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LAGUERRE-BESSEL WAVELET PACKETS TRANSFORM

ABDELAALI DADES

Abstract. In this paper, the Laguerre-Bessel wavelet packets transform is defined
and studied. The scale discrete scaling function and the associated Plancherel and
inversion formulas are given and established. Furthermore, the Calderón reproducing
formula is given and proved for the proposed transform.

1. Introduction

Let Lp
\alpha (\BbbK ), 1 \leq p \leq \infty , denote the space of measurable functions f on \BbbK = \BbbR + \times \BbbR +

equipped with the following norm

\| f\| p,\alpha :=

\biggl[ \int 
\BbbK 
| f(x, t)| p dm\alpha (x, t)

\biggr] 1/p
< +\infty , if 1 \leq p <\infty ,

\| f\| \infty ,\alpha := \mathrm{e}\mathrm{s}\mathrm{s} \mathrm{s}\mathrm{u}\mathrm{p}
(x,t)\in \BbbK 

| f(x, t)| <\infty ,

where m\alpha is the weighted Lebesgue measure on \BbbK defined by

dm\alpha (x, t) =
x2\alpha +1t2\alpha 

\Gamma (\alpha + 1/2) \Gamma (\alpha + 1)
dxdt.

The Laguerre-Bessel transform \scrF LB of a function f is defined on L1
\alpha (\BbbK ) by

\scrF LB(f)(\lambda ,m) =

\int 
\BbbK 
\varphi \lambda ,m(x, t)f(x, t) dm\alpha (x, t), \forall (\lambda ,m) \in \widehat \BbbK = \BbbR + \times \BbbN .

The harmonic analysis associated with the Laguerre-Bessel transform is discussed and
studied in [11]. This analysis is generated by the two differential operators D1 and D2

defined on \BbbK by

D1 =
\partial 2

\partial t2
+

2\alpha 

t

\partial 

\partial t
, t \geq 0,

D2 =
\partial 2

\partial x2
+

2\alpha + 1

x

\partial 

\partial x
+ x2D1, x > 0.

In the same paper, the authors have extended this integral operator to the wavelet theory.
The basic properties and Calderón’s formula have been given and established. Nowadays,
the applications of wavelets are divers and large. Signal and image processing [2] as
well as biomedical engineering [3] and statistics [1] are some of these applications. We
refer the reader to [4, 5, 9, 10] for a detailed theory of wavelets and its applications. To
obtain a good frequency localization of the signal in a wavelet basis, it is much more
appropriate to use so-called wavelets packet. This new concept which was introduced by
R. Coifman, Y. Meyer, and M. V. Wickerhauser (see [6]) divide the frequency space into
several parts. Therefore, there is no redundant informations in the decomposed frequency
bands. Several works have been published recently dealing with the wavelet packets
associated with various integral transforms. We refer the reader to the following references
[8, 12, 13, 14, 15, 16, 17, 19, 20] for a very good understanding of this concept. The
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main objective of this work is to extend the notion of wavelets packet to the LB-wavelet
transform. In particular, we give a general construction allowing the development of
LB-wavelets packet. In our construction, we follow the same schemes as that given in
Trimèche’s book [18]. For other construction schemes we refer to [7].

This work is organized as follows: In the second section, we recall some results of
harmonic analysis associated with the LB-transform. Then we give our construction of
wavelet packets for the proposed transform. More specifically, we define the LB-wavelet
packet transform and we prove its Plancherel and inversion formulas. In the third section,
we introduce the scale discrete scaling function, then we give its properties. The last
section is devoted to Caldéron’s formula for the LB-wavelet packet.

2. The LB-wavelet packets Transform

In this section, we first recall some results of harmonic analysis associated with the LB-
transform. Then, we define the LB-wavelet packet transform. We prove then Plancherel
and inversion formulas for the proposed transform.

