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HYPERSTABILITY OF SOME FUNCTIONAL EQUATIONS IN
MODULAR SPACES

ABDERRAHMAN BAZA, MOHAMED ROSSAFI, AND MOHAMMED MOUNIANE

Abstract. This paper is devoted to the study of hyperstability phenomena in the
context of convex modular spaces. In particular, we investigate the hyperstability of
three fundamental functional equations: the quadratic equation

\varphi (x+ y) + \varphi (x - y) = 2\varphi (x) + 2\varphi (y) (0.1)

the general linear equation

\varphi (ax+ by) = A\varphi (x) +B\varphi (y) + C (0.2)

and the n-dimensional quadratic equation

f

\Biggl( 
m\sum 
i=1

xi

\Biggr) 
+

\sum 
1\leq i<j\leq m

f
\bigl( 
xi  - xj

\bigr) 
= m

m\sum 
i=1

f(xi). (0.3)

Using the direct method, we establish sufficient conditions under which every approx-
imate solution of these equations in modular spaces coincides exactly with an exact
solution. Our results extend earlier contributions obtained in Banach spaces via fixed
point techniques, and provide new insights into the stability of functional equations
in the broader context of modular spaces.

1. Introduction and preliminaries

A fundamental question in the theory of functional equations is: under what conditions
is a function that approximately satisfies a functional equation necessarily close to an
exact solution of that equation? If such conditions are met, the equation is said to be
stable. The initial stability problem related to group homomorphisms was proposed by
Ulam in 1940 (see [29]). In 1941, the study of stability theory for functional equations
began with Hyers’pioneering work [20], where he provided a partial affirmative answer to
Ulam’s question concerning the additive functional equation, specifically in the setting of
Banach spaces. This result was subsequently generalized in 1950 by Aoki [5], Bourgin [8],
and Rassias [27], who extended the analysis to additive and linear mappings by addressing
the case of unbounded Cauchy differences. Further progress was made in 1994 by Găvruţă
[18], who introduced a broader generalization of Rassias’results by replacing the bounded
condition with a general control function \varphi (x, y), thereby establishing the existence of a
unique linear mapping.
During this period, a special form of stability, known as hyperstability, was identified.
Hyperstability of a functional equation requires that any mapping approximately satisfying
the equation (in a suitably defined sense) must in fact be an exact solution. Although the
term hyperstability was first introduced by Maksa in 2001 [23], its earliest occurrence can
be traced back to 1949, as noted by Bourgin [7]. Among the most prominent methods for
proving the hyperstability of functional equations is the fixed point approach, which has
gained considerable attention over the past two decades, largely due to the contributions
of Brzdȩk and Ciepliński [11] to fixed point theory, and subsequently developed by various
other authors. For additional results and references, see [1, 2, 3, 9, 10, 12, 13].
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Additionally, numerous papers have been published on the hyperstability of functional
equations (see, e.g., [6, 14, 17, 19, 21]). The functional equation

f(x+ y) + f(x - y) = 2f(x) + 2f(y) (1.4)

is known as the quadratic functional equation, and any solution of this equation is referred
to as a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional
equation was first established by Skof [28] for mappings f : X \rightarrow Y , where X is a normed
space and Y is a Banach space. Later, Cholewa [15] observed that Skof’s theorem remains
valid when the domain X is replaced by an Abelian group. Furthermore, Czerwik [16]
proved the Hyers-Ulam-Rassias stability of the quadratic functional equation.
Research on modular and modular spaces as extensions of normed spaces was initiated by
Nakano [25]. Since the 1950s, numerous eminent mathematicians [4, 26, 30] have made
significant contributions to this field. Examples of applications of modular spaces include
Orlicz spaces and interpolation theory (see [22, 24, 26]). We now present the definitions,
properties, and standard terminology of the theory of modular spaces.

Definition 1.1. Let Y be a vector space. A functional \rho : Y \rightarrow [0,\infty ) is called a modular,
if for arbitrary u, v \in Y , the following conditions hold:

(1) \rho (u) = 0 if and only if u = 0.
(2) \rho (\alpha u) = \rho (u) for every scalar \alpha with | \alpha | = 1.
(3) \rho (\alpha u+ \beta v) \leq \rho (u) + \rho (v) if and only if \alpha + \beta = 1 and \alpha , \beta \geq 0.

If condition (3) is replaced by:
(4) \rho (\alpha u+ \beta v) \leq \alpha \rho (u) + \beta \rho (v) if and only if \alpha + \beta = 1 and \alpha , \beta \geq 0, then we say

that \rho is a convex modular.
A modular \rho defines a corresponding modular space, denoted by Y\rho , which is given by:

Y\rho = \{ u \in Y : \rho (\lambda u) \rightarrow 0 as \lambda \rightarrow 0\} .

A function modular is said to satisfy the \Delta s-condition if there exists \tau s > 0 such that
\rho (su) \leq \tau s\rho (u) for all u \in Y\rho .

Definition 1.2. Let \{ un\} be a sequence in Y\rho and let u \in Y\rho . Then
(1) \{ un\} is said to be \rho -convergent to u, denoted un \rightarrow u, if \rho (un  - u) \rightarrow 0 as

n \rightarrow \infty .
(2) \{ un\} is called \rho -Cauchy if \rho (un  - um) \rightarrow 0 as n,m \rightarrow \infty .
(3) The modular space Y\rho is said to be \rho -complete if every \rho -Cauchy sequence in Y\rho 

is \rho -convergent.

Proposition 1.3. Let Y\rho be a modular space. Then:

(1) If un
\rho \rightarrow u and a is a fixed vector in Y\rho , then un + a

\rho  - \rightarrow u+ a.

(2) If un
\rho \rightarrow u and vn

\rho \rightarrow v, then for all \alpha , \beta \geq 0 with \alpha +\beta \leq 1, we have \alpha un+\beta vn
\rho  - \rightarrow 

\alpha u+ \beta v.

Remark 1.4. Note that \rho (u) is an increasing function, for all u \in X. Suppose 0 < a < b.
Then, by property (4) of Definition 1.1 with v = 0, we have \rho (ax) = \rho 

\Bigl( a
b
bu
\Bigr) 
\leq \rho (bu) for

all u \in Y . Moreover, if \rho is a convex modular on Y and | \alpha | \leq 1, then \rho (\alpha u) \leq \alpha \rho (u).
In general, if \lambda i \geq 0 and

\sum n
i=1 \lambda i = 1, then

\rho (\lambda 1u1 + \lambda 2u2 + \cdot \cdot \cdot + \lambda nun) \leq \lambda 1\rho (u1) + \lambda 2\rho (u2) + \cdot \cdot \cdot + \lambda n\rho (un).

