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HYPERSTABILITY OF SOME FUNCTIONAL EQUATIONS IN
MODULAR SPACES

ABDERRAHMAN BAZA, MOHAMED ROSSAFI, AND MOHAMMED MOUNIANE

ABsTrRACT. This paper is devoted to the study of hyperstability phenomena in the
context of convex modular spaces. In particular, we investigate the hyperstability of
three fundamental functional equations: the quadratic equation

Pz +y) + ez —y) = 20(x) + 2¢(y) (0.1)
the general linear equation
plaz +by) = Ap(x) + Be(y) + C (0.2)

and the n-dimensional quadratic equation

f<2u>+ ST flwi—m) =m ] f). (0.3)
i=1 i=1

1<i<j<m
Using the direct method, we establish sufficient conditions under which every approx-
imate solution of these equations in modular spaces coincides exactly with an exact
solution. Our results extend earlier contributions obtained in Banach spaces via fixed
point techniques, and provide new insights into the stability of functional equations
in the broader context of modular spaces.

1. INTRODUCTION AND PRELIMINARIES

A fundamental question in the theory of functional equations is: under what conditions

is a function that approximately satisfies a functional equation necessarily close to an
exact solution of that equation? If such conditions are met, the equation is said to be
stable. The initial stability problem related to group homomorphisms was proposed by
Ulam in 1940 (see [29]). In 1941, the study of stability theory for functional equations
began with Hyers’pioneering work [20], where he provided a partial affirmative answer to
Ulam’s question concerning the additive functional equation, specifically in the setting of
Banach spaces. This result was subsequently generalized in 1950 by Aoki [5], Bourgin [§],
and Rassias [27], who extended the analysis to additive and linear mappings by addressing
the case of unbounded Cauchy differences. Further progress was made in 1994 by Gavruta
[18], who introduced a broader generalization of Rassias’results by replacing the bounded
condition with a general control function ¢(z,y), thereby establishing the existence of a
unique linear mapping.
During this period, a special form of stability, known as hyperstability, was identified.
Hyperstability of a functional equation requires that any mapping approximately satisfying
the equation (in a suitably defined sense) must in fact be an exact solution. Although the
term hyperstability was first introduced by Maksa in 2001 [23], its earliest occurrence can
be traced back to 1949, as noted by Bourgin [7]. Among the most prominent methods for
proving the hyperstability of functional equations is the fixed point approach, which has
gained considerable attention over the past two decades, largely due to the contributions
of Brzdek and Cieplinski [11] to fixed point theory, and subsequently developed by various
other authors. For additional results and references, see [1, 2, 3, 9, 10, 12, 13].
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Additionally, numerous papers have been published on the hyperstability of functional
equations (see, e.g., [6, 14, 17, 19, 21]). The functional equation

flx+y)+ flz—y) =2f(x) +2f(y) (1.4)

is known as the quadratic functional equation, and any solution of this equation is referred
to as a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional
equation was first established by Skof [28] for mappings f : X — Y, where X is a normed
space and Y is a Banach space. Later, Cholewa [15] observed that Skof’s theorem remains
valid when the domain X is replaced by an Abelian group. Furthermore, Czerwik [16]
proved the Hyers-Ulam-Rassias stability of the quadratic functional equation.

Research on modular and modular spaces as extensions of normed spaces was initiated by
Nakano [25]. Since the 1950s, numerous eminent mathematicians [4, 26, 30] have made
significant contributions to this field. Examples of applications of modular spaces include
Orlicz spaces and interpolation theory (see [22, 24, 26]). We now present the definitions,
properties, and standard terminology of the theory of modular spaces.

Definition 1.1. Let Y be a vector space. A functional p: Y — [0, 00) is called a modular,
if for arbitrary u,v € Y, the following conditions hold:
(1) p(u) =0 if and only if u = 0.
(2) p(au) = p(u) for every scalar o with || = 1.
(3) plau+ pv) < p(u) + p(v) if and only if « + 8 =1 and o, 8 > 0.
If condition (3) is replaced by:
(4) plau+ Bv) < ap(u) + Bp(v) if and only if « + 5 =1 and «, 5 > 0, then we say
that p is a convex modular.