Definition 2.1. The Laguerre-Bessel transform \scrF LB is defined on L1
\alpha (\BbbK ) by

\scrF LB(f)(\lambda ,m) =

\int 
\BbbK 
\varphi \lambda ,m(x, t)f(x, t) dm\alpha (x, t), \forall (\lambda ,m) \in \widehat \BbbK . (2.1)

The function \varphi \lambda ,m is infinitely differentiable on \BbbR 2, even with respect to each variable
and we have

\mathrm{s}\mathrm{u}\mathrm{p}
(x,t)\in \BbbK 

| \varphi \lambda ,m(x, t)| = 1. (2.2)

The Laguerre transform satisfies the following properties [11]:
(1) Plancherel formula:\int 

\BbbK 
| f(x, t)| 2dm\alpha (x, t) =

\int 
\widehat \BbbK | \scrF LB(f)(\lambda ,m)| 2 d\gamma \alpha (\lambda ,m). (2.3)

(2) Inversion formula:

f(x, t) =

\int 
\widehat \BbbK \varphi \lambda ,m(x, t)\scrF LB(f)(\lambda ,m) d\gamma \alpha (\lambda ,m), a.e (x, t) \in \BbbK , (2.4)

where \gamma \alpha is the positive measure defined on \Gamma by\int 
\BbbK 
f(\lambda ,m)d\gamma \alpha (\lambda ,m) :=

1

22\alpha  - 1\Gamma (\alpha + 1/2)

\infty \sum 
m=0

L\alpha 
m(0)

\int \infty 

0

f(\lambda ,m)\lambda 3\alpha +1d\lambda .

Definition 2.2. The LB-translation operator associated with the operators D1 and D2

is defined by

T\alpha 
(x,t)f(y, s) :=

1

4\pi 

1\sum 
i,j=0

\int \pi 

0

f
\bigl( 
\Delta \theta (x, y), Y + ( - 1)it+ ( - 1)js

\bigr) 
d\theta with \alpha = 0, (2.5)

and

T\alpha 
(x,t)f(y, s) := b\alpha 

\int 
[0,\pi ]3

f (\Delta \theta (x, y),\Delta \xi (X,Y )) d\mu \alpha (\xi , \psi , \theta ) with \alpha > 0. (2.6)

For more properties about LB-translation operator, we refer to [11]. We’ll just mention
the necessary results that we’ll use to prove our main results in this paper.

Definition 2.3. The generalized convolution product of f, g \in S\ast (\BbbK ) is defined by

f \ast \alpha g(x, t) =
\int 
\BbbK 
T\alpha 
(x,t)(f)(s, y)g(s, y)dm\alpha (s, y), \forall (x, t) \in \BbbK . (2.7)
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Proposition 2.4. i) Let f \in L1
\alpha (\BbbK ). Then for all (x, t) \in \BbbK and (\lambda ,m) \in \widehat \BbbK , we

have

\scrF LB

\Bigl( 
T\alpha 
(x,t)f

\Bigr) 
(\lambda ,m) = \varphi \lambda ,m(x, t)\scrF LB(f)(\lambda ,m). (2.8)

ii) For all f and g in L1
\alpha (\BbbK ), we have

\scrF LB(f \ast \alpha g)(\lambda ,m) = \scrF LB(f)(\lambda ,m)\scrF LB(g)(\lambda ,m). (2.9)

By product formula (2.9), we have this following proposition:

Proposition 2.5. For all f, g \in L2
\alpha (\BbbK ), we have the identity\int 

\BbbK 
| f \ast \alpha g(x)| 2 dm\alpha (x, t) =

\int 
\widehat \BbbK | \scrF LB(f)(\lambda )| 2| \scrF LB(g)(\lambda )| 2 d\gamma \alpha (\lambda ,m). (2.10)

Definition 2.6. Let g \in L2
\alpha (\BbbK ), We say that g is a LB-wavelet on \BbbK if the following

admissibility condition holds

0 < Cg =

\int +\infty 

0

| \scrF LB(g)(\lambda ,m)| 2 d\lambda 
\lambda 
<\infty . (2.11)