If \{ un\} is \rho -convergent to u, then \{ cun\} is \rho -convergent to cu, where | c| \leq 1. However,
the \rho -convergence of a sequence \{ un\} to u does not imply that \{ \alpha un\} is \rho -convergent to
\alpha u for scalars \alpha with | \alpha | > 1.
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If \rho is a convex modular satisfying the \Delta s-condition with 0 < \tau s < s, then

\rho (u) \leq \tau s\rho (
1

s
u) \leq \tau s

s
\rho (u) for all u.

Hence, \rho = 0. Consequently, we must have \tau s \geq s if \rho is convex modular.

2. Hyperstability of Equation (1.4)

In this section, we investigate the hyperstability of the quadratic functional equation
(1.4) in the framework of modular spaces. In particular, we establish that every approxi-
mate solution of (1.4), under suitable conditions, must in fact be an exact solution. Unless
otherwise stated, we assume throughout this section that X is a vector space over a field
\BbbK and that Y\rho is a convex modular space satisfying the \Delta 2-condition.

Theorem 2.1. Suppose that E is a non-empty subset of X that is symmetric with respect
to 0 and satisfies the conditions x + y, x  - y \in E and kx \in E for all x, y \in E and all
k \in \BbbK . Let \alpha : E2 \rightarrow [0,\infty ) be a function such that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\alpha (x, nx) = 0 and \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\alpha (nx, ny) = 0, (2.5)

for all x, y \in E. Let \varphi : E \rightarrow Y\rho be a mapping satisfying

\rho (\varphi (x+ y) + \varphi (x - y) - 2\varphi (x) - 2\varphi (y)
\Bigr) 
\leq \alpha (x, y),

for all x, y \in E. Then \varphi is quadratic on E.

Proof. Letting y = nx in (2.5), we obtain

\rho 

\biggl( 
1

2
\varphi (x+ nx) +

1

2
\varphi (x - nx) - \varphi (x) - \varphi (nx)

\biggr) 
\leq 1

2
\alpha (x, nx),

for all x \in E. Hence, for all x, y \in E, we have

\rho 

\biggl( 
1

2
\varphi (y + ny) +

1

2
\varphi (y  - ny) - \varphi (y) - \varphi (ny)

\biggr) 
\leq 1

2
\alpha (y, ny),

\rho 

\biggl( 
1

2
\varphi 
\bigl( 
x+ y + n(x+ y)

\bigr) 
+

1

2
\varphi 
\bigl( 
x+ y  - n(x+ y)

\bigr) 
 - \varphi (x+ y) - \varphi 

\bigl( 
n(x+ y)

\bigr) \biggr) 
\leq 1

2
\alpha (x+ y, n(x+ y)),

and

\rho 

\biggl( 
1

2
\varphi 
\bigl( 
x - y + n(x - y)

\bigr) 
+

1

2
\varphi 
\bigl( 
x - y  - n(x - y)

\bigr) 
 - \varphi (x - y) - \varphi 

\bigl( 
n(x - y)

\bigr) \biggr) 
\leq 1

2
\alpha (x - y, n(x - y)),

for all x, y \in E. Letting n \rightarrow \infty , we get

\varphi (x) = \rho  - \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\biggl( 
1

2
\varphi 
\bigl( 
(n+ 1)x

\bigr) 
+

1

2
\varphi 
\bigl( 
(1 - n)x

\bigr) 
 - \varphi (nx)

\biggr) 
,

\varphi (y) = \rho  - \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\biggl( 
1

2
\varphi 
\bigl( 
(n+ 1)y

\bigr) 
+

1

2
\varphi 
\bigl( 
(1 - n)y

\bigr) 
 - \varphi (ny)

\biggr) 
,

\varphi (x+ y) = \rho  - \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\biggl( 
1

2
\varphi 
\bigl( 
(n+ 1)(x+ y)

\bigr) 
+

1

2
\varphi 
\bigl( 
(1 - n)(x+ y)

\bigr) 
 - \varphi 

\bigl( 
n(x+ y)

\bigr) \biggr) 
,

\varphi (x - y) = \rho  - \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\biggl( 
1

2
\varphi 
\bigl( 
(n+ 1)(x - y)

\bigr) 
+

1

2
\varphi 
\bigl( 
(1 - n)(x - y)

\bigr) 
 - \varphi 

\bigl( 
n(x - y)

\bigr) \biggr) 
.
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Then, we have

\rho 

\biggl( 
1

7
\varphi (x+ y) +

1

7
\varphi (x - y) - 2

7
\varphi (x) - 2

7
\varphi (y)

\biggr) 
\leq 1

7
\rho 

\biggl( 
\varphi (x+ y) - 

\biggl( 
1

2
\varphi ((n+ 1)(x+ y)) +

1

2
\varphi ((1 - n)(x+ y)) - \varphi (n(x+ y))

\biggr) \biggr) 
+

1

7
\rho 

\biggl( 
\varphi (x - y) - 

\biggl( 
1

2
\varphi ((n+ 1)(x - y)) +

1

2
\varphi ((1 - n)(x - y)) - \varphi (n(x - y))

\biggr) \biggr) 
+

2

7
\rho 

\biggl( 
\varphi (x) - 

\biggl( 
1

2
\varphi ((n+ 1)x) +

1

2
\varphi ((1 - n)x) - \varphi (nx)

\biggr) \biggr) 
+

2

7
\rho 

\biggl( 
\varphi (y) - 

\biggl( 
1

2
\varphi ((n+ 1)y) +

1

2
\varphi ((1 - n)y) - \varphi (ny)

\biggr) \biggr) 
+

1

7
\rho 

\biggl( 
1

2
\varphi ((n+ 1)(x+ y)) +

1

2
\varphi ((1 - n)(x+ y)) - \varphi (n(x+ y))

\biggr) 
+

1

7
\rho 

\biggl( 
1

2
\varphi ((n+ 1)(x - y)) +

1

2
\varphi ((1 - n)(x - y)) - \varphi (n(x - y))

\biggr) 
.