A modular p defines a corresponding modular space, denoted by Y, which is given by:
Y,={ueY :p(Au) = 0as A = 0}.

A function modular is said to satisfy the Ag-condition if there exists 74 > 0 such that
p(su) < 1op(u) for all u € Y,

Definition 1.2. Let {u,} be a sequence in Y, and let u € Y,. Then

(1) {un} is said to be p-convergent to u, denoted u, — u, if p(up —u) — 0 as
n — oo.

(2) {uy,} is called p-Cauchy if p (uy — ty) — 0 as n,m — oo.

(3) The modular space Y, is said to be p-complete if every p-Cauchy sequence in Y,
is p-convergent.

Proposition 1.3. Let Y, be a modular space. Then:

(1) If up 5 w and a is o fived vector in Y,, then u, +a L5 u+a.
(2) Ifun, 5 wandv, 2 v, then for all o, B > 0 with o+ < 1, we have au,+Bv, —
au + fu.
Remark 1.4. Note that p(u) is an increasing function, for all u € X. Suppose 0 < a < b.
Then, by property (4) of Definition 1.1 with v = 0, we have p(az) = p (%bu) < p(bu) for
all u € Y. Moreover, if p is a convex modular on Y and |a| < 1, then p(au) < ap(u).
In general, if \; > 0 and Y. | A; = 1, then
p(Aug + Aoug + -+ + Aptn) < Aip(ur) + Aep(uz) + - -+ + App(un)-

If {u,} is p-convergent to u, then {cu,} is p-convergent to cu, where |c| < 1. However,
the p-convergence of a sequence {u,} to u does not imply that {awu,} is p-convergent to
au for scalars « with |a| > 1.
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If p is a convex modular satisfying the As-condition with 0 < 75 < s, then
1 T,
p(u) < 1sp(=u) < = p(u) for all w.
s S
Hence, p = 0. Consequently, we must have 75 > s if p is convex modular.

2. HYPERSTABILITY OF EQUATION (1.4)

In this section, we investigate the hyperstability of the quadratic functional equation
(1.4) in the framework of modular spaces. In particular, we establish that every approxi-
mate solution of (1.4), under suitable conditions, must in fact be an exact solution. Unless
otherwise stated, we assume throughout this section that X is a vector space over a field
K and that Y, is a convex modular space satisfying the Aj-condition.

Theorem 2.1. Suppose that E is a non-empty subset of X that is symmetric with respect
to 0 and satisfies the conditions x +y,x —y € E and kx € E for oll z,y € F and all
ke K. Let a: E* — [0,00) be a function such that

nh_)rr;o a(z,nz) =0 and nh_)ngC a(nz,ny) =0, (2.5)

forallz,y € E. Let p : E =Y, be a mapping satisfying

plole +1) + e(a—y) = 20(@) = 20(9) ) < alw,y),
for all x,y € E. Then ¢ is quadratic on E.
Proof. Letting y = nz in (2.5), we obtain

p (o no) + ol —no) - 9(o) - p(n) ) < galano)

for all x € E. Hence, for all z,y € E, we have

p (004 1) + 560 = m0) = o(0) — o) ) < 5l

p (el +u o) + ol +—nle+9) — oo+ 9) — ool +1))

< salz+y,n(z +y)),

N |

and

~—

—¢(n(z - y)))

<

p(;w(w—y+n(ﬂc—y))+;w(ﬂc—y—n(w—y))—sﬂ(ff—y

alz —y,n(z —y)),

N

for all z,y € E. Letting n — oo, we get

p(x) =p— lim (;go((n + 1)30) + %go((l — n)x) — go(nm)) ,

n—oo

n—oo

() =p = Jim_(otn+ ) + 501 =) = ().

el 9) == Jim (el e+ 9) + 5o((1 =+ 9) = lala+1) )

olo=9) == Jim (5ol (o= 9) + Jo((1 =0 =) = laa =) )
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Then, we have
1 2 2
o (Feta+ 1)+ 2ot 9) - 2o(a) - 2ot

Pl (o + ) + 5ol = )+ 9) = olola +1))) )

