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LAGUERRE-BESSEL WAVELET PACKETS TRANSFORM

ABDELAALI DADES

ABsTRACT. In this paper, the Laguerre-Bessel wavelet packets transform is defined
and studied. The scale discrete scaling function and the associated Plancherel and
inversion formulas are given and established. Furthermore, the Calderén reproducing
formula is given and proved for the proposed transform.

1. INTRODUCTION

Let L2 (K), 1 < p < oo, denote the space of measurable functions f on K=R; x R
equipped with the following norm

1/p
1fllpe = [/ |f(z,t)]P dmy(z,t) < 400, ifl<p<oo,
K
[ flloc,a = ess sup |f(z,t)] < oo,
(z,t)eK

where m,, is the weighted Lebesgue measure on K defined by

$2a+1t2a

dmg(x,t) = Tat 12Tt dxdt.

The Laguerre-Bessel transform Fp of a function f is defined on L. (K) by

Fre(f) (A, m) = /K@A,m(x,t)f(x,t) dma(z,t), V(A\,m) €K =R, xN.

The harmonic analysis associated with the Laguerre-Bessel transform is discussed and
studied in [11]. This analysis is generated by the two differential operators D; and Dy
defined on K by

0?2 2a0 O
D=2 22l s
1= or T 120
0? 2a0+1 0
Dy= L 42079 L 2p .
27 Ox2 x 8x+x >0

In the same paper, the authors have extended this integral operator to the wavelet theory.
The basic properties and Calderén’s formula have been given and established. Nowadays,
the applications of wavelets are divers and large. Signal and image processing [2] as
well as biomedical engineering [3] and statistics [1] are some of these applications. We
refer the reader to [4, 5, 9, 10] for a detailed theory of wavelets and its applications. To
obtain a good frequency localization of the signal in a wavelet basis, it is much more
appropriate to use so-called wavelets packet. This new concept which was introduced by
R. Coifman, Y. Meyer, and M. V. Wickerhauser (see [6]) divide the frequency space into
several parts. Therefore, there is no redundant informations in the decomposed frequency
bands. Several works have been published recently dealing with the wavelet packets
associated with various integral transforms. We refer the reader to the following references
[8, 12, 13, 14, 15, 16, 17, 19, 20] for a very good understanding of this concept. The
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main objective of this work is to extend the notion of wavelets packet to the LB-wavelet
transform. In particular, we give a general construction allowing the development of
LB-wavelets packet. In our construction, we follow the same schemes as that given in
Trimeche’s book [18]. For other construction schemes we refer to [7].

This work is organized as follows: In the second section, we recall some results of
harmonic analysis associated with the LB-transform. Then we give our construction of
wavelet packets for the proposed transform. More specifically, we define the LB-wavelet
packet transform and we prove its Plancherel and inversion formulas. In the third section,
we introduce the scale discrete scaling function, then we give its properties. The last
section is devoted to Caldéron’s formula for the LB-wavelet packet.

2. THE LB-WAVELET PACKETS TRANSFORM

In this section, we first recall some results of harmonic analysis associated with the LB-
transform. Then, we define the LB-wavelet packet transform. We prove then Plancherel
and inversion formulas for the proposed transform.

Definition 2.1. The Laguerre-Bessel transform Fp is defined on L} (K) by
Fuo(DOm) = [ (e 0f @) dma(et). YO m) eR (2)
K

The function ¢y, is infinitely differentiable on R2, even with respect to each variable
and we have

sup |@am(z,t)| = 1. (2.2)
(z,t)eK

The Laguerre transform satisfies the following properties [11]:

(1) Plancherel formula:

[ 1@ 0P dmate.) = [ 170 m) dva(m) (23)
K K
(2) Inversion formula:

Flat) = /K (@ DFLp(HOm) dra(hm), ae (o) €K, (24)

where 7, is the positive measure defined on I" by

1 — [e% * a+1
/Kf()\,m)d'ya()\,m) = %0 7 1/2) mZ_OLm(O)/O FO,m)A3FLd,

Definition 2.2. The LB-translation operator associated with the operators D and Do
is defined by

TG0 f(y,s) *72/ (Ap(z,y),Y + (—1)'t+ (—1)7s)df with a=0, (2.5)

1,j=0

and

TS o F(4:5) = ba / £ (Do), Ae(X, V) dpia(€,0,6) with a>0.  (26)

[0,7]

For more properties about LB-translation operator, we refer to [11]. We’ll just mention
the necessary results that we’ll use to prove our main results in this paper.