Let a \in ]0,+\infty [, we put

ga (x, t) =
1

a3\alpha +2
g

\biggl( 
x\surd 
a
,
t

a

\biggr) 
, (2.12)

this function satisfies the following proposition:

Proposition 2.7. (i) For g \in L2
\alpha (\BbbK ), the function ga belongs to L2

\alpha (\BbbK ) and we have

\| ga\| 2,\alpha =
1

a
3
2\alpha +

7
4

\| g\| 2,\alpha . (2.13)

(ii) For g \in L2
\alpha (\BbbK ), we have

\scrF LB (ga) (\lambda ,m) = \scrF LB(g) (a\lambda ,m) , (\lambda ,m) \in \widehat \BbbK . (2.14)

Proof. (i) A simple change of variable gives the desired result.
(ii) See [11].

\square 

Proposition 2.8. (i) Let j \in \BbbZ , the function

(\lambda ,m) \mapsto  - \rightarrow 

\Biggl( 
1

Cg

\int rj

rj+1

| \scrF LB(g)(a\lambda ,m)| 2 da
a

\Biggr) 1
2

, (2.15)

belongs to L2
\alpha (
\widehat \BbbK ).

(ii) There exist a function gpj \in L2
\alpha (\BbbK ) such that

\scrF LB(g
p
j )(a\lambda ,m) =

1

Cg

\int rj

rj+1

| \scrF LB(g)(a\lambda ,m)| 2 da
a
. (2.16)
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Proof. By using the Fubini-Tonelli’s theorem we get

1

Cg

\int 
\widehat \BbbK 
\Biggl[ \int rj

rj+1

| \scrF LB(g)(a\lambda ,m)| 2 da
a

\Biggr] 
d\gamma \alpha (\lambda ,m)

=
1

Cg

\int rj

rj+1

\biggl[ \int 
\widehat \BbbK | \scrF LB (ga) (\lambda ,m)| 2 d\gamma \alpha (\lambda ,m)

\biggr] 
da

a

=
1

Cg

\int rj

rj+1

\| \scrF LB (ga)\| 2\gamma ,2
da

a

=
1

Cg

\int rj

rj+1

\| ga\| 22,\alpha 
da

a

=
\| g\| 22,\alpha 
Cg

\int rj

rj+1

da

a3\alpha +9/2

=
\| g\| 22,\alpha \bigl( 

3\alpha + 7
2

\bigr) 
Cg

\left[  1

r
3\alpha + 9

2
j+1

 - 1

r
3a+ 9

2
j

\right]  <\infty .

The result is proved. \square 

Definition 2.9. The sequence
\bigl\{ 
gpj
\bigr\} 
j\in \BbbZ is called LB-wavelet packet.

Remark 2.10. It is easy to check that

0 \leqslant \scrF LB

\bigl( 
gpj
\bigr) 
(\lambda ,m) \leqslant 1 and

+\infty \sum 
j= - \infty 

\bigl[ 
\scrF LB

\bigl( 
gpj
\bigr) 
(\lambda ,m)

\bigr] 2
= 1. (2.17)

Now, we consider the family of wavelet packet defined as follow:

gpj,a,x,t(y, s) = T\alpha 
(x,t)g

p
j (y, s). (2.18)

Definition 2.11. Let
\bigl\{ 
gpj
\bigr\} 
j\in \BbbZ be a LB-wavelet packet. The LB-wavelet packet transform

\Psi p
g is defined for a function f in L2

\alpha (\BbbK ) by

\Psi p
gf(j, a, x, t) =

\int 
\BbbK 
f(y, s)gpj,a,x,t(y, s)dm\alpha (y, s)

= gpj \ast \alpha f.
(2.19)

Theorem 2.12. Let f \in L2
\alpha (\BbbK ), we have

\int 
\BbbK 
| f(x, t) | 2 dm\alpha (x, t) =

+\infty \sum 
j= - \infty 

\int 
\BbbK 

\bigm| \bigm| \Psi p
gf(j, a, y, s)

