining the R-adjoint (< % >) of (7.9) on ., n, the
R-algebra .#; n becomes a well-defined R-x-algebra. Indeed, the operation (7.9) satisfies

(I (T1)~"7)
(rl; (T2)) "7 =, (rTo) < =1L, (rTy) = rIL (Ty) = rIL, (To) S ;
(¢ (T1) + 10 (T2) 7 =T, (T + T5) =T, (T1) ™7 + 10, (T2) <7 ;

<*>

=1L (7)™ =L (I7") = I, (T1);

and
(I (Ty) Ty (T2)) =7 = 0y (T3 Ty) = I, (To) =" 0, (Th) <",
on My N, for all Ty,T5 € M, n, and 7 € R. Since the isomorphic R-algebra action II;
satisfies
I, (T*) = 11, (T)~*”, by definition (7.9),
two R-#-algebras M, y and .#; y are *-isomorphic, too. Therefore, the structure theorem
(7.10) holds with help of (7.9). O
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By (7.10), we understand the R-subalgebra .#; n = II, (M n) of Moy (C) as a
R-x-algebra equipped with its R-adjoint (< * >) of (7.9).

Since .#; n is a R-x-algebra itself, one can obtain the following result immediately.
Since .#; n is a R-x-algebra under (7.9), one can define the following operator-theoretic
properties on .#; n;

(i) Sis < * >-self-adjoint in 4 y, if S<*> =S5 in A, N,

(ii) S is a < * >-projection in .4 y, if S<*> =S = 5% in M, N,
(iii) S is < % >-normal in 4} v, if S<*2S = SS<*> in A4, v,

(iv) S is a < % >-isometry in .4 n, if S<*>S = Iy in A N,

(v) Sis < % >-unitary in A n, if S<*>S = Loy = SS<*> in M, v,

where Iy is the identity C-matrix of May (C), which becomes the unity of the R-x-algebra
My x.

By the structure theorem (7.10), one can realize that the operator-theoretic properties
on M, y of Section 5 up to the R-adjoint (x) of (4.17) have their equivalent properties
on . n up to the R-adjoint (< % >) of (7.9).

Corollary 7.4. Let 1 n = II; (My) be the x-isomorphic realization of the Hi-matrix
algebra My n in May (C).

(1) II ([ ,J]NxN) is < * >-self-adjoint in M N, if and only if (4.20) holds.
(2) I ([h i NxN) is a < * >-projection in M N, if and only if (4.23) holds.
(3) I, ([h i NxN) is < * >-normal in M, N, if and only if (4.26) holds.
(4) I1, ([h i NX]V) is a < * >-isometry in My N, if and only if (4.29) holds.
(5) I ([h J}NXN> is < % >-unitary in M N, if and only if (4.31) holds

Proof. By (7.9) and (7.10), an element II; (T) satisfies an operator-theoretic property in
Ay, N up to the R-adjoint (< * >), if and only if T satisfies the same operator-theoretic
property in M, nx up to the R-adjoint (x) of (4.17). O

Note that the H-matrix algebra M; y is acting on the complete R-semi-normed
definite, or indefinite R-semi-inner-product space,

HY = {(hk)kN:1 Chy € Ht}.

So, it is natural to consider where the *-isomorphic realization .#; n of M, y is acting.
Remark now that, by the very construction of .#; n, it acts on the (4N)-dimensional

R-vector space C2VN = 0 R4N over R, as a sub-structure of May (C). However, such a

vector space C2V is not directly related to HY where M, n is acting structurally, because
C?N is over C, and va is over R. Thus, we need to consider the isomorphic R-vector
space of HYY where the R-*-algebra .#; x is acting.