\leq 1

7
\rho 

\biggl( 
\varphi (x+ y) - 

\biggl( 
1

2
\varphi ((n+ 1)(x+ y)) +

1

2
\varphi ((1 - n)(x+ y)) - \varphi (n(x+ y))

\biggr) \biggr) 
+

1

7
\rho 

\biggl( 
\varphi (x - y) - 

\biggl( 
1

2
\varphi ((n+ 1)(x - y)) +

1

2
\varphi ((1 - n)(x - y)) - \varphi (n(x - y))

\biggr) \biggr) 
+

2

7
\rho 

\biggl( 
\varphi (x) - 

\biggl( 
1

2
\varphi ((n+ 1)x) +

1

2
\varphi ((1 - n)x) - \varphi (nx)

\biggr) \biggr) 
+

2

7
\rho 

\biggl( 
\varphi (y) - 

\biggl( 
1

2
\varphi ((n+ 1)y) +

1

2
\varphi ((1 - n)y) - \varphi (ny)

\biggr) \biggr) 
+

\tau 

14
\rho 

\biggl( 
1

2
\varphi ((n+ 1)(x+ y)) +

1

2
\varphi ((n+ 1)(x - y)) - \varphi ((n+ 1)x) - \varphi ((n+ 1)y)

\biggr) 
+

\tau 

14
\rho 

\biggl( 
1

2
\varphi ((1 - n)(x+ y)) +

1

2
\varphi ((1 - n)(x - y)) - \varphi ((1 - n)x) - \varphi ((1 - n)y)

\biggr) 
\leq 1

7
\rho 

\biggl( 
\varphi (x+ y) - 

\biggl( 
1

2
\varphi ((n+ 1)(x+ y)) +

1

2
\varphi ((1 - n)(x+ y)) - \varphi (n(x+ y))

\biggr) \biggr) 
+

1

7
\rho 

\biggl( 
\varphi (x - y) - 

\biggl( 
1

2
\varphi ((n+ 1)(x - y)) +

1

2
\varphi ((1 - n)(x - y)) - \varphi (n(x - y))

\biggr) \biggr) 
+

2

7
\rho 

\biggl( 
\varphi (x) - 

\biggl( 
1

2
\varphi ((n+ 1)x) +

1

2
\varphi ((1 - n)x) - \varphi (nx)

\biggr) \biggr) 
+

2

7
\rho 

\biggl( 
\varphi (y) - 

\biggl( 
1

2
\varphi ((n+ 1)y) +

1

2
\varphi ((1 - n)y) - \varphi (ny)

\biggr) \biggr) 
+

\tau 

28
\alpha ((n+ 1)x, (n+ 1)y)

+
\tau 2

28
\rho 

\biggl( 
1

2
\varphi ((1 - n)(x+ y)) +

1

2
\varphi ((1 - n)(x - y)) - \varphi ((1 - n)x) - \varphi ((1 - n)y)

\biggr) 
+

\tau 2

28
\rho 

\biggl( 
1

2
\varphi (n(x+ y)) +

1

2
\varphi (n(x - y)) - \varphi (nx) - \varphi (ny)

\biggr) 
for all x, y \in E. Letting n \rightarrow \infty , we get

\rho 

\biggl( 
1

7
\varphi (x+ y) +

1

7
\varphi (x - y) - 2

7
\varphi (x) - 2

7
\varphi (y)

\biggr) 
\rightarrow 0
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which implies that
\varphi (x+ y) + \varphi (x - y) = 2\varphi (x) + 2\varphi (y),

for x, y \in E, which means that \varphi is quadratic on E. \square 

Corollary 2.2. Let \theta \geq 0, p and q be two real numbers such that p + q < 0. Let
\varphi : X \rightarrow Y\rho be a mapping satisfying

\rho 
\Bigl( 
\varphi (x+ y) + \varphi (x - y) - 2\varphi (x) - 2\varphi (y)

\Bigr) 
\leq \theta \| x\| p\| y\| q,

for all x, y \in E. Then \varphi is quadratic on E.

Proof. Let \alpha (x, y) = \theta \| x\| p\| y\| q for all x, y \in E. Since p+ q < 0, at least one of p or q
must be negative. Assume that q < 0, we have

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\alpha (x, ny) = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\theta nq\| x\| p\| y\| q = 0 and \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\alpha (nx, ny) = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\theta np+q\| x\| p\| y\| q = 0.

Therefore, the conditions in Theorem 2.1 hold which means that \varphi is quadratic on E. \square 

3. Hyperstability of a general linear functional equation

In the following section, we investigate the hyperstability of a general linear functional
equation. We establish conditions under which every approximate solution necessarily
coincides with an exact solution of the functional equation in the framework of modular
spaces.

Theorem 3.1. Suppose that E is a non-empty subset of X, symmetric with respect to
0, and satisfying x + y, x  - y \in E and kx \in E for all x, y \in E and all k \in \BbbK . Let
a, b \in \BbbK \setminus \{ 0\} and let \alpha : E2 \rightarrow [0,\infty ) be a function such that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\alpha 
\bigl( 
a - 1(n+ 1)x, - b - 1nx

\bigr) 
= 0

and
\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\alpha 
\bigl( 
nx, ny

\bigr) 
= 0,

for all x, y \in E \setminus \{ 0\} . Let A,B \in \BbbR , C \in Y\rho such that | A| \leq 1 and | B| \leq 1 and let
\varphi : X \rightarrow Y\rho satisfying:

\rho 
\bigl( 
\varphi (ax+ by) - A\varphi (x) - B\varphi (y) - C

\bigr) 
\leq \alpha (x, y), (3.6)

for all x, y \in M\alpha = \{ z \in E : \| z\| \geq \alpha \} for some \alpha > 0. Then \varphi satisfies

\varphi (ax+ by) = A\varphi (x) +B\varphi (y) + C

and
(A+B)\varphi (0) = A\varphi (x) +B\varphi 

\bigl( 
 - ab - 1x

\bigr) 
,

for all x, y \in E.