Definition 2.3. The generalized convolution product of f,g € S,(K) is defined by

fragla,t) = /KT&@(f)(S’y)g(s,y)dma(&y), v(z,t) € K. (2.7)
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Proposition 2.4. i) Let f € LL(K). Then for all (z,t) € K and (A\,m) € K, we
have

Fug (TG0 f) Om) = oxm(@, ) FLp(H)(Am). (2.8)
ii) For all f and g in L} (K), we have
Fra(f *a 9)(N\sm) = Fra(f)(A,m)Frp(g)(\,m). (2.9)
By product formula (2.9), we have this following proposition:

Proposition 2.5. For all f,g € L2(K), we have the identity

/ 1F %o g ()] dma(z,1) = [\fLB<f><A>|2|fLB<g><A>|2 dra(\m).  (2.10)
K K

Definition 2.6. Let g € L2(K), We say that g is a LB-wavelet on K if the following
admissibility condition holds

Feo 2 dA
0<Cy= | Fre(g)(A, m)| ~ < 0. (2.11)
0
Let a €]0, +o0], we put
1 z t
this function satisfies the following proposition:
Proposition 2.7. (i) For g € L2(K), the function g, belongs to L2 (K) and we have
1
I9allo,0 = —zo77 l9l2.0- (2.13)
a2 1
(ii) For g € L2(K), we have
Frg (9a) (\m) = Frp(g) (ar,m), (\,m) K. (2.14)
Proof. (i) A simple change of variable gives the desired result.
(ii) See [11].
O
Proposition 2.8. (i) Let j € Z, the function
%
1 (7 da
(Aum) — <C/ |-7:LB(g)(a’/\7m> ? > ) (215)
9 JTit1 a
belongs to Li(]K)
(ii) There exist a function g; € L2(K) such that
P 1 T 2 da
Fre(g;)(ard,m) = = |FLa(g)(ar,m)|” —. (2.16)
9 JTjt1 a
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Proof. By using the Fubini-Tonelli’'s theorem we get

&
Cy Jr

1 (7
1

:Fg N

gda

a

/fj |Fre(g)(aX, m) ] dye (A, m)

1715 (9a) (A m)|? dya (A, m) da
m E

1 T 2 da
=3, 1FE (9a)ll5,2 —

Ti+1

L7z,
e — g -

Cqg Jr,1 2o g
il

Cy Jy,., adator

e [ )
= 7 9 9 .

(3a+3)Cy r?ﬂ_? r?a+2

The result is proved. O

Definition 2.9. The sequence { gf }jeZ is called L B-wavelet packet.

Remark 2.10. It is easy to check that
+o0 5
0< Frp (¢f) \m)<land > [Fup(gf) (Am)] =1 (2.17)

j=—00

Now, we consider the family of wavelet packet defined as follow:

g;?,a,w,t(ya 8) = T(ofc’t)gf(y, 5). (218)

Definition 2.11. Let { gf }jeZ be a L B-wavelet packet. The L B-wavelet packet transform
WP is defined for a function f in L2 (K) by

V0 F(j,a,x.t) = /K £ )T 022, 5)dma(y, s)

:g;)*af-

(2.19)

Theorem 2.12. Let f € L2(K), we have

+oo
z,t) |2 dmea(z,t) = p'as2ma7s. .
[ 15 P anaen = 3 [ [¥5tGapsf dmaws. 220

j=—o00

Proof. By the Proposition 2.4, we have

/Klllfﬁf(j,a,y7s)\2 dma<y7s>=/ﬂ<\g§ v I dma(y, s)

- /K | Fs () m) P 1 Fos () O m) P dya (A, m).
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Now applying Fubini-Tonelli ’s theorem and remark 2.10, we get

+oo )
> /K|‘I’§f(jaavy78)l dpaly, s)

j=—o00

+oo
B /112 Z ’JELB(gf)(A,m)|2 |]-'LBf()\,m)|2 dya (X, m)

j=—o0

_ /K FLn(£) (0 m)|® dya(X,m)

= [ 10 Rdmg (a0

The proof is complete. O

Theorem 2.13. Let {g?}jez be a LB-wavelet packet. For all f € L2 (K), such that
Fre(f) € L:;(]K) we have:

+oo
Fn) = 3 [ VA 068 (05) diaa. ) (2.21)

j=—o00

Proof. Let j € Z and let f € L2 (K) such that Fp(f) € L,ll(]l/{), we consider the function
YGa3) = [ WG 00058 0:5) di o) (222)
Relations (2.3), (2.8) and (2.9) gives as
YGan) = [ Fuo (6]) Om)Fun (O m)on 01 (57) () ()

- /K Fui () o m)oam (1) [Fon (@) m)] dya(Am).

