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NEW DEFINITION OF \scrN \alpha 
F -SUMUDU CONFORMABLE TRANSFORM

BAHLOUL RACHID AND RACHAD HOUSSAME

Abstract. Using the new definition of the \scrN \alpha 
F -derivative function introduced by

Juan E. Nápoles Valdés and al. (2020), we provide a new definition for the \scrN \alpha 
F -Sumudu

transform, \scrN \alpha 
F -Sumudu conformable transform. Additionally, we establish several

important results related to these new transforms. We also give a new definition of
convolution related to this \scrN \alpha 

F -derivative and we show that it is commutative and
associative.

1. Introduction

The Sumudu transform is a fundamental tool in mathematical analysis, widely used
for solving differential equations, control theory, signal processing, and various areas of
physics and engineering. However, in recent years, the classical Laplace transform has
been extended to accommodate more complex behaviors in systems, particularly those
involving memory effects, fractional-order dynamics, and nonlocal operators. One such
extension is the conformable fractional Laplace transform, which has proven to be an
effective generalization for analyzing systems with fractional dynamics and anomalous
diffusion. The conformable fractional Sumudu transform introduces additional flexibility
by incorporating a fractional parameter \alpha and a modulating function F (t, \alpha ), providing a
broader framework for solving problems that go beyond classical integer-order systems.
This generalization retains many of the essential properties of the classical Laplace
transform while extending its applicability to fractional calculus, which plays a critical
role in modeling phenomena such as viscoelasticity, fluid dynamics, and complex networks.
In this article, we examine a number of findings from the conformable fractional Laplace
transform inthis article. Within the framework of this novel transform, the properties
and theorems offered crucial tools of managing integrals, convolutions and differential
equations of fractional order. By extending these classical results into the realm of
conformable fractional calculus, this work provides a comprehensive overview of the
capabilities of the conformable fractional Laplace transform. The results presented not
only generalize

classical Sumudu theory but also provide powerful tools for researchers and engineers
working with systems characterized by fractional dynamics. This study serves as a
foundation for further explorations into the application of conformable fractional calculus
to real-world problems where traditional integer-order models are insufficient to capture
complex behaviors.

The paper is organized as follows: Section 2 provides definitions and preliminary
results, including a review of the \scrN \alpha 

F -derivative and its properties. Section 3 presents the
main results concerning the Sumudu transform of exponential functions and integrals. In
Section 4, we presents the main results concerning the conformable Sumudu transform.
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2. Basic notions

Definition 2.1. [1] The function f is \scrN \alpha 
F -derivative at t if the quotient

f(t+ h
F (t,\alpha ) ) - f(t)

h

has a limit when h tends to 0. In this case, the limit is denoted

\scrN \alpha 
F f(t) := \mathrm{l}\mathrm{i}\mathrm{m}

h\rightarrow 0

f(t+ h
F (t,\alpha ) ) - f(t)

h
,

with \alpha \in (0, 1], F (t, \alpha ) \not = 0 , for all t \in [0,+\infty [.

Definition 2.2. Let 0 < \alpha \leq 1 and f : [0,+\infty [\rightarrow \BbbR .
(1) We say that f is \scrN \alpha 

F -differentiable on [0,+\infty [ if f is \scrN \alpha 
F -differentiable at every

point of [0,+\infty [.
(2) We say that f is n times \scrN \alpha 

F -differentiable on [0,+\infty [ if f is continuous, \forall j \in 
\{ 0, ...n\} \scrN (j\alpha )

F f(t) = \scrN \alpha 
F (\scrN \alpha 

F ...(\scrN \alpha 
F (f)))(t), j times, exist for all t \in ]0,+\infty [ and

\scrN (j\alpha )
F f(0) = \mathrm{l}\mathrm{i}\mathrm{m}t\rightarrow 0+ \scrN (j\alpha )

F f(t) exists.

Theorem 2.3. [1] Let \alpha be in (0, 1] and f, g : [0,+\infty ) \rightarrow \BbbR \scrN \alpha 
F -differentiable. Then for

all t > 0

(1) \scrN \alpha 
F (af + bg)(t) = a\scrN \alpha 

F (f)(t) + b\scrN \alpha 
F (g)(t), a, b \in \BbbR .

(2) \scrN \alpha 
F (\lambda ) = 0, \lambda \in \BbbR .

(3) \scrN \alpha 
F (fg)(t) = \scrN \alpha 

F (f)(t)g(t) + f(t)\scrN \alpha 
F (g)(t).

(4) \scrN \alpha 
F ( fg )(t) =

g(t)\scrN \alpha 
F (f)(t) - f(t)\scrN \alpha 

F (g)(t)
g2(t) .