+

A+ (e = ) + 5ol = W) = 9) = ootz ~1)) )

_|_
N

s}
/

S

(@)= (3ol + 1) + (1 =)o) = () )

) (2000 + D) + 5l = ) — o)) )

_|_
=N

hs)
/

)

_|_

~|
e

p((n+1)(z+y) + %@((1 —n)(z+y)) — ez +y))

+
=

IN
=

(s )
p (00 Do =) + 56l = (e = ) = otz —1))).
(

p (ite+) = (5900 + Do +) + 5ol = )+ ) - plato+9) )

1

p (1o =) = (59000 + Dl =) + 5ol = ) =) plata ) )

_|_
=

+
=N

(
p (1) = (300 + 1) + 561 =)o) — () )
p (1) = (ot + 0w + 51 = ) ~ (o) )

+
=N

+

(1 =n)(z+y))+ 190((1 —n)(z —y)) —e((1 =n)z) — o((1 = n)y)

e((n+1)(x+y)) + %w((n + D@ —y) —e((n+ 1)) —p((n+ 1)y))
: )

+
- = [N
hs
7 N 7 N

N | =

IN

Slln-+ D+ ) + 51— n)(a + 9) = olnlo +3))

(n+ 1) = ) + 5ol = ) = 9) = olnlz ~1))) )

e
/N
5
8
_|_
NS
S—
= |
/_\ /\
o |

+$p<so(ﬂc—y)— %

+2p <¢<x> - (so((n 1)) 4+ (1)) - @(nx)))

+ 20 (i) = (Gettn-+ 0w + Gl =) — ol )

+ ggal(n+ 1)z, (n+1)y)

- gp (;p((l —n)(z+y)) + %w((l —)z—y) — o((1 = n)e) — (1 — n)y)>
+ %p (;P(n(a: +y)) + %@(n(w — ) — p(nz) — (p(ny)>

for all z,y € E. Letting n — co, we get

P (;s@(w +y) + %w(fﬂ —y) - %@(:ﬂ) - 3@0@)) =0
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which implies that
p(r+y)+ @ —y) =20(x) +20(y),
for z,y € E, which means that ¢ is quadratic on F. 0

Corollary 2.2. Let 0 > 0, p and q be two real numbers such that p + q < 0. Let
¢ : X =Y, be a mapping satisfying

p(w(w +y)+ el —y) - 20(z) - 2<p(y)) < OllzlPllyll,
for all x,y € E. Then ¢ is quadratic on E.

Proof. Let a(x,y) = 0||z|?||ly||? for all z,y € E. Since p+ g < 0, at least one of p or ¢
must be negative. Assume that ¢ < 0, we have

lim a(z,ny) = lim On|z|?||ly]|? =0 and lim a(nz,ny) = lim OnPT7||z|?|jy|? = 0.
n—oo n—oo n—oo n—oo

Therefore, the conditions in Theorem 2.1 hold which means that ¢ is quadratic on F. [

3. HYPERSTABILITY OF A GENERAL LINEAR FUNCTIONAL EQUATION

In the following section, we investigate the hyperstability of a general linear functional
equation. We establish conditions under which every approximate solution necessarily
coincides with an exact solution of the functional equation in the framework of modular
spaces.

Theorem 3.1. Suppose that E is a non-empty subset of X, symmetric with respect to
0, and satisfying x +y,x —y € E and kx € E for all xz,y € E and all k € K. Let
a,b € K\ {0} and let a: E? — [0,00) be a function such that

lim a(a ' (n+ 1)z, —b 'nz) =0

n— 00
and

nh_}n;o a(nx,ny) =0,

for all x,y € E\ {0}. Let A,B € R, C €Y, such that |A| < 1 and |B| < 1 and let
¢ : X =Y, satisfying:

p(plaz +by) — Ap(x) — Bo(y) — C) < a(x,y), (3.6)
forall z,y € M, ={z € E : ||z|]| > a} for some o> 0. Then ¢ satisfies
plax +by) = Ap(z) + Bo(y) + C
and
(A+ B)p(0) = Ap(x) + Bp( — ab™ '),

forall x,y € E.
Proof. Substituting x by a~!(n + 1)z and y by —b~'nz in (3.6), we obtain

p(p(z) — Ap(a™' (n+ 1)z) — Bo(—b"'nz) — C) < a(a™'(n+ Dz, —b"'nz), (3.7)

for all x € E'\ {0} and all positive integers n > m, where a=*(m + 1)z, —b~'mz € M,,.
Letting n — oo in (3.7), we obtain

p(x) =p— lim [Aw(a*(nﬂ)x)+B¢(—b*1m)+o}, z e E\{0}.