Proof. Substituting x by a - 1(n+ 1)x and y by  - b - 1nx in (3.6), we obtain

\rho 
\bigl( 
\varphi (x) - A\varphi (a - 1(n+ 1)x) - B\varphi ( - b - 1nx) - C

\bigr) 
\leq \alpha 

\bigl( 
a - 1(n+ 1)x, - b - 1nx

\bigr) 
, (3.7)

for all x \in E \setminus \{ 0\} and all positive integers n \geq m, where a - 1(m+ 1)x,  - b - 1mx \in M\alpha .
Letting n \rightarrow \infty in (3.7), we obtain

\varphi (x) = \rho  - \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\Bigl[ 
A\varphi 
\bigl( 
a - 1(n+ 1)x

\bigr) 
+B\varphi 

\bigl( 
 - b - 1nx

\bigr) 
+ C

\Bigr] 
, x \in E \setminus \{ 0\} .
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Therefore, we have

\rho 

\Biggl( 
1

4
\varphi (ax+ by) - A

4
\varphi (x) - B

4
\varphi (y) - C

4

\Biggr) 

\leq 1

4
\rho 
\Bigl( 
\varphi (ax+ by) - 

\bigl( 
A\varphi (a - 1(n+ 1)(ax+ by)) +B\varphi ( - b - 1n(ax+ by)) + C

\bigr) \Bigr) 
+

1

4
\rho 
\Bigl( 
A\varphi (x) - 

\bigl( 
A2\varphi (a - 1(n+ 1)x) +AB\varphi ( - b - 1nx) +AC

\bigr) \Bigr) 
+

1

4
\rho 
\Bigl( 
B\varphi (y) - 

\bigl( 
AB\varphi (a - 1(n+ 1)y) +B2\varphi ( - b - 1nx) +BC

\bigr) \Bigr) 
+

1

4
\rho 
\Bigl( 
A\varphi (a - 1(n+ 1)(ax+ by)) +B\varphi ( - b - 1n(ax+ by)) + C  - A2\varphi (a - 1(n+ 1)x)

 - AB\varphi ( - b - 1nx) - AC  - AB\varphi (a - 1(n+ 1)y) - B2\varphi ( - b - 1ny) - BC  - C
\Bigr) 

\leq 1

4
\rho 
\Bigl( 
\varphi (ax+ by) - 

\bigl( 
A\varphi (a - 1(n+ 1)(ax+ by)) +B\varphi ( - b - 1n(ax+ by)) + C

\bigr) \Bigr) 
+

1

4
\rho 
\Bigl( 
A\varphi (x) - 

\bigl( 
A2\varphi (a - 1(n+ 1)x) +AB\varphi ( - b - 1nx) +AC

\bigr) \Bigr) 
+

1

4
\rho 
\Bigl( 
B\varphi (y) - 

\bigl( 
AB\varphi (a - 1(n+ 1)y) +B2\varphi ( - b - 1nx) +BC

\bigr) \Bigr) 
+

| A| \tau 
8

\rho 
\Bigl( 
\varphi (a - 1(n+ 1)(ax+ by)) - A\varphi (a - 1(n+ 1)x) - B\varphi (a - 1(n+ 1)y) - C

\Bigr) 
+

| A| \tau 
8

\rho 
\Bigl( 
\varphi ( - b - 1n(ax+ by)) - A\varphi ( - b - 1nx) - B\varphi ( - b - 1ny) - C

\Bigr) 
\leq 1

4
\rho 
\Bigl( 
\varphi (ax+ by) - 

\bigl( 
A\varphi (a - 1(n+ 1)(ax+ by)) +B\varphi ( - b - 1n(ax+ by)) + C

\bigr) \Bigr) 
+

1

4
\rho 
\Bigl( 
A\varphi (x) - 

\bigl( 
A2\varphi (a - 1(n+ 1)x) +AB\varphi ( - b - 1nx) +AC

\bigr) \Bigr) 
+

1

4
\rho 
\Bigl( 
B\varphi (y) - 

\bigl( 
AB\varphi (a - 1(n+ 1)y) +B2\varphi ( - b - 1nx) +BC

\bigr) \Bigr) 
+

| A| \tau 
8

\alpha 
\bigl( 
a - 1(n+ 1)x, a - 1(n+ 1)y

\bigr) 
+

| A| \tau 
8

\alpha 
\bigl( 
 - b - 1nx, - b - 1ny

\bigr) 
\rightarrow 0 as n \rightarrow \infty 

Hence, we obtain

\varphi (ax+ by) = A\varphi (x) +B\varphi (y) + C.

Moreover, we have

\rho 

\biggl( 
1

3
(A+B)\varphi (0) - 1

3
A\varphi (x) - 1

3
B\varphi 

\bigl( 
 - ab - 1x

\bigr) \biggr) 
\leq 1

3
\rho 
\bigl( 
A\varphi (x) - 

\bigl( 
A2\varphi 

\bigl( 
a - 1(n+ 1)x

\bigr) 
+AB\varphi 

\bigl( 
 - b - 1nx

\bigr) 
+AC

\bigr) \bigr) 
+

1

3
\rho 
\bigl( 
B\varphi 

\bigl( 
 - ab - 1nx

\bigr) 
 - 
\bigl( 
AB\varphi 

\bigl( 
 - b - 1(n+ 1)x

\bigr) 
+B2\varphi 

\bigl( 
ab - 2nx

\bigr) 
+BC

\bigr) \bigr) 
+

1

3
\rho 
\bigl( 
(A+B)\varphi (0) - A2\varphi 

\bigl( 
a - 1(n+ 1)x

\bigr) 
+AB\varphi 

\bigl( 
 - b - 1nx

\bigr) 
 - AC

 - AB\varphi 
\bigl( 
 - b - 1(n+ 1)x

\bigr) 
 - B2\varphi 

\bigl( 
ab - 2nx

\bigr) 
 - BC

\bigr) 
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\leq 1

3
\rho 
\bigl( 
A\varphi (x) - 

\bigl( 
A2\varphi 

\bigl( 
a - 1(n+ 1)x

\bigr) 
+AB\varphi 

\bigl( 
 - b - 1nx

\bigr) 
+AC

\bigr) \bigr) 
+

1

3
\rho 
\bigl( 
B\varphi 

\bigl( 
 - ab - 1nx

\bigr) 
 - 
\bigl( 
AB\varphi 

\bigl( 
 - b - 1(n+ 1)x

\bigr) 
+B2\varphi 

\bigl( 
ab - 2nx

\bigr) 
+BC

\bigr) \bigr) 
+

| A| \tau 
6

\rho 
\bigl( 
\varphi (0) - A\varphi 

\bigl( 
a - 1(n+ 1)x

\bigr) 
 - B\varphi 

\bigl( 
 - b - 1(n+ 1)x

\bigr) 
 - C

\bigr) 
+

| B| \tau 
6

\rho 
\bigl( 
\varphi (0) - A\varphi 

\bigl( 
 - b - 1nx

\bigr) 
 - B\varphi 

\bigl( 
ab - 2nx

\bigr) 
 - C

\bigr) 
\leq 1

3
\rho 
\bigl( 
A\varphi (x) - 

\bigl( 
A2\varphi 

\bigl( 
a - 1(n+ 1)x

\bigr) 
+AB\varphi 

\bigl( 
 - b - 1nx

\bigr) 
+AC

\bigr) \bigr) 
+

1

3
\rho 
\bigl( 
B\varphi 

\bigl( 
 - ab - 1nx

\bigr) 
 - 
\bigl( 
AB\varphi 

\bigl( 
 - b - 1(n+ 1)x

\bigr) 
+B2\varphi 

\bigl( 
ab - 2nx

\bigr) 
+BC

\bigr) \bigr) 
+

| A| \tau 
6

\alpha 
\bigl( 
a - 1(n+ 1)x, - b - 1(n+ 1)x

\bigr) 
+

| B| \tau 
6

\alpha 
\bigl( 
 - b - 1nx, ab - 2nx

\bigr) 
\rightarrow 0 as n \rightarrow \infty .