From the canonical action m; of H; acting on C2, define a R-vector-space action 7" of
HY by

7Tiv déf ’R'tXN =T X g X g X ..o X T,
N-times
ie., (7.11)
ha Tt (hl)
ha Tt (hz)
N
w2 (i) == (] || = (me (i)
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in 7Y (H}), for all (hk)fj:l € HY. Note that, by the injectivity of the canonical action
7y, this morphism 7V of (7.11) is also injective (and hence, bijective) from HY onto
7 (H{). Then, by (7.3) and (7.11), the image 7;' (H{") is actually a subset of the
(2N x 2)-C-matrix set,

Manx2 (C) = {[Ziyj]QNxz PZij € (C}'
Note that this C-matrix set Manx2 (C) is not a C-algebra because the matrix-multiplica-
tion is undefined on it, however, it is a well-defined “C-vector” space satisfying
21,72 € (C, Al,AQ € Monxo (C) — ZlAl + ZQAQ € Monxo ((C) .

Therefore, the subset 7rtN (Hiv ) of the C-vector space My 2 (C) forms a well-determined
“R-vector” space, i.e.,

r1,T2 S Rv Vla ‘/2 € 7T£N (Hé\f) — 7'11V1 +7‘2V2 € (Hi]\l) . (712)
Indeed, the R-vector-space property (7.12) holds by (7.11), i.e.,

w2 () + 7 ((0Rl) = 7 (e + fls) = (e () + 0 (FiDis
and (7.13)
e ()ily ) = 7 (e ())ily = (e ()i, = (e (b))
are well-defined vectors of 7 (HY), too, for all (hx)r_, , (fi)re, € HY, and r € R.

Definition 7.5. The R-vector space 7" (HJ"), satisfying (7.12) or (7.13), is denoted

simply by Y from below, where 7} is the R-vector-space action (7.11) of HY in

Manx2 (C). ie.,

subset

N demete 7N (HN) T'CT Manxe (C). (7.14)
And we call H of (7.14), the HY-realization (by 7¥).
By (7.11) and (7.14), one has the following result.

Proposition 7.6. The R-vector spaces HY and its HY -realization $Y of (7.14) are
isomorphic. 1i.e.,

HY iso AN, as R-vector spaces. (7.15)

Proof. Since HYY and $¥ are well-defined R-vector spaces, the isomorphic relation (7.15)
holds by (7.14) and the injectivity of 7V into Mayx2 (C) (and hence, the bijectivity of it
onto m¥ (H{¥) = Hy). O

By (7.10) and (7.15), we have the following result showing how the realization .#; y =
IT; (M, n) naturally acts on the Hy-realization $; n of (7.14).

Theorem 7.7. The realization A n = I, (M n) of the Hy-matriz algebra M, n acting
on HY is acting on the HY -realization HY of (7.14). And such an action is identical to the
action of (2N x 2N)-matrices on (2N x 2)-matrices up to the usual matriz multiplication.

Proof. Since our H;-matrix algebra M, y acts on HY¥ under the block-matrix action, the
realization ./, ny = II; (M, n) acts on ¥ =¥ (H}), by (7.10) and (7.15). O

As one can see, all main results of this section are summarized by the above theorem,
i.e., the main results of this section illustrate that the H;-matrix algebra M; x acting on
H} is realized to be . y = II, (M, n) acting on HY == (HY).

We finish this section with an example. Let

T = [hi,j]2><2 S Mt,Q, for hi)j =a;;+ bi,jjt c Ht,
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where a; j,b; ; € C, for all 7,57 = 1,2. Then

am- tbi’j ..
e (hij) = , Vi, j=1,2,
t( l,j) ( bi,j ai,j J
and hence,
a1 thin aig thia
big a1 b G2
H T — ) ) ’ ) e % — H M .
«(T) az,1 tha1 aszg thao t.2 t(Me2)
ba1 G211 bao2 @22
And let
q c1 +dijs 2 .
v = = . € H?, with ¢y, c9,dq,ds € C,
(CI2> <02+d2]t) g Do T
where ¢; = ¢1 + d1ji, g2 = co + dojs € H;. Then
C1 tdl
di
| B0 | oot ).
dy @