\bigm| \bigm| 2 dm\alpha (y, s). (2.20)

Proof. By the Proposition 2.4, we have\int 
\BbbK 

\bigm| \bigm| \Psi p
gf(j, a, y, s)

\bigm| \bigm| 2 dm\alpha (y, s) =

\int 
\BbbK 

\bigm| \bigm| gpj \ast \alpha f
\bigm| \bigm| 2 dm\alpha (y, s)

=

\int 
\widehat \BbbK 
\bigm| \bigm| \scrF LB(g

p
j )(\lambda ,m)

\bigm| \bigm| 2 | \scrF LB(f)(\lambda ,m)| 2 d\gamma \alpha (\lambda ,m).
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Now applying Fubini-Tonelli ’s theorem and remark 2.10, we get
+\infty \sum 

j= - \infty 

\int 
\BbbK 

\bigm| \bigm| \Psi p
gf(j, a, y, s)

\bigm| \bigm| 2 d\mu \alpha (y, s)

=

\int 
\widehat \BbbK 

+\infty \sum 
j= - \infty 

\bigm| \bigm| \scrF LB(g
p
j )(\lambda ,m)

\bigm| \bigm| 2 | \scrF LBf(\lambda ,m)| 2 d\gamma \alpha (\lambda ,m)

=

\int 
\widehat \BbbK | \scrF LB(f)(\lambda ,m)| 2 d\gamma \alpha (\lambda ,m)

=

\int 
\BbbK 
| f(x, t)| 2dm\alpha (x, t).

The proof is complete. \square 

Theorem 2.13. Let
\bigl\{ 
gpj
\bigr\} 
j\in \BbbZ be a LB-wavelet packet. For all f \in L2

\alpha (\BbbK ), such that

\scrF LB(f) \in L1
\alpha (
\widehat \BbbK ) we have:

f(y, s) =

+\infty \sum 
j= - \infty 

\int 
\BbbK 
\Psi p

jf(j, a, x, t)g
p
j,a,x,t(y, s) d\mu \alpha (x, t). (2.21)

Proof. Let j \in \BbbZ and let f \in L2
\alpha (\BbbK ) such that \scrF LB(f) \in L1

\alpha (
\widehat \BbbK ), we consider the function

\Upsilon (j, a, y, s) =

\int 
\BbbK 
\Psi p

jf(j, a, x, t)g
p
j,a,x,t(y, s) d\mu \alpha (x, t). (2.22)

Relations (2.3), (2.8) and (2.9) gives as

\Upsilon (j, a, y, s) =

\int 
\widehat \BbbK \scrF LB

\bigl( 
gpj
\bigr) 
(\lambda ,m)\scrF LB(f)(\lambda ,m)\varphi \lambda ,m(x, t)\scrF LB

\bigl( 
gpj
\bigr) 
(\lambda ,m)d\gamma \alpha (\lambda ,m)

=

\int 
\widehat \BbbK \scrF LB (f) (\lambda ,m)\varphi \lambda ,m(x, t)

\bigl[ 
\scrF LB(g

p
j )(\lambda ,m)

\bigr] 2
d\gamma \alpha (\lambda ,m).

Using now (2.2), we obtain\sum 
j

\Upsilon (j, a, y, s) \leq 
+\infty \sum 

j= - \infty 

\int 
\widehat \BbbK | \scrF LB(f)(\lambda ,m)| | \varphi \lambda ,m(x, t) | 

\bigl[ 
\scrF LB

\bigl( 
gPj
\bigr) 
(\lambda ,m)

\bigr] 2
d\gamma \alpha (\lambda ,m)

=

\int 
\widehat \BbbK | \scrF LB(f)(\lambda ,m)| 

\sum 
j

\bigl[ 
\scrF LB

\bigl( 
gpj
\bigr) 
(\lambda ,m)

\bigr] 2
d\gamma \alpha (\lambda ,m)

=

\int 
\widehat \BbbK | \scrF LB(f)(\lambda ,m)| d\gamma \alpha (\lambda ,m)

= \| \scrF LBf\| 1,\gamma \alpha 

<\infty .