Using now (2.2), we obtain

+oo
ZT(jv a7y>s) < Z /]Kl]:LB(f)()Vm” | ‘pk,m(xvt) | []:LB (g]P) ()‘7m>}2d7a()‘7m>

j=—o0

= [1Fh ) S [Fe (6) O] dva ()

- / | FLi(H)hm) dya(A,m)
K

= Freflli,
< 00.

So,
S TG0 = [ Fip(dmionm(et) (z Fus () u,m)f) a0
= /K]:LB(f)()‘vm)SDA,m(l',t)d’)/a()\,m)

= f(x,t).
The result is then proved. O
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3. SCALE DISCRETE SCALING FUNCTION

In the following section, we define and study the scale discrete scaling function associated
to the LB-wavelet transform. We give the associated inversion and Plancherel formulas.
As the result given in the previous section, we have the following proposition.

Proposition 3.1. Let {gf}jez be a LB-wavelet packet. The following points are holds:
(i) For all J € Z,

J—-1

P 2 1 > 2 da
Z (Fralgi)(A,m))” = ol | Frp(g)(ar,m) [ —. (3.23)

j=—o00 g Jry a

(ii) For all J € Z, there exists a unique function G% € L2(K) satisfying
J—1 ) 2 R
Fep(GHAm) = | D ((Frelg))Am)" | . (hm)eK. (3.24)
j=—00

Proof. The proof is the same as Proposition 2.8. 0

Definition 3.2. The sequence {G7'} <y, 15 called a scale discrete scaling function.

Remark 3.3. From (3.23) and (3.24) we have V.J € Z,

0< Frp(GY(Am) <1 lim Frp(G))(Ahm) =1 (3.25)
(Fra(gf)nm)® = (Frp(@h )\ m))” — (FLa(GF) (A m))*; (3.26)
3 |Fes(@Fm) — (Fus(@)nm)’| =1. (3.27)

Theorem 3.4. Let {G«IJD}JEZ be a discrete scaling function. Then Vf € L?(K) we have
the Plancherel formula

[0 dmaly) = tim [ (7.6 dmae.)
K 1
where
Gia’m’t(y, s) = T&’t)Glj(% s), (x,t) eK. (3.28)

Proof. We have

<f’ GIJD,a,r,t> = / f(y7 S)T(O;7t)G§)(y7 S) dma(ya 5) = f *a G?(xﬂf) (329)

K

Theorem 2.12 gives then the desired result. O

Theorem 3.5. Let f € L2(K). For all J € Z we have
[ 1709 dmaf.s)
K

— P 2 c- Poy(s 2
*/K|<f’GJ,a,z,t>| dma(xvt)"_;/KK\Ilg NG a2, )7 dma(z,1).
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Proof. From (2.3), (3.24) and (3.29) we have

/‘f’ ]azt 2 dma(m,t)
J—1

:/]K|-/—'.LB(]C)(>Ufrn)|2 ( Z [-FLB(QJP)(Aam)]Q) d’)’a(/\vm)'

j=—o00

Now, Fubini-Tonelli’s theorem implies

Z;/K(‘I’gf)(j? a,2,1))[* dma(,1)

= /]K ‘-FLB(f)()‘am)F (Z [fLB(ng)()‘am)]Z) d’)’a(/\vm)'
j=J
Therefore,

J G P dmaat)+ Y [ 1097 G0 dmaa )
j=17K

= /]K']:LB(f)()‘vm)'Z ( Z []:LB(QJP)(A’m)]2) dva(A,m)

j=—00
= F1Z2 x)-
O

Theorem 3.6. Let {Gf}jez be a scale discrete scaling function. For all f € LY (K) N
L2(K) such that Frp(f) € Li(HA{), we have:
(i) For almost all (x,t) € K,

f(l', t) = lim <f GJ ,a,Y, s> GJa Y, s(xD t) dma(y7 S) (330)

J—>00

(ii) For almost all (z,t) € K and all J € Z,
f(xvt) = /<f7 GJa,y, >GJa Y, a(m t) dma(% )
+30 [ )G0.0: 5100 0) dma.9)
j=J

Proof. (i) By (3.28) and (3.29) we obtain
(f,Gllay.s) Gha(zt) = fxa Gy, 5)T(, )G (2, 1).
Plancherel formula (2.3) gives
/ <f7 GJa,y s> GJa Y, s(x’t) dma(y7 S)

= Fro(f) A m) [FLp(GF)Am)] orm(x, t)dva (A, m).