Observe that
T (v) = hir hig @\ _ ( haa+hi2ge
haq1 hapo q2 haiqi + ho2g2 )’

aier+ thigdi t (aids +biT0) )

with

e (hagar) = me (hag) me (@) = ( G T bga et thod;
Y 2] 1,] 7,7

for all 4,4,1 = 1,2. Thus, by (7.10), (7.15), and the above theorem, we have that
I (T) (7" (v))

ar,1¢1 +ag ¢+t (biady +biadi)  t(aridy + arady + by + by oty
ay,1dy + a1,2dy + by 11 + by 2C1 aj1c1 +ajcs +t (bl,ldil + b1,2d71
az,1C2 +agaco +1 (bz,ldiz + b2,2d72) t(a21d2 + ag,2ds + b2 1G5 + bo 2T
az.1dy + agody + by 1 + b2tz G210 + agocz +t (ba1dz + boody

)

)
i
)

in f)f.

8. CERTAIN INVARIANT R-SUBSPACES OF Hﬁv INDUCED BY H;-MATRICES

In this section, as a continuation of Section 7, we apply the usual spectral theory
on My (C), and then we consider certain invariant R-subspaces of HY induced by
H;-matrices of the H-matrix algebra M, y. By (7.10), (7.15) and Theorem 58, every H;-

matrix T = [h; ;] v, y € M¢,n acting on the Hi-vectors v = (qk)szl € HY is equivalent
(or, isomorphic) to the matrix,

0y (T) = 7 (hij)lonwan € Ain, in May (C),
acting on
() = (me (q)py € HY, in Mansa (C).

Note that, by the usual spectral theory, every C-matrix A of My (C) has its non-empty
spectrum spec (4) C C, inducing its eigenspace £, C C*V, satisfying

A(v) = A, forv € &y, whenever A € spec (4).



MATRICES INDUCED BY SCALED HYPERCOMPLEX NUMBERS... 305
Then such an eigenspace £, for \ € spec (A) forms an invariant subspace of C*V (over
C), satisfying
A(Ex) CEN, VYA espec(A).

It means that the realization II, (T') € .#; n of an H;-matrix T' € M, y has its spectrum
spec (I (T)) as an element of Myy (C). Motivated by this observation, we consider
certain invariant “R-subspaces of H{V ” induced by H;-matrices of M; n.

Theorem 8.1. For an Hi-matriz T € M, n, there exist v € Hiv and q € Hy, such that

T (v) = vgq. i.e.,
VT € My n, Jv € HY, and q € Hy, s.t., T (v) = vq,
where (8.1)
q1 q1q
vg = q:2 q= q2:q , whenever v = (qk)gzl .
av avg

Proof. Let T = [hi ]y n € M, be an arbitrary Hi-matrix with

N x
hi,j = Q;j + bi’jjt € Ht, for ai,j,biyj S (C, V%] = ]., ,N

Consider the realization II; (T') € #; n of T, as an element of Myyn (C). Then, by
the usual spectral theory on Msy (C), this C-matrix II; (7') has its non-empty spectrum
spec (IT; (T)) as a subset of C, and if A € spec (II; (T')), then there exists the corresponding
eigenspace &, satisfying

I (T) (Ex) C &, in C*N.
i.e., for I, (T) € My n C Man (C), there exist V € C? and X € C, such that
L (T) (V) = AV =V, in C2V. (8.2)

Now, for convenience, we write the vector V € C2V by

V= (al’E?GQaEa'"aaNaE) - 6 s

and define a new vector W € C?V by

thy
a
thy
W: (tb17a/717tb27a/727 "'7th7W> - @ ECQN'

tby
an
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Remark that the new vector W in terms of the eigenvector V' is constructed to establish

al tbl
by a1
as tbg

( v W ) deg)te b.z CTQ S 57){5\{ = TriN (Hiv) ’

anN th
by an
having its pre-image,

ai + biji
az + bajy

, c HY.
an +bnJi

Remark that, since 7V is bijective from HYY onto £, actually, the above pre-image is
uniquely determined in HZ.