(5) If, in addition, f is differentiable then \scrN \alpha 
F (f)(t) = f \prime (t)

F (t,\alpha ) .

Example 2.4. :
Let f and F (t, \alpha ) be two real functions defined on [0,+\infty [ by f(t) = t3 + 7

2 t+ 2t and
F (t, \alpha ) = \alpha (t+ 2), where \alpha \in (0, 1]. Then

\scrN \alpha 
F f(t) :=

3t+ 1

\alpha 

for all t > 0.

Definition 2.5. (\scrN \alpha 
F -integral)

Let f be a real function taking its values in a segment [0, t] and \alpha \in (0, 1], then the
\scrN \alpha 

F -integral of f on [0, t], defined and denoted

\scrI \alpha 
F f(t) =

\int t

0

F (\nu , \alpha )f(\nu )d\nu , t \in [0,+\infty [.

Example 2.6. Let F (t, \alpha ) = \alpha t+ 3. Then

\scrI \alpha 
F (e

 - t) =  - \alpha te - t  - (3 + \alpha )e - t + 3 + \alpha .

Lemma 2.7. [1] Let us consider \alpha \in (0, 1] and the continuous function f : [0,+\infty ) \rightarrow \BbbR .
Then, for all t \in (0,+\infty )

\scrN \alpha 
F (\scrI \alpha 

F (f))(t) = f(t).

Example 2.8. Let F be a function defined by F (t, \alpha ) = \alpha t+ 3. Then by Example 2.6
and Theorem 2.3

\scrN \alpha 
F (\scrI \alpha 

F (e
 - t)) =

[ - \alpha te - t  - (3 + \alpha )e - t + 3 + \alpha ]\prime 

\alpha t+ 3
= e - t.
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Lemma 2.9. [1] Let us consider \alpha \in (0, 1] and the \scrN \alpha 
F -differentiable function f :

[0,+\infty ) \rightarrow \BbbR . Then, for all t \in (0,+\infty )

\scrI \alpha 
F (\scrN \alpha 

F f)(t) = f(t) - f(0).

Consider the following continuous function F (t, \alpha ) such that F (t, \alpha ) > 0 for all t > 0
and G\alpha (t) its primitive function verifies G\alpha (0) = 0 and \mathrm{l}\mathrm{i}\mathrm{m}t\rightarrow +\infty G\alpha (t) = +\infty , where
0 < \alpha \leq 1. For example

F (t, \alpha ) = 8\alpha t+ 2 and G\alpha (t) = 4\alpha t2 + 2t.

Now, we will present some results and proofs of \scrN \alpha 
F -Sumudu transform.

3. \scrN \alpha 
F -Sumudu transform

Definition 3.1. Across the subsequent collection of functions:

A\alpha 
F = \{ f(t) : \exists k, r1, r2, | f(t)| < ke

| G\alpha (t)| 
rj ; if G\alpha (t) \in ( - 1)j \times [0,+\infty ), j = 1, 2\} 

The definition of the \scrN \alpha 
F -Sumudu transform of f is

\scrS \alpha 
F \{ f(t)\} (u) =

1

u

\int \infty 

0

e - 
1
uG\alpha (t)f(t)F (t, \alpha )dt. (3.1)

assuming the integral converges .

Theorem 3.2. Let \mu , k, \alpha \in \BbbR and 0 < \alpha \leq 1. Then we have:

(i) \scrS \alpha 
F [k] = k.

(ii) \scrS \alpha 
F

\Bigl[ 
e\mu (G\alpha (t))

\Bigr] 
=

1

1 - \mu u
, u >

1

\mu 
.

(iii) \scrS \alpha 
F [\mathrm{s}\mathrm{i}\mathrm{n} (\mu (G\alpha (t)))] =

\mu u

1 + \mu 2u2
, u >

1

| \mu | 
.

(iv) \scrS \alpha 
F [\mathrm{c}\mathrm{o}\mathrm{s} (\mu (G\alpha (t)))] =

1

1 + \mu 2u2
, u >

1

| \mu | 
.

Proof. Follows by applying Definition 3.1 and integrating by parts. \square 

Theorem 3.3. Consider the \scrN \alpha 
F -differentiable function f and \alpha \in (0, 1]. Then

\scrS \alpha 
F (\scrN \alpha 

F (f(t)))(u) =
\scrS \alpha 
F (f(t))(u)

u
 - f(0)

u
, u > 0.

Proof. Let u > 0.

\scrS \alpha 
F (\scrN \alpha 

F f(t))(u) =
1

u

\int \infty 

0

e - 
1
uG\alpha (t)f \prime (t)dt.