n—roo
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Therefore, we have

p(itp(aw + by) — %p(fv) - %@(y) - 4>

IA

P

/N

p(az + by) — (Ap(a™ ' (n+ 1)(az + by)) + Be(—b'n(az + by)) + C))

(z) — (A*¢p(a™ ' (n+1)z) + ABo(—b~'nz) + AC))

+  +
[ I S S N
e
/N N

o
©

)

By(y) - (ABp(a™ (n+1)y) + B2(~b"'nz) + BC)

+ ip(flw(a‘l(n +1)(az + by)) + Bp(=b~'n(az + by)) + C — A%p(a™" (n + 1))

— ABo(—b"'nz) — AC — ABp(a™*(n +1)y) — B*p(—b 'ny) — BC — C’)

IN

+
»&\»—u&\r—um»—l
e
N
b
S

p(cp(aa: +by) — (Ap(a™" (n+ 1)(az + by)) + Bo(—b~'n(az + by)) + C))
(z) — (A%p(a™ ' (n+1)z) + ABp(—b~'nz) + AC’))

(B(p( ) — (ABp(a ' (n+1)y) + B*p(—b"'nx) + BC))

=5
ﬁ

o(a  (n+1)(az + by)) — Ap(a™ (n + 1)x) — Bp(a ™ (n + 1)y) — C’)

_|_
s
/—\/ﬁ

oo‘Eoo
\]

o(=b"'n(az + by)) — Ap(=b"'nz) — Bo(—b"'ny) — C’)

+

IN

/N

ple(az + by) — (Ap(a™' (n + 1)(az + by)) + Bo(—b~'n(az + by)) + ))

- (A2g0(a71(n + 1)x) + ABp(—b~ n:c + AC’

+
e L N

S
N
5

+

= |
B

N 7 N 7N

By(y) — (ABp(a™ " (n + 1)y) + B*p(—b"'nz) + BC) )
|A|7' 1,

00| =

“ala T (n+ Dz,a H(n+ 1)y) + a(—b"tnz,—b"

v)

+

—0 as n— o

Hence, we obtain
plaz + by) = Ap(x) + Be(y) + C.

Moreover, we have

P ((A + B)p(0) — %Acp(x) — éBcp (ablx))
(Ap(z) — (A%p (a ' (n+ 1)z) + AByp (b~ 'nz) + AC))
p (Bp (—ab™'nz) — (ABp (=b~'(n+ 1)z) + B¢ (ab™*nz) + BC))

+ 3P ((A+ B)p(0) — A%p (a™ ' (n + 1)z) + ABp (b~ 'nz) — AC
—AByp (=b"'(n+1)z) — B*p (ab™*nz) — BO)



316 ABDERRAHMAN BAZA, MOHAMED ROSSAFI, AND MOHAMMED MOUNIANE

< 20 (Ap(a) — (A% (a™ (n+ 1)2) + ABg (~bna) + AC))
+ %p (Be (—ab™'nx) — (ABp (=b~!(n+ 1)z) + B%p (ab~*nz) + BC))
+ AT (010) — Ag (a7 n + 1)) — B (b7t 1)) — €)
#1807 (0(0) — Ag (-b7na) — B (abnr) - €)

< %p (Ap(z) — (A% (a™(n+1)z) + AByp (=b'nx) + AC))
+ 20 (Bp (~ab™'nz) — (ABg (b~ (n + 1)z) + B (ab~*na) + BC))
LA, (a™'(n+ Dz, —b"'(n+ 1z) + %a (=b"'na, ab™*na)

6
—0 as n — oo.