Hence,
(A+B)\varphi (0) = A\varphi (x) +B\varphi ( - ab - 1x

\bigr) 
. (3.8)

Now, if we replace x by bnx and y by  - anx in the inequality (3.6), we obtain:

\rho 
\bigl( 
\varphi (0) - A\varphi (bnx) - B\varphi ( - anx) - C

\bigr) 
\leq \alpha (bnx, - anx)  - \rightarrow 0 as n \rightarrow \infty .

Hence
\varphi (0) = \rho  - \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

\bigl[ 
A\varphi (bnx) +B\varphi ( - anx) + C

\bigr] 
.

On the other hand, if we replace x by bnx in (3.8), we get:

(A+B)\varphi (0) = A\varphi (bnx) +B\varphi ( - anx).

Then
\rho 
\bigl( 
(1 - A - B)\varphi (0) - C

\bigr) 
= \rho 
\bigl( 
\varphi (0) - A\varphi (bnx) - B\varphi ( - anx) - C)

and therefore
C = (1 - A - B)\varphi (0).

\square 

Corollary 3.2. Let a, b \in \BbbK \setminus \{ 0\} and let \varphi : E \rightarrow Y\rho be a function. Take \theta ,\theta 
\prime \geq 0, and

p, q, r be real numbers. Suppose that one of the following conditions holds:
(i)p+ q + r \leq 0 and

\rho 
\bigl( 
\varphi (ax+ by) - A\varphi (x) - B\varphi (y) - C

\bigr) 
\leq \| x\| p\| y\| q

\bigl( 
\theta \| x+ y\| r + \theta \| x - y\| r

\bigr) 
(ii)p+ q \leq 0 and

\rho 
\bigl( 
\varphi (ax+ by) - A\varphi (x) - B\varphi (y) - C

\bigr) 
\leq \theta \| x\| p\| y\| q

(iii)p, q < 0 and

\rho 
\bigl( 
\varphi (ax+ by) - A\varphi (x) - B\varphi (y) - C

\bigr) 
\leq \theta \| x\| p + \theta 

\prime 
\| y\| q.

Then \varphi satisfies
\varphi (ax+ by) = A\varphi (x) +B\varphi (y) + C

and
(A+B)\varphi (0) = A\varphi (x) +B\varphi 

\bigl( 
 - ab - 1x

\bigr) 
,

for all x, y \in M\alpha = \{ z \in E : \| z\| \geq \alpha \} for some \alpha > 0.

Remark 3.3. (i) If a = b = A = B = 1 and C = 0, we obtain the hyperstability
result for the additive functional equation \varphi (x+y) = \varphi (x)+\varphi (y) in modular space.
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(ii) If a = b = A = B =
1

2
and C = 0, we obtain the hyperstability result for the

Jensen functional equation \varphi 
\bigl( 
x+y
2

\bigr) 
= 1

2\varphi (x) +
1
2\varphi (y) in modular space.

4. Hyperstability of the n-dimensional quadratic functional equation

In this section, we investigate the hyperstability of the n-dimensional quadratic func-
tional equation.

Theorem 4.1. Suppose that E is a non-empty subset of X that is symmetric with respect
to 0 and satisfies x + y, x  - y \in E and kx \in E for all x, y \in E and all k \in \BbbK . Let f :
E \rightarrow Y and \varphi : Em \rightarrow [0,\infty ) be two functions that satisfy the following conditions

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\varphi 
\bigl( 
x, nx, . . . , nx

\bigr) 
= 0, (4.9)

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\varphi 
\bigl( 
nx1, nx2, . . . , nxm

\bigr) 
= 0

and

\rho 

\left(  f

\Biggl( 
m\sum 
i=1

xi

\Biggr) 
+

\sum 
1\leq i<j\leq m

f(xi  - xj) - m

m\sum 
i=1

f(xi)

\right)  \leq \varphi (x1, x2, . . . , xm), (4.10)

for all x1, x2, . . . , xm \in E. Then f satisfies equation (0.3) on E.

Proof. Letting xi = nx with i \geq 2 and n \in \BbbN in (4.10), we obtain

\rho 
\bigl( 
f
\bigl( 
(1 +mn - n)x

\bigr) 
+ (m - 1)f((1 - n)x) - m(m - 1)f(nx) - mf(x)

\bigr) 
\leq \varphi 

\bigl( 
x, nx, . . . , nx

\bigr) 
,

Hence

\rho 

\biggl( 
1

m
f
\bigl( 
(1 +mn - n)x

\bigr) 
+

m - 1

m
f((1 - n)x) - (m - 1)f(nx) - f(x)

\biggr) 
\leq 1

m
\varphi 
\bigl( 
x, nx, . . . , nx

\bigr) 
,

for all x \in X and for all n \in \BbbN . In view of (4.9), we deduce that

f(x) = \rho  - \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\biggl[ 
1

m
f
\bigl( 
(1 +mn - n)x

\bigr) 
+

(m - 1)

m
f((1 - n)x) - (m - 1)f(nx)

\biggr] 
,

for all x \in X. Therefore,

f

\Biggl( 
m\sum 
i=1

xi

\Biggr) 
= \rho  - \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

\Biggl\{ 
1

m
f

\Biggl( 
(1 +mn - n)

m\sum 
i=1

xi

\Biggr) 

 - (m - 1)

m
f

\Biggl( 
(1 - n)

m\sum 
i=1

xi

\Biggr) 
 - (m - 1)f

\Biggl( 
n

m\sum 
i=1

xi

\Biggr) \Biggr\} 
,

f(xi) = \rho  - \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\Biggl\{ 
f
\bigl( 
(1 +mn - n)xi