So,

\sum 
j

\Upsilon (j, a, y, s) =

\int 
\widehat \BbbK \scrF LB(f)(\lambda ,m)\varphi \lambda ,m(x, t)

\left(  \sum 
j

\bigl[ 
\scrF LB

\bigl( 
gpj
\bigr) 
(\lambda ,m)

\bigr] 2\right)  d\gamma \alpha (\lambda ,m)

=

\int 
\widehat \BbbK \scrF LB(f)(\lambda ,m)\varphi \lambda ,m(x, t)d\gamma \alpha (\lambda ,m)

= f(x, t).

The result is then proved. \square 
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3. Scale discrete scaling function

In the following section, we define and study the scale discrete scaling function associated
to the LB-wavelet transform. We give the associated inversion and Plancherel formulas.
As the result given in the previous section, we have the following proposition.

Proposition 3.1. Let
\bigl\{ 
gPj
\bigr\} 
j\in \BbbZ be a LB-wavelet packet. The following points are holds:

(i) For all J \in \BbbZ ,

J - 1\sum 
j= - \infty 

\bigl( 
\scrF LB(g

P
j )(\lambda ,m)

\bigr) 2
=

1

Cg

\int \infty 

rJ

| \scrF LB(g)(a\lambda ,m) | 2 da
a
. (3.23)

(ii) For all J \in \BbbZ , there exists a unique function GP
J \in L2

\alpha (\BbbK ) satisfying

\scrF LB(G
P
J )(\lambda ,m) =

\left(  J - 1\sum 
j= - \infty 

\bigl( 
(\scrF LB(g

P
j )(\lambda ,m)

\bigr) 2\right)  1
2

, (\lambda ,m) \in \widehat \BbbK . (3.24)

Proof. The proof is the same as Proposition 2.8. \square 

Definition 3.2. The sequence
\bigl\{ 
GP

J

\bigr\} 
J\in \BbbZ is called a scale discrete scaling function.

Remark 3.3. From (3.23) and (3.24) we have \forall J \in \BbbZ ,

0 \leq \scrF LB(G
P
J )(\lambda ,m) \leq 1 ; \mathrm{l}\mathrm{i}\mathrm{m}

J - \rightarrow \infty 
\scrF LB(G

P
J )(\lambda ,m) = 1; (3.25)

\bigl( 
\scrF LB(g

P
J )(\lambda ,m)

\bigr) 2
=
\bigl( 
\scrF LB(G

P
J+1)(\lambda ,m)

\bigr) 2  - \bigl( \scrF LB(G
P
J )(\lambda ,m)

\bigr) 2
; (3.26)

\infty \sum 
j= - \infty 

\Bigl[ \bigl( 
\scrF LB(G

P
j+1)(\lambda ,m)

\bigr) 2  - \bigl( \scrF LB(G
P
j )(\lambda ,m)

\bigr) 2\Bigr] 
= 1. (3.27)

Theorem 3.4. Let
\bigl\{ 
GP

J

\bigr\} 
J\in \BbbZ be a discrete scaling function. Then \forall f \in L2

\alpha (\BbbK ) we have
the Plancherel formula\int 

\BbbK 
| f(y, s)| 2 dm\alpha (y, s) = \mathrm{l}\mathrm{i}\mathrm{m}

J - \rightarrow \infty 

\int \infty 

1

| \langle f,GP
J,a,x,t\rangle | 2 dm\alpha (x, t),

where

GP
J,a,x,t(y, s) = T\alpha 

(x,t)G
P
J (y, s), (x, t) \in \BbbK . (3.28)