Through part-by-part integration, we have:\int \infty 

0

e - 
1
uG\alpha (t)f \prime (t)dt =  - f(0) +

1

u

\int \infty 

0

e - 
1
uG\alpha (t)f(t)F (t, \alpha )dt

then
\scrS \alpha 
F (\scrN \alpha 

F (f(t)))(u) =
\scrS \alpha 
F (f(t))(u)

u
 - f(0)

u
.

\square 

Example 3.4. Consider F (t, \alpha ) = \alpha ,G\alpha (t) = \alpha t and f(t) = t2. We have

\scrS \alpha 
F (t

2)(u) =
2

\alpha 
u2

and
\scrS \alpha 
F (\scrN \alpha 

F (t2)(u) =
2

\alpha 
u
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thus

\scrS \alpha 
F (\scrN \alpha 

F (f(t)))(u) =
\scrS \alpha 
F (f(t))(u)

u
 - f(t)

u
.

Theorem 3.5. Consider the continuous function f defined on [0,+\infty ) and 0 < \alpha \leq 1.

\scrS \alpha 
F (\scrI \alpha 

F (f(t)))(u) = u \scrS \alpha 
F (f(t))(u), u > 0.

Proof. Let u > 0. By Theorem 2.7

\scrS \alpha 
F (\scrN \alpha 

F \scrI \alpha 
F (f(t))(u) = \scrS \alpha 

F (f(t))(u)

and by Theorem 3.3

\scrS \alpha 
F (\scrN \alpha 

F \scrI \alpha 
F (f(t)))(u) =

\scrS \alpha 
F (\scrI \alpha 

F f(t))(u)

u
 - \scrI \alpha 

F f(0)

u
=

\scrS \alpha 
F (\scrI \alpha 

F f(t))(u)

u

thus
\scrS \alpha 
F (\scrI \alpha 

F (f(t)))(u) = u \scrS \alpha 
F (f(t))(u).

\square 

Theorem 3.6. Consider two differentiable functions G\alpha 
1 (t) and G\alpha 

2 (t) such that G\prime \alpha 
1 (t) =

F1(t, \alpha ) and G\prime \alpha 
2 (t) = F2(t, \alpha ). Then

\scrS \alpha 
F1+F2

(f(t))(s) = \scrS \alpha 
F1
(e - sG\alpha 

2 (t)f(t))(s) + \scrS \alpha 
F2
(e - sG\alpha 

1 (t)f(t))(s).

where \alpha \in (0, 1].

Proof. We have

\scrS \alpha 
F1+F2

(f(t))(u) =
1

u

\int \infty 

0

e - 
1
u (G\alpha 

1 (t)+G\alpha 
2 (t))f(t)(F1(t, \alpha ) + F2(t, \alpha ))dt

=
1

u

\int \infty 

0

e - 
1
uG\alpha 

1 (t)(e - 
1
uG\alpha 

2 (t)f(t))F1(t, \alpha )dt+
1

u

\int \infty 

0

e - 
1
uG\alpha 

2 (t)(e - 
1
uG\alpha 

1 (t)f(t))F2(t, \alpha )dt

= \scrS \alpha 
F1
(e - 

1
uG\alpha 

2 (t)f(t))(u) + \scrS \alpha 
F2
(e - 

1
uG\alpha 

1 (t)f(t))(u).

\square 

Theorem 3.7. Let n \geq 2 and i \in \{ 1, 2, ..., n\} . Asume that G\alpha 
i (t) derivables functions,

we have

\scrS \alpha 
(
\sum n

i=1 Fi)
(f(t))(s) =

n\sum 
i=1

\scrS \alpha 
Fi
(e - s[

\sum n
j=1,j \not =i G

\alpha 
j (t)]f(t))(s)

where \alpha \in (0, 1] and G\prime \alpha 
i (t) = Fi(t, \alpha ).

Proof. demonstration by recurrence.
For n = 2, see Theorem 3.6.
suppose that

\scrS \alpha 
(
\sum n

i=1 Fi)
(f(t))(u) =

n\sum 
i=1

\scrS \alpha 
Fi
(e - 

1
u [

\sum n
j=1,j \not =i G

\alpha 
j (t)]f(t))(u),

and prove that

\scrS \alpha 
(
\sum n+1

i=1 Fi)
(f(t))(u) =

n+1\sum 
i=1

\scrS \alpha 
Fi
(e - 

1
u [

\sum n+1
j=1,j \not =i G

\alpha 
j (t)]f(t))(u).