\bigr) 
 - (m - 1)f((1 - n)xi) - m(m - 1)f

\bigl( 
nxi

\bigr) \Biggr\} 
,

and

f
\bigl( 
xi  - xj

\bigr) 
= \rho  - \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

\Biggl\{ 
1

m
f
\bigl( 
(1 +mn - n)(xi  - xj)

\bigr) 
+

(m - 1)

m
f
\bigl( 
(1 - n)(xi  - xj)

\bigr) 
 - (m - 1)f

\bigl( 
n(xi  - xj)

\bigr) \Biggr\} 
,
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for all x1, x2, . . . , xm \in E. Now, we have:

\rho 

\left[  2

3m2  - m+ 4

\left(  f

\Biggl( 
m\sum 
i=1

xi

\Biggr) 
+

\sum 
1\leq i<j\leq m

f (xi  - xj) - m

m\sum 
i=1

f (xi)

\right)  
\leq 2

3m2  - m+ 4
\rho 

\Biggl[ 
f

\Biggl( 
m\sum 
i=1

xi

\Biggr) 
 - 1

m
f

\Biggl( 
(1 +mn - n)

m\sum 
i=1

xi

\Biggr) 

 - m - 1

m
f

\Biggl( 
(1 - n)

m\sum 
i=1

xi

\Biggr) 
+ (m - 1)f

\Biggl( 
n

m\sum 
i=1

xi

\Biggr) \Biggr] 

+
2

3m2  - m+ 4

\sum 
1\leq i<j\leq m

\rho 

\biggl[ 
f (xi  - xj) - 

1

m
f ((1 +mn - n) (xi  - xj))

 - m - 1

m
f ((1 - n) (xi  - xj)) + (m - 1)f (n (xi  - xj))

\biggr] 
+

2m

3m2  - m+ 4

m\sum 
i=1

\rho 

\biggl[ 
f (xi) - 

1

m
f ((1 +mn - n)xi)  - m - 1

m
f ((1 - n)xi) + (m - 1)f (nxi)

\biggr] 

+
2

3m2  - m+ 4
\rho 

\Biggl[ 
1

m
f

\Biggl( 
(1 +mn - n)

m\sum 
i=1

xi

\Biggr) 
+

m - 1

m
f

\Biggl( 
(1 - n)

m\sum 
i=1

xi

\Biggr) \Biggr] 

 - (m - 1)f

\Biggl( 
n

m\sum 
i=1

xi

\Biggr) 
+

1

m

\sum 
1\leq i<j\leq m

f ((1 +mn - n) (xi  - xj))

+
m - 1

m

\sum 
1\leq i<j\leq m

f ((1 - n) (xi  - xj)) - (m - 1)
\sum 

1\leq i<j\leq m

f (n (xi  - xj))

 - 
m\sum 
i=1

f ((1 +mn - n)xi) - (m - 1)

m\sum 
i=1

f ((1 - n)xi) +m(m - 1)

m\sum 
i=1

f (nxi)

\Biggr] 

\leq 2

3m2  - m+ 4
\rho 

\Biggl[ 
f

\Biggl( 
m\sum 
i=1

xi

\Biggr) 
 - 1

m
f

\Biggl( 
(1 +mn - n)

m\sum 
i=1

xi

\Biggr) 

 - m - 1

m
f

\Biggl( 
(1 - n)

m\sum 
i=1

xi

\Biggr) 
+ (m - 1)f

\Biggl( 
n

m\sum 
i=1

xi

\Biggr) \Biggr] 

+
2

3m2  - m+ 4

\sum 
1\leq i<j\leq m

\rho 

\biggl[ 
f (xi  - xj) - 

1

m
f((1 +mn - n)(xi  - xj))

 - m - 1

m
f ((1 - n) (xi  - xj)) + (m - 1)f (n (xi  - xj))

\biggr] 
+

2m

3m2  - m+ 4

m\sum 
i=1

\rho 

\biggl[ 
f (xi) - 

1

m
f ((1 +mn - n)xi)  - m - 1

m
f ((1 - n)xi) + (m - 1)f (nxi)

\biggr] 

+
k2

3m2  - m+ 4
\rho 

\biggl\{ 
1

m
f

\Biggl( 
(1 +mn - n)

m\sum 
i=1

xi

\Biggr) 

+
1

m

\sum 
1\leq i<j\leq m

f ((1 +mn - n) (xi  - xj)) - 
m\sum 
i=1

f ((1 +mn - n)xi)

\biggr\} 

+
k2

3m2  - m+ 4
\rho 

\biggl\{ 
m - 1

m
f

\Biggl( 
(1 - n)

m\sum 
i=1

xi

\Biggr) 

+
m - 1

m

\sum 
1\leq i<j\leq m

f ((1 - n) (xi  - xj)) - (m - 1)

m\sum 
i=1

f ((1 - n)xi)

 - (m - 1)f

\Biggl( 
n

m\sum 
i=1

xi

\Biggr) 
 - (m - 1)

\sum 
1\leq i<j\leq m

f (n (xi  - xj)) +m(m - 1)

m\sum 
i=1

f (nxi)

\biggr\} 
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\leq 2

3m2  - m+ 4
\rho 

\Biggl[ 
f

\Biggl( 
m\sum 
i=1

xi

\Biggr) 
 - 1

m
f

\Biggl( 
(1 +mn - n)

m\sum 
i=1

xi

\Biggr) 

 - m - 1

m
f

\Biggl( 
(1 - n)

m\sum 
i=1

xi

\Biggr) 
+ (m - 1)f

\Biggl( 
n

m\sum 
i=1

xi

\Biggr) \Biggr] 

+
2

3m2  - m+ 4

\sum 
1\leq i<j\leq m

\rho 

\biggl[ 
f (xi  - xj) - 

1

m
f((1 +mn - n)(xi  - xj))

 - m - 1

m
f ((1 - n) (xi  - xj)) + (m - 1)f (n (xi  - xj))

\biggr] 
+

2m

3m2  - m+ 4

\times 
m\sum 
i=1

\rho 

\biggl[ 
f (xi) - 

1

m
f ((1 +mn - n)xi)  - m - 1

m
f ((1 - n)xi) + (m - 1)f (nxi)

\biggr] 

+
k2

3m3  - m2 + 4m
\rho 

\biggl\{ 
f

\Biggl( 
(1 +mn - n)

m\sum 
i=1

xi

\Biggr) 