Proof. We have

\langle f,GP
J,a,x,t\rangle =

\int 
\BbbK 
f(y, s)T\alpha 

(x,t)G
P
J (y, s) dm\alpha (y, s) = f \ast \alpha GP

J (x, t). (3.29)

Theorem 2.12 gives then the desired result. \square 

Theorem 3.5. Let f \in L2
\alpha (\BbbK ). For all J \in \BbbZ we have\int 

\BbbK 
| f(y, s)| 2 dm\alpha (y, s)

=

\int 
\BbbK 
| \langle f,GP

j,a,x,t\rangle | 2 dm\alpha (x, t) +

\infty \sum 
j=J

\int 
\BbbK 
| (\Psi P

g f)(j, a, x, t))| 2 dm\alpha (x, t).
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Proof. From (2.3), (3.24) and (3.29) we have\int 
\BbbK 
| \langle f,GP

j,a,x,t\rangle | 2 dm\alpha (x, t)

=

\int 
\widehat \BbbK | \scrF LB(f)(\lambda ,m)| 2

\left(  J - 1\sum 
j= - \infty 

\bigl[ 
\scrF LB(g

P
j )(\lambda ,m)

\bigr] 2\right)  d\gamma \alpha (\lambda ,m).

Now, Fubini-Tonelli’s theorem implies

\infty \sum 
j=J

\int 
\BbbK 
| (\Psi P

g f)(j, a, x, t))| 2 dm\alpha (x, t)

=

\int 
\widehat \BbbK | \scrF LB(f)(\lambda ,m)| 2

\left(  \infty \sum 
j=J

\bigl[ 
\scrF LB(g

P
j )(\lambda ,m)

\bigr] 2\right)  d\gamma \alpha (\lambda ,m).

Therefore,\int 
\BbbK 
| \langle f,GP

j,a,x,t\rangle | 2 dm\alpha (x, t) +

\infty \sum 
j=J

\int 
\BbbK 
| (\Psi P

g f)(j, a, x, t))| 2 dm\alpha (x, t)

=

\int 
\widehat \BbbK | \scrF LB(f)(\lambda ,m)| 2

\left(  \infty \sum 
j= - \infty 

\bigl[ 
\scrF LB(g

P
j )(\lambda ,m)

\bigr] 2\right)  d\gamma \alpha (\lambda ,m)

= \| f\| 2L2
\alpha (\BbbK ).

\square 

Theorem 3.6. Let
\bigl\{ 
GP

j

\bigr\} 
j\in \BbbZ be a scale discrete scaling function. For all f \in L1

\alpha (\BbbK ) \cap 
L2
\alpha (\BbbK ) such that \scrF LB(f) \in L1

\alpha (
\widehat \BbbK ), we have:

(i) For almost all (x, t) \in \BbbK ,

f(x, t) = \mathrm{l}\mathrm{i}\mathrm{m}
J - \rightarrow \infty 

\int 
\BbbK 
\langle f,GP

J,a,y,s\rangle GP
J,a,y,s(x, t) dm\alpha (y, s). (3.30)

(ii) For almost all (x, t) \in \BbbK and all J \in \BbbZ ,

f(x, t) =

\int 
\BbbK 
\langle f,GP

J,a,y,s\rangle GP
J,a,y,s(x, t) dm\alpha (y, s)

+

\infty \sum 
j=J

\int 
\widehat \BbbK (\Psi 

P
g f)(j, a, y, s)g

P
j,a,y,s(x) dm\alpha (y, s).

Proof. (i) By (3.28) and (3.29) we obtain

\langle f,GP
j,a,y,s\rangle GP

J,s(x, t) = f \ast \alpha GP
J (y, s)T

\alpha 
(y,s)G

p
j (x, t).

Plancherel formula (2.3) gives\int 
\BbbK 
\langle f,GP

J,a,y,s\rangle GP
J,a,y,s(x, t) dm\alpha (y, s)

= \scrF LB(f)(\lambda ,m)
\bigl[ 
\scrF LB(G

P
J )(\lambda ,m)

\bigr] 2
\varphi \lambda ,m(x, t)d\gamma \alpha (\lambda ,m).