The relation (3.30) can be obtained by using (3.25) and the dominated convergence
theorem.
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(ii) We have

/<f’c;(Ja,y7 >GJays($’t) dma(y78) =

J—1

/K Fes(Hum) [ 3 [Fs@)0m)]? | orm(@t) dra(rm)

j=—o00

Applyin remark 2.10 and (2.3), we get

[ UG GFagslot) dmal,)+ Y [ (¥ PG 0.0: 800 o (0) i (3.)
j=J

J—1 e
= /K]-'LB(f)(A,m) 3o [FeslehHm)” + >
j=—o00 7=

X oxm(z,t) dya(A,m)
- / Fro(f)0m) oxm(@.t) dra(Xm)
= f(z,t).

4. CALDERON’S REPRODUCING FORMULA

[Fra(gh) (A m)]®

In this section, we prove Calderén’s formula for the LB-wavelet packets transform. Let
us first prove the following proposition which we’ll use the prove our main result in this

section.

Proposition 4.1. Let {gf}jez be a LB-wavelet packet. For p,q € Z with p < q, we

consider the following functions M,, , and N, 4 defined by

q—

My q(z,t) = Z *gJ (z,t), (z,t) e K.

For all (\,m) € K :

Then we have
(a) M4 € L2 - (K).
(b) Npq € L2 2(K) N L2 (K).
(¢) FLp(Myq) = N&q'
(d) For all ( m) € K,

lim N, 4(A,m) = 1.

q—>+oo

(4.31)
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Proof. We apply the Holder’s inequality (2.9), we obtain then

g—1 L
B = 16 w0 g @ dma(an)
K —
J=p
g—1
0=a) [ 319} w0 g dma(e.)
]Kj:p

[

IN

(- q>§ ( /K |fLB<g;’><A,m>|4dva<A,m>)

0= W Fo () e 3 [ 1FLnlal O m) P ().

Taking into account that || F£5(g])llec.a < 195 11.a, We obtain

IMpgl3a < (—algf I ZIIFLB 9;)

< 00.

= (-9lg ||1aZ|IgJ

Jj=p

From (2.9) and Proposition 2.8, we have

Fre(Mp,q)(A,m)

Z Fro(gl *gl)(Am)

q—1

= > Fusle] )0 m) Fro(g)) O m)

=
q—1
= ) (FLelg))(\,m))? (4.32)
Jj=p
1 [ da
= \FLi(g)(ax, m)[*—
g Jryg
= NP,Q()Vm)ﬂ
The assertions (b) and (d) are immediate. O

Proposition 4.2. Let {gj }ijez be a LB-wavelet packet and let f € L2(K) and p,q € Z,
with p < q, consider

[

P (2,t) = / VP ()G, 0,9, 8)6 ay o (1) die(y, ). (4.33)
K

Jj=p

2

The function fzfq belongs to L2(K) and satisfies
P
pa =/ *a My,

Fre(fyy) = FLe(f)Npq.
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Proof. First, we have
[ G 09909 ,8) dma(ia )
= [ FeaOmirmot) [Fralaf ) m) dra(hsm).

Hence,

2w = [ Fus(Om) | S Fnla)0um)? | enne dirahm).
Applying (2.4) and (4.32), we get

P (@) = /K Fru(F) 0 m) FrpMy.g) () or (1) dya(Am)
]:Zé [.FLB(f) JT:LB(Mp,q)] (x,t).

Therefore,
;)q(x,t) = fxoq Mpg(z,t), Y(z,t) e K.

By the Proposition 4.1, f}, € L2(K), and

]:LB(pr:q) = ]:LB(f) Np,q' (4-34)

Theorem 4.3. The function f]fq defined by Proposition 4.2 satisfies

. P o
pl}rfnoo || p,q f||270¢ =0.
q——+0o0

Proof. By 2.3 and (4.34), we get

f5g = fllza = IFLp(fog) = Fro(f)l
= [IFes(f)A = Npg)ll-

The desired result follows then from (4.31) and the dominated convergence theorem. O
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