By the straightforward computation, one can re-write the above relation (8.2) by its
equivalent relation,

% aik thik a a; _
l’ : — =Xl Vi=1,..,N. 8.3
kzl(bi,k- m)(bk> (bi>’ 1 R (8.3)

This relation (8.3) is equivalent to

N
(ai,kak + tbi,ka) =Xa;, Vi=1,..,N

>
Il
—

and (8.4)

N
> (bikar + Gigbe) = b, Vi,=1,..,N.
k=1

By the formulas of (8.4), we have that

] =

(ai,kbk + bi,ka) = Xbi, Vi = 1,..., N,

=
Il
—

and (8.5)

] =

(mbk + ai,kak) =Xa;, Vi=1,..,N,

=
I

1
implying that (8.6)

N
Z(“’“ tb")(tbk>/\<b> Vi=1,..,N,
P bir Qg ay a;

by (8.5). However, by (8.3) and (8.6), we have that

where (8.7)

t(XO) ) S T (Ht) .

) (voow)=(vow)(

> o

l >

> o
~——
Il
A/~
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Therefore, by (8.7), one can conclude that, for any realization II; (T) € #; n of an
H;-matrix T' € M, n, there exists ¥ (v) € HY with v € HY, and X € C regarded as

A+ (04 0¢) j, € Hy,

such that
L (T) (7Y (v)) =7 (V)A€ HY =T (v) =vA € HY.
Therefore, the relation (8.1) holds true. O

The above theorem shows that, for every H;-matrix T' € M, y, there exist v € HY
and A € C C Hy, such that T (v) = v\ in HY, by (8.1).

Theorem 8.2. Suppose T € M y satisfies T (v) = v\ € HY, forv e HY and A € C C
H; as in (8.1). Define a R-subspace € (T, v, \) of HY by
E(T,v,\) of spang ({vA™ € HY :n € No}), (8.8)
where spang X is the R-vector space spanned by a subset X of HY. Then
T (E(T,v,\) CE(T,v,\), in HY,
i.€., (8.9)
E(T,v,\) is T-invariant in HY .

Proof. By (8.1), for any T' € M, y, there are v € HI¥ and A € C satisfying A+ (0 + 0i) j; €
H;, such that T (v) = v\ in HY. Now, note that
II; (T) is a (2N x 2N)-matrix over C,
7 (v) is a (2N x 2)-matrix over C,
and
7 (A) is a (2 X 2)-matrix over C,
satisfying the matrix multiplication,
(I (1)) (7" (v)) = (7" (0)) (7 (V) ,
in the sense of (8.7) by (8.1). So, one can get that
(I (T)* (77 (v)) = (e (7)) (Y (v) (me (V) = (7 (v)) (e (V)
as in (8.7), and
(I (7)) (7" (v)) = (T (T))* (7 (v)) (7 (V) = (77" (v)) (7 (A)°,
up to the “associative” matrix multiplication. So, inductively, we have that
(I (T)" (x}" (v) = (7 (v)) (m (N)", Vn €N,
up to the matrix multiplication. Equivalently,
T" (v) =vA" € HY, VneN,
by the injectivity of II;, 7V and ;. Thus, if we define a R-vector space,
E(T,v,\) = spang {vA" : n € No} c HY,

as in (8.8), then it is not only a well-defined R-subspace of HY¥, but also a T-invariant
subspace in the sense that:

T(V)e&(T,v,\), YW e&(T,v,M).
Therefore, the relation (8.9) holds true. O

The above theorem shows that our H;-matrices of M; n have their invariant subspaces
of HY by (8.9).
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Corollary 8.3. Every H;-matriz T € M, y has its T-invariant R-subspace in HY .

Proof. The proof is done by (8.9). Indeed, one can take a T-invariant R-subspace £ (T, v, \)
of (8.8) by (8.1). O
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