Hence,

(A+ B)p(0) = Ap(z) + Bp(—ab™'z). (3.8)
Now, if we replace by bnz and y by —anz in the inequality (3.6), we obtain:

p((0) — Ap(bnz) — Bp(—anz) — C) < a(bnz, —anz) — 0 as n — oo.
Hence
»(0)=p— nl;ngo [Ap(bnz) + Bo(—anz) + C.

On the other hand, if we replace x by bnz in (3.8), we get:

(A+ B)p(0) = Ap(bnz) + Bo(—anz).
Then

p((1 = A= B)p(0) = C) = p(¢(0) — Ap(bnz) — Bo(—anz) — C)
and therefore
C=(1-A- B)p(0).
O

Corollary 3.2. Let a,b € K\ {0} and let ¢ : E =Y, be a function. Take 0,6 >0, and

D, q,r be real numbers. Suppose that one of the following conditions holds:
(O)p+q+7r <0 and

p(plaz +by) — Ap(x) = Bo(y) — C) < |lz[P[ly]|?(0llz +yl" + 0llz — yl")
(#9)p+q <0 and
p(p(az +by) — Ap(z) — Bp(y) — C) < 0l|z|”|ly]|?
(#i1)p,q < 0 and
p(plaz +by) — Ap(z) — Bo(y) — C) < Ollz|” +6'lly] .
Then ¢ satisfies
plax +by) = Ap(x) + Beo(y) + C
and
(A + B)p(0) = Ap(x) + Bo( — ab~'a),
forallz,y € My, ={z € E : ||z|]| > a} for some o> 0.

Remark 3.3. (i) fa=b=A= B =1 and C = 0, we obtain the hyperstability
result for the additive functional equation p(z+y) = ¢(x)+¢(y) in modular space.
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1
(iil) fa=b=A=B = 3 and C' = 0, we obtain the hyperstability result for the
Jensen functional equation (%) = L¢o(z) + ¢ (y) in modular space.

4. HYPERSTABILITY OF THE n-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATION

In this section, we investigate the hyperstability of the n-dimensional quadratic func-
tional equation.

Theorem 4.1. Suppose that E is a non-empty subset of X that is symmetric with respect
to 0 and satisfies v +y,x —y € F and kx € E for all z,y € E and all k € K. Let f :
E—Y and ¢ : E™ — [0,00) be two functions that satisfy the following conditions

nhﬁngo cp(x, ne, ... ,nx) =0, (4.9)
lim w(nxl,nm, . ,na:m) =0
n—oo
and
P f(le) + Z f(xl*xj)imz.f(xl) §S0(551,$2a~~~739m)7 (410)
i=1 1<i<j<m i=1

for all x1,22,...,xm € E. Then f satisfies equation (0.3) on E.
Proof. Letting x; = nz with ¢ > 2 and n € N in (4.10), we obtain
p (F(1+mn—n)z) + (m—1)f((1 = n)z) —m(m — 1) f(nz) — mf(z))
< gp(m,nx,...,mc),

Hence
p (3 (140 = )a) + ™ (1 = i) = (m = f o) ~ ) )

< go(a:,nx,...,na:),

1
m
for all z € X and for all n € N. In view of (4.9), we deduce that

m—1

(0= ) = (m - D).

m

f(z)=p— lim [nlzf((l +mn —n)z) +

n—oo

for all x € X. Therefore,

f <i$1> :p—nli_{r;o{;f ((1+mn—n)ixi>

— %f <(1n)le> —(m-1)f (an) },
i=1 =1

flzi)=p— nh_}n;o {f((l +mn —n)z;) — (m—1)f((1 —n)z;) — m(m — 1)f(na?i)},

and

n—0o0

f(zi— ;) =p— lim {;Lf((l—l—mn—n)(xi—xj)) +

= (m = 1)f (n(z; —:vj))},



318 ABDERRAHMAN BAZA, MOHAMED ROSSAFI, AND MOHAMMED MOUNIANE

for all z1,zs,...,z, € E. Now, we have:

p[ m+4< (i >+ > f(wi—wj)—mif(wi)>
<§: >—1f((1+mn—n)§:mi>

i=1

- 3m2—m+4

_f<1_ni ) —1)f<nim’>

p[ﬂm )= (@ mn ) (- 2)