The relation (3.30) can be obtained by using (3.25) and the dominated convergence
theorem.
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(ii) We have\int 
\BbbK 
\langle f,GP

J,a,y,s\rangle GP
J,a,y,s(x, t) dm\alpha (y, s) =\int 

\BbbK 
\scrF LB(f)(\lambda ,m)

\left(  J - 1\sum 
j= - \infty 

\bigl[ 
\scrF LB(G

P
J )(\lambda ,m)

\bigr] 2\right)  \varphi \lambda ,m(x, t) d\gamma \alpha (\lambda ,m)

Applyin remark 2.10 and (2.3), we get\int 
\BbbK 
\langle f,GP

J,a,y,s\rangle GP
J,a,y,s(x, t) dm\alpha (y, s)+

\infty \sum 
j=J

\int 
\widehat \BbbK (\Psi 

P
g f)(j, a, y, s)g

P
j,a,y,s(x) dm\alpha (y, s)

=

\int 
\BbbK 
\scrF LB(f)(\lambda ,m)

\left(  J - 1\sum 
j= - \infty 

\bigl[ 
\scrF LB(g

P
J )(\lambda ,m)

\bigr] 2
+

\infty \sum 
j=J

\bigl[ 
\scrF LB(g

P
J )(\lambda ,m)

\bigr] 2\right)  
\times \varphi \lambda ,m(x, t) d\gamma \alpha (\lambda ,m)

=

\int 
\Gamma 

\scrF LB(f)(\lambda ,m) \varphi \lambda ,m(x, t) d\gamma \alpha (\lambda ,m)

= f(x, t).

\square 

4. Calderón’s reproducing formula

In this section, we prove Calderón’s formula for the LB-wavelet packets transform. Let
us first prove the following proposition which we’ll use the prove our main result in this
section.

Proposition 4.1. Let \{ gPj \} j\in \BbbZ be a LB-wavelet packet. For p, q \in \BbbZ with p < q, we
consider the following functions \scrM p,q and \scrN p,q defined by

\scrM p,q(x, t) =

q - 1\sum 
j=p

gPj \ast gPj (x, t), (x, t) \in \BbbK .

For all (\lambda ,m) \in \widehat \BbbK :

\scrN p,q(\lambda ,m) =
1

Cg

\int rp

rq

| \scrF LB(g)(a\lambda ,m)| 2 da
a
.

Then we have

(a) \scrM p,q \in L2
\alpha (\BbbK ).

(b) \scrN p,q \in L2
\alpha (\BbbK ) \cap L\infty 

\alpha (\BbbK ).
(c) \scrF LB(\scrM p,q) = \scrN p,q.
(d) For all (\lambda ,m) \in \widehat \BbbK ,

\mathrm{l}\mathrm{i}\mathrm{m}
p\rightarrow  - \infty 
q\rightarrow +\infty 

\scrN p,q(\lambda ,m) = 1. (4.31)
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Proof. We apply the Hölder’s inequality (2.9), we obtain then

\| \scrM p,q\| 22 =

\int 
\BbbK 
| 
q - 1\sum 
j=p

gPj \ast \alpha gPj (x)| 
2 dm\alpha (x, t)

\leq (p - q)

\int 
\BbbK 

q - 1\sum 
j=p

| gPj \ast \alpha gPj | 
2 dm\alpha (x, t)

= (p - q)

q - 1\sum 
j=p

\biggl( \int 
\widehat \BbbK | \scrF LB(g

P
j )(\lambda ,m)| 4d\gamma \alpha (\lambda ,m)

\biggr) 

= (p - q)\| \scrF LB(g
P
j )\| 2\infty ,\alpha 

q - 1\sum 
j=p

\int 
\widehat \BbbK | \scrF LB(g

P
j )(\lambda ,m)| 2d\gamma \alpha (\lambda ,m).