+
\sum 

1\leq i<j\leq m

f ((1 +mn - n) (xi  - xj)) - m

m\sum 
i=1

f ((1 +mn - n)xi)

\biggr\} 

+
k2
2

6m2  - 2m+ 8
\rho 

\biggl\{ 
m - 1

m
f

\Biggl( 
(1 - n)

m\sum 
i=1

xi

\Biggr) 

+
m - 1

m

\sum 
1\leq i<j\leq m

f ((1 - n) (xi  - xj)) - (m - 1)

m\sum 
i=1

f ((1 - n)xi)

\biggr\} 
+

k2
2

6m2  - 2m+ 8

\times \rho 

\biggl\{ 
(m - 1)f

\Biggl( 
n

m\sum 
i=1

xi

\Biggr) 
+ (m - 1)

\sum 
1\leq i<j\leq m

f (n (xi  - xj)) - m(m - 1)

m\sum 
i=1

f (nxi)

\biggr\} 

\leq 2

3m2  - m+ 4
\rho 

\Biggl[ 
f

\Biggl( 
m\sum 
i=1

xi

\Biggr) 
 - 1

m
f

\Biggl( 
(1 +mn - n)

m\sum 
i=1

xi

\Biggr) 

 - m - 1

m
f

\Biggl( 
(1 - n)

m\sum 
i=1

xi

\Biggr) 
+ (m - 1)f

\Biggl( 
n

m\sum 
i=1

xi

\Biggr) \Biggr] 

+
2

3m2  - m+ 4

\sum 
1\leq i<j\leq m

\rho 

\biggl[ 
f (xi  - xj) - 

1

m
f((1 +mn - n)(xi  - xj))

 - m - 1

m
f ((1 - n) (xi  - xj)) + (m - 1)f (n (xi  - xj))

\biggr] 
+

2m

3m2  - m+ 4

m\sum 
i=1

\rho 

\biggl[ 
f (xi) - 

1

m
f ((1 +mn - n)xi)  - m - 1

m
f ((1 - n)xi) + (m - 1)f (nxi)

\biggr] 
+

k2
3m3  - m2 + 4m

\varphi ((1 +mn - n)x1, . . . , (1 +mn - n)xn)

+
k2
2(m - 1)

6m3  - 2m2 + 8m
\varphi ((1 - n)x1, . . . , (1 - n)xn) +

k2
2km - 1

6m2  - 2m+ 8
\varphi (nx1, . . . , nxn) \rightarrow 0

as n \rightarrow \infty for all x1, . . . , xm \in E. It means that equation (0.3) is hyperstable on E. \square 

Corollary 4.2. Let \theta and p be two real numbers such that \theta \geq 0 and p < 0. Let
f : E \rightarrow Y\rho be a mapping satisfying

\rho 

\left(  f

\Biggl( 
m\sum 
i=1

xi

\Biggr) 
+

\sum 
1\leq i<j\leq m

f(xi  - xj) - m

m\sum 
i=1

f(xi)

\right)  \leq \theta 

m\prod 
i=1

\| xi\| p,

for all x1, . . . , xm \in E \setminus \{ 0\} . Then f satisfies equation (0.3) on E
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Proof. In Theorem 4.1, we suppose that

\varphi (x1, . . . , xm) := \theta 

m\prod 
i=1

\| xi\| p

for all x1, . . . , xm \in E. We notice that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\varphi 
\bigl( 
x, nx, . . . , nx

\bigr) 
= \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
\theta n(m - 1)p\| x\| p = 0

and
\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\varphi 
\bigl( 
nx, nx, . . . , nx

\bigr) 
= \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
\theta nmp\| x\| p = 0,

for all x \in E. This implies that f satisfies equation (0.3) on E. \square 

5. Hyperstability of the n-dimensional quadratic equation in Banach space

This last section investigates the hyperstability of the n-dimensional quadratic equation
within the context of Banach spaces.

Theorem 5.1. Suppose that E is a non-empty subset of X, symmetric with respect to
0, and satisfying x + y, x  - y \in E and kx \in E for all x, y \in E and all k \in \BbbK . Let
\varphi : Em \rightarrow [0,\infty ) be a function such that:

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\varphi 
\bigl( 
x, nx, . . . , nx

\bigr) 
= 0 (5.11)

and
\mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
\varphi 
\bigl( 
nx1, nx2, . . . , nxm

\bigr) 
= 0.

Let Y be a Banach space, and f : E  - \rightarrow Y be a mapping satisfying:\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| f
\Biggl( 

m\sum 
i=1

xi

\Biggr) 
+

\sum 
1\leq i<j\leq m

f(xi  - xj) - m

m\sum 
i=1

f(xi)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq \varphi (x1, x2, . . . , xm), (5.12)

for all x1, x2, . . . , xm \in E. Then f satisfies equation (0.3) on E .

Proof. Let xi = nx with i \geq 2 and n \in \BbbN in (5.12), we get\bigm\| \bigm\| \bigm\| \bigm\| f\bigl( (1 +mn - n)x
\bigr) 
+ (m - 1)f((1 - n)x) - m(m - 1)f(nx) - mf(x)

\bigm\| \bigm\| \bigm\| \bigm\| 
\leq \varphi 

\bigl( 
x, nx, . . . , nx

\bigr) 
,

for all x \in E, and all n \in \BbbN . In view of (5.11), we deduce that

f(x) = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

m
f
\bigl( 
(1 +mn - n)x

\bigr) 
+

(m - 1)

m
f((1 - n)x) - (m - 1)f(nx),

for all x \in X. On the other hand, we have

f

\Biggl( 
m\sum 
i=1

xi

\Biggr) 
= \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

\Biggl\{ 
1

m
f

\Biggl( 
(1 +mn - n)

m\sum 
i=1

xi

\Biggr) 

 - (m - 1)

m
f

\Biggl( 
(1 - n)

m\sum 
i=1

xi

\Biggr) 
 - (m - 1)f

\Biggl( 
n

m\sum 
i=1

xi

\Biggr) \Biggr\} 
,

m

m\sum 
i=1

f(xi) = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\Biggl\{ 
m\sum 
i=1

f
\bigl( 
(1 +mn - n)xi

\bigr) 
 - (m - 1)

m\sum 
i=1

f((1 - n)xi) - m(m - 1)

m\sum 
i=1

f
\bigl( 
nxi

\bigr) \Biggr\} 
,
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and

\sum 
1\leq i<j\leq m

f
\bigl( 
xi  - xj

\bigr) 
= \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

\Biggl\{ 
1

m

\sum 
1\leq i<j\leq m

f
\bigl( 
(1 +mn - n)(xi  - xj)