Jr3m —m+4

i<j<m

_%f (L =n) (@i — ;) + (m —1)f (n(z: — Ij))}

+3m37’7n+4;p 70 = (@ = ) =" (0= a0+ (m = 1 ()

p if ((1+mn—n)2xi> +m771f ((1—71)21:1)]

i=1 i=1

—(m-1)f (an)—i— Z F (1 +mn—n)(x; —xj))

1<i<j<m

2

+3m2—m+4

LN @) =) Y - a)

1<i<j<m 1<i<j<m

=Y f(A+mn—n)z) = (m=1)Y f((1-n)a:) +mm—-1))f (mi)]

i=1 =1 i=1

<Zx> —f(l-i—mn—n)i:ci)

i=1

2
<z
- 3m27m+4p

mﬂ:1f<1n Zm> 1f<ni1mﬂ

2 1
R ——— KZ;@” {f (zi — ;) — gf((l +mn —n)(z; — x;))

S (1 =) (= )+ (m = 1) (s “))}

g 2P 1)~ () T () + = ) )
kQ 1 m

+m{ f(<1+mn—nl§;mz>

+% Z f((1+mnfn)(:ciij))fo((lernfn)mi)}

T 32 _k2m+4p{mw; 1f <(1—n);xi)

+mT_1 Z f((]-—n)(a?i_l'j))—(m—].)Zf((]_—n)xi)

1y <n2x> “m=1) ¥ fem ) mm =3 () |

1<i<j<m i=1
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< =
- 3m27m+4p

,%f <(1n)2x1) +(m-1f <anl)}

f <iw,> - %f ((1+mn—n)§:wi>

i=1

+ ?)m?in—i—él 1<i<Zj<'mp {f (zi — ;) — %f((l +mn —n)(z; — x;))
_L_lf (T=n)(zi—z;))+(m—=1)f (n(x; — x])):| + ?miimm—i—él

xzp[ 5) = (1 = ) =" (0 n)) + (= 1) ()|

ks S
- mp{f <<1 +mn —n) Zwi)

+ Z F (A +mn—n)(z; —xj)) — Z 1+mnfn)xi)}

1<i<j<m i=1
k3 m —
+6m2_§m+8p{ - (1—71)2371)
— 2
+mm 11<;<mf((1n)($i$j)) ;f(un)xi)}er?_kM
<pf m - (n2x> me1) S ) - mn = )Y (n) |
1<i<j<m i=1
= m <Z-’r> - f ( 1+mn—n>;wi>
_mT’f <(1—n);xi> +(m-1f <n;xl>}
2 1
Ty —mtd 1<§<mp [f (i = 25) = — f((1+mn —n)(z; — 25))
L ) () (0 D (0o - )|
+ _m+4zp|: Ti —*f((1+mn—n)zi) —mTilf((l—n):rl)—F(m—l)f(nzl)
+mip((l—kmn—n)xh...,(l+mn—n)xn)
k3 (m — K3k
+%@((l—n)m,”w(l—n)xn)ﬁ—mg@(nm,..,,nmn) -0
as n — oo for all z1,..., 2, € E. It means that equation (0.3) is hyperstable on E. g

Corollary 4.2. Let 0 and p be two real numbers such that 6 > 0 and p < 0. Let
f:+E =Y, be a mapping satisfying

p(f(zxi)+ S ) w3 xl)wmxln,

1<i<j<m i=1

for all x1,...,x,m € E\{0}. Then f satisfies equation (0.3) on E
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Proof. In Theorem 4.1, we suppose that
m
plar, ) = O ] el
i=1

for all x1,...,x,, € E. We notice that

lim ¢(z,nz,...,nz) = lim On(m=VP||z||P = 0
n—oo n—oo
and
lim ¢(nz,nz,...,nz) = lim on""|z|P =0,
n—roo n—r oo
for all z € E. This implies that f satisfies equation (0.3) on E. O

5. HYPERSTABILITY OF THE n-DIMENSIONAL QUADRATIC EQUATION IN BANACH SPACE

This last section investigates the hyperstability of the n-dimensional quadratic equation
within the context of Banach spaces.