Taking into account that \| \scrF LB(g
P
j )\| \infty ,\alpha \leq \| gPj \| 1,\alpha , we obtain

\| \scrM p,q\| 22,\alpha \leq (p - q)\| gPj \| 21
q - 1\sum 
j=p

\| \scrF LB(g
P
j )\| 22,\alpha 

= (p - q)\| gPj \| 21,\alpha 
q - 1\sum 
j=p

\| gPj \| 22,\alpha <\infty .

From (2.9) and Proposition 2.8, we have

\scrF LB(\scrM p,q)(\lambda ,m) =

q - 1\sum 
j=p

\scrF LB(g
P
j \ast gPj )(\lambda ,m)

=

q - 1\sum 
j=p

\scrF LB(g
P
j )(\lambda ,m)\scrF LB(gPj )(\lambda ,m)

=

q - 1\sum 
j=p

(\scrF LB(g
P
j )(\lambda ,m))2 (4.32)

=
1

Cg

\int rp

rq

| \scrF LB(g)(a\lambda ,m)| 2 da
a

= \scrN p,q(\lambda ,m),

The assertions (b) and (d) are immediate. \square 

Proposition 4.2. Let \{ gPj \} j\in \BbbZ be a LB-wavelet packet and let f \in L2
\alpha (\BbbK ) and p, q \in \BbbZ ,

with p < q, consider

fPp,q(x, t) =

q - 1\sum 
j=p

\int 
\BbbK 
\Psi P

g (f)(j, a, y, s)g
P
j,a,y,s(x, t) dm\alpha (y, s). (4.33)

The function fPp,q belongs to L2
\alpha (\BbbK ) and satisfies

fPp,q = f \ast \alpha \scrM p,q,

\scrF LB(f
P
p,q) = \scrF LB(f)\scrN p,q.
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Proof. First, we have\int 
\BbbK 
\Psi P

g (f)(j, a, y, s)g
P
j,a,y,s(x, t) dm\alpha (j, a, y, s)

=

\int 
\widehat \BbbK \scrF LB(f)(\lambda ,m)\varphi \lambda ,m(x, t)

\bigl[ 
\scrF LB(g

P
j )(\lambda ,m)

\bigr] 2
d\gamma \alpha (\lambda ,m).

Hence,

fPp,q(x, t) =

\int 
\Gamma 

\scrF LB(f)(\lambda ,m)

\left(  q - 1\sum 
j=p

(\scrF LB(g
P
j )(\lambda ,m))2

\right)  \varphi \lambda ,m(x, t)d\gamma \alpha (\lambda ,m).

Applying (2.4) and (4.32), we get

fPp,q(x, t) =

\int 
\widehat \BbbK \scrF LB(f)(\lambda ,m) \scrF LB(\scrM p,q)(\lambda ,m) \varphi \lambda ,m(x, t) d\gamma \alpha (\lambda ,m)

= \scrF  - 1
LB [\scrF LB(f) \scrF LB(\scrM p,q)] (x, t).

Therefore,
fPp,q(x, t) = f \ast \alpha \scrM p,q(x, t), \forall (x, t) \in \BbbK .

By the Proposition 4.1, fPp,q \in L2
\alpha (\BbbK ), and

\scrF LB(f
P
p,q) = \scrF LB(f) \scrN p,q. (4.34)

\square 

Theorem 4.3. The function fPp,q defined by Proposition 4.2 satisfies

\mathrm{l}\mathrm{i}\mathrm{m}
p\rightarrow  - \infty 
q\rightarrow +\infty 

\| fPp,q  - f\| 2,\alpha = 0.

Proof. By 2.3 and (4.34), we get

\| fPp,q  - f\| 2,\alpha = \| \scrF LB(f
P
p,q) - \scrF LB(f)\| 

= \| \scrF LB(f)(1 - \scrN p,q)\| .
The desired result follows then from (4.31) and the dominated convergence theorem. \square 
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