\bigr) 
+

(m - 1)

m

\sum 
1\leq i<j\leq m

f
\bigl( 
(1 - n)(xi  - xj)

\bigr) 
 - (m - 1)

\sum 
1\leq i<j\leq m

f
\bigl( 
n(xi  - xj)

\bigr) \Biggr\} 
,

for all x1, x2, . . . , xm \in E. Hence\bigm\| \bigm\| \bigm\| \bigm\| f
\Biggl( 

m\sum 
i=1

xi

\Biggr) 
+

\sum 
1\leq i<j\leq m

f
\bigl( 
xi  - xj

\bigr) 
 - m

m\sum 
i=1

f(xi)

\bigm\| \bigm\| \bigm\| \bigm\| 
= \mathrm{l}\mathrm{i}\mathrm{m}

n - \rightarrow \infty 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

m
f

\Biggl( 
(1 +mn - n)

m\sum 
i=1

xi

\Biggr) 
 - (m - 1)

m
f

\Biggl( 
(1 - n)

m\sum 
i=1

xi

\Biggr) 

 - (m - 1)f

\Biggl( 
n

m\sum 
i=1

xi

\Biggr) 
+

1

m

\sum 
1\leq i<j\leq m

f
\bigl( 
(1 +mn - n)(xi  - xj)

\bigr) 
+

(m - 1)

m

\sum 
1\leq i<j\leq m

f
\bigl( 
(1 - n)(xi  - xj)

\bigr) 
 - (m - 1)

\sum 
1\leq i<j\leq m

f
\bigl( 
n(xi  - xj)

\bigr) 
 - 

m\sum 
i=1

f
\bigl( 
(1 +mn - n)xi

\bigr) 
+ (m - 1)

m\sum 
i=1

f((1 - n)xi) +m(m - 1)

m\sum 
i=1

f
\bigl( 
nxi

\bigr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq \mathrm{l}\mathrm{i}\mathrm{m}

n - \rightarrow \infty 
\mathrm{s}\mathrm{u}\mathrm{p}

\Biggl\{ 
1

m

\bigm\| \bigm\| \bigm\| \bigm\| f
\Biggl( 
(1 +mn - n)

m\sum 
i=1

xi

\Biggr) 
+

\sum 
1\leq i<j\leq m

f
\bigl( 
(1 +mn - n)(xi  - xj)

\bigr) 
 - m

m\sum 
i=1

f
\bigl( 
(1 +mn - n)xi

\bigr) \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggr\} 

+ \mathrm{l}\mathrm{i}\mathrm{m}
n - \rightarrow \infty 

\mathrm{s}\mathrm{u}\mathrm{p}

\left\{   (m - 1)

m

\bigm\| \bigm\| \bigm\| \bigm\| f
\Biggl( 
(1 - n)

m\sum 
i=1

xi

\Biggr) 
+

\sum 
1\leq i<j\leq m

f
\bigl( 
(1 - n)(xi  - xj)

\bigr) 
 - m

m\sum 
i=1

f((1 - n)xi)

\bigm\| \bigm\| \bigm\| \bigm\| 
\Biggr\} 

+ \mathrm{l}\mathrm{i}\mathrm{m}
n - \rightarrow \infty 

\mathrm{s}\mathrm{u}\mathrm{p}

\left\{   (m - 1)

\bigm\| \bigm\| \bigm\| \bigm\| f
\Biggl( 
n

m\sum 
i=1

xi

\Biggr) 
+

\sum 
1\leq i<j\leq m

f
\bigl( 
n(xi  - xj)

\bigr) 
 - m

m\sum 
i=1

f
\bigl( 
nxi

\bigr) \bigm\| \bigm\| \bigm\| \bigm\| 
\right\}   

\leq \mathrm{l}\mathrm{i}\mathrm{m}
n - \rightarrow \infty 

\mathrm{s}\mathrm{u}\mathrm{p}
1

m
\varphi 

\biggl( 
(1 +mn - n)x1, . . . , (1 +mn - n)xm

\biggr) 
+ \mathrm{l}\mathrm{i}\mathrm{m}

n - \rightarrow \infty 
\mathrm{s}\mathrm{u}\mathrm{p}

(m - 1)

m
\varphi 

\biggl( 
(1 - n)x1, . . . , (1 - n)xm

\biggr) 
+ \mathrm{l}\mathrm{i}\mathrm{m}

n - \rightarrow \infty 
\mathrm{s}\mathrm{u}\mathrm{p}(m - 1)\varphi 

\biggl( 
nx1, . . . , nxm

\biggr) 
= 0,

for all x1, . . . , xm \in E. Which means that equation (0.3) is hyperstable on E. \square 

Corollary 5.2. Let \theta and p be two real numbers such that \theta \geq 0 and p < 0. Let
f : E \rightarrow Y be a mapping satisfying\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| f

\Biggl( 
m\sum 
i=1

xi

\Biggr) 
+

\sum 
1\leq i<j\leq m

f(xi  - xj) - m

m\sum 
i=1

f(xi)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq \theta 

m\prod 
i=1

\| xi\| p,

for all x1, . . . , xm \in X \setminus \{ 0\} . Then f satisfies the functional equation (0.3) on E.
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Proof. In Theorem 5.1, we suppose that

\varphi (x1, . . . , xm) := \theta 

m\prod 
i=1

\| xi\| p

for all x1, . . . , xm \in E. We note that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\varphi 
\bigl( 
x, nx, . . . , nx

\bigr) 
= \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
\theta n(m - 1)p\| x\| p = 0

and
\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\varphi 
\bigl( 
nx, nx, . . . , nx

\bigr) 
= \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
\theta nmp\| x\| p = 0,

for all x \in E, which means that f satisfies equation (0.3) on E. \square 

Conclusion

In this paper, we investigated the hyperstability of several functional equations in
the context of convex modular spaces. Using the direct method, we established that
approximate solutions of the quadratic functional equation, the general linear functional
equation, and the n-dimensional quadratic functional equation necessarily coincide with
their exact forms. We also derived corresponding hyperstability results in Banach spaces,
thereby linking the modular space setting with classical normed structures. Our results
complement the fixed point approaches developed by Brzdȩk and others, and extend
the scope of hyperstability theory beyond Banach spaces. Potential directions for future
research include exploring hyperstability for other classes of functional equations in
modular and Orlicz spaces.
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