Theorem 5.1. Suppose that E is a non-empty subset of X, symmetric with respect to
0, and satisfying v +y,x —y € F and kx € E for all z,y € E and all k € K. Let
v : E™ — [0,00) be a function such that:

nlLr&gp(xmx,...,nx) =0 (5.11)
and
lim <p(nac1, nTra,... ,nmm) =0.
n—oo

LetY be a Banach space, and f : E — Y be a mapping satisfying:

m

f<2x1>+ Z f(xi—xj)—mz:f(xi) < (1,2, ..y Tm)s (5.12)

1<i<j<m i=1
for all x1,z9,...,xm € E. Then f satisfies equation (0.3) on E .
Proof. Let x; = nx with ¢ > 2 and n € N in (5.12), we get

Hﬂa+mn—m@+mn—nﬂa—m@—mmwwwmm—mﬂm

< gp(a:,nx,...,nx),

for all x € E, and all n € N. In view of (5.11), we deduce that

(m — l)f((l —n)z) — (m — 1) f(nz),

. 1
f(z) = nh_}rg@ Ef((l +mn —n)z) +
for all z € X. On the other hand, we have

f <Zx,> :nlggo{nl%f ((I—an—n)in)

i=1
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and
1<i<j<m M <ii<m
-1
(m—1) S A=) —a) —(m—-1) > f(n(w - :cj))},
1<i<j<m 1<i<j<m
for all z1,xs,...,z, € E. Hence
(§r) 5 e
= | Ly <(1+mn—n>_§jmi> _m=l, ((1 >le>

DS @)~ 1) Y fnle )

1<i<j<m 1<i<j<m

= (@ +mn—n)az) + (m—1) > F(1—n)z:) +m(m— 1) Z f(nzs)

gnlim sup{é”f((l—i—mn—n)Zm) + Z f((1+mn —n)(z; — x;))

1<i<j<m

}

+nhl>nmsup{mrgm"f< Z$1>+ Z f((l—n)( '_mj))
—mz f((1=n)zs)

} m

+n£nwsup{(m1)“f(n§xi>+ S fnl@i—2) —m > f(na:)

1<i<j<m 1=1

fmz F((1 4 mn —n)z;)

1=1

}

1
< lim sup — go((l+mn—n)x1,...7(1+mn—n)xm>

T n—o0

n—oo

+ lim sup$¢((1—n)xl,...,(1—n)xm)

+ lim sup(m — 1)90(nx1, R nmm) =0,

n—>oQ

for all z1,...,2m,m € E. Which means that equation (0.3) is hyperstable on E. d

Corollary 5.2. Let 0 and p be two real numbers such that 6 > 0 and p < 0. Let
f:E =Y be amapping satisfying

f<§x> > fl Z ) <9H||xz||

1<i<j<m =1

for all x1,...,xz,m € X\ {0}. Then f satisfies the functional equation (0.3) on E.
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Proof. In Theorem 5.1, we suppose that

m
(L1, ) =0 H [l ||?
i=1

for all x1,...,x,, € E. We note that

lim ¢(z,nz,...,nz) = lim On "= VP||z||P = 0
n— oo n— oo
and
lim ¢(nz,nz,...,nz) = lim On"?||z||? =0,
n—oo n— oo
for all z € E, which means that f satisfies equation (0.3) on E. O

CONCLUSION

In this paper, we investigated the hyperstability of several functional equations in
the context of convex modular spaces. Using the direct method, we established that
approximate solutions of the quadratic functional equation, the general linear functional
equation, and the n-dimensional quadratic functional equation necessarily coincide with
their exact forms. We also derived corresponding hyperstability results in Banach spaces,
thereby linking the modular space setting with classical normed structures. Our results
complement the fixed point approaches developed by Brzdek and others, and extend
the scope of hyperstability theory beyond Banach spaces. Potential directions for future
research include exploring hyperstability for other classes of functional equations in
modular and Orlicz spaces.
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