We have, by Theorem 3.6 and recurrence hypotheses
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\scrS \alpha 
(
\sum n+1

i=1 Fi)
(f(t))(u) = \scrS \alpha 

(Fn+1+
\sum n

i=1 Fi)
(f(t))(u)

= \scrS \alpha 
Fn+1

(e - 
1
u [

\sum n
j=1 G\alpha 

j (t)]f(t))(u) + \scrS \alpha 
(
\sum n

i=1 Fi)
(e - 

1
uG\alpha 

n+1(t)f(t))(u)

= \scrS \alpha 
Fn+1

(e - 
1
u [

\sum n+1
j=1,j \not =n+1 G\alpha 

j (t)]f(t))(u) +

n\sum 
i=1

\scrS \alpha 
Fi
(e - 

1
u [

\sum n
j=1,j \not =i G

\alpha 
j (t)](e - 

1
uG\alpha 

n+1(t)f(t))(u)

= \scrS \alpha 
Fn+1

(e - 
1
u [

\sum n+1
j=1,j \not =n+1 G\alpha 

j (t)]f(t))(u) +

n\sum 
i=1

\scrS \alpha 
Fi
(e - 

1
u [

\sum n+1
j=1,j \not =i G

\alpha 
j (t)]f(t)(u)

=

n+1\sum 
i=1

\scrS \alpha 
Fi
(e - 

1
u [

\sum n+1
j=1,j \not =i G

\alpha 
j (t)]f(t))(u).

\square 

Theorem 3.8. The \scrN \alpha 
F -Sumudu transform changes the \scrN \alpha 

F -convolution product into a
product:

\scrS \alpha 
F [(f \ast \alpha F g)(t)](u) = u\scrS \alpha 

F (f(t))(u).\scrS \alpha 
F (g(t))(u).

Proof. This is easily seen by operating the following change of variable: v = G - 1
\alpha (G\alpha (t) - 

G\alpha (s)),

(f \ast \alpha F g)(t) =

\int t

0

f(s)g[G - 1
\alpha (G\alpha (t) - G\alpha (s))]F (s, \alpha )ds

=

\int t

0

f [G - 1
\alpha (G\alpha (t) - G\alpha (v))]g(v)F (v, \alpha )dv

= (g \ast \alpha F f)(t).

Then

\scrS \alpha 
F [(f \ast \alpha F g)(t)](u)

=
1

u

\int +\infty 

0

e - 
1
uG\alpha (t)

\biggl( \int t

0

f(s)g[G - 1
\alpha (G\alpha (t) - G\alpha (s))]F (s, \alpha )ds

\biggr) 
F (t, \alpha )dt

=
1

u

\int +\infty 

0

f(s)

\biggl( \int +\infty 

s

e - 
1
uG\alpha (t)g[G - 1

\alpha (G\alpha (t) - G\alpha (s))]F (t, \alpha )dt

\biggr) 
F (s, \alpha )ds

=
1

u

\int +\infty 

0

f(s)

\biggl( \int +\infty 

0

e - 
1
u [G\alpha (v)+G\alpha (s)]g(v)F (v, \alpha )dv

\biggr) 
F (s, \alpha )ds

=

\biggl( 
1

u

\int +\infty 

0

e - 
1
uG\alpha (v)g(v)F (v, \alpha )dv

\biggr) \biggl( \int +\infty 

0

e - 
1
sG\alpha (s)g(s)F (s, \alpha )ds

\biggr) 
= u\scrS \alpha 

F (f(t))(u).\scrS \alpha 
F (g(t))(u).

\square 

The \scrN \alpha 
F -Sumudu Conformable transform will now be defined and some findings will

be shown.

4. \scrN \alpha 
F -Sumudu Conformable transform

Definition 4.1. Across the subsequent collection of functions:

cA
\alpha 
F = \{ f(t) : \exists k, r1, r2, | f(t)| < ke

| G\alpha ( t\alpha 

\alpha 
)| 

rj ; if G\alpha (
t\alpha 

\alpha 
) \in ( - 1)j \times [0,+\infty ), j = 1, 2\} 
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The definition of the \scrN \alpha 
F -Sumudu transform of f is

c\scrS \alpha 
F \{ f(t)\} (u) =

1

u

\int \infty 

0

e - 
1
uG\alpha ( t\alpha 

\alpha )f(t)F (
t\alpha 

\alpha 
, \alpha )t\alpha  - 1dt. (4.2)

Theorem 4.2. Consider the function f defined on [0,+\infty ). Then

c\scrS \alpha 
F \{ f(t)\} (s) = \scrS \alpha 

F \{ f((\alpha t)
1
\alpha )\} (s).

Proof. By using Definition 4.1 and letting v = t\alpha 

\alpha , we have:

c\scrS \alpha 
F \{ f(t)\} (s) =

1

u

\int \infty 

0

e - 
1
uG\alpha (v)f((\alpha v)

1
\alpha )F (v, \alpha )dv

then, by Definition of \scrN \alpha 
F -Sumudu transform of f

c\scrS \alpha 
F \{ f(t)\} (s) = \scrS \alpha 

F \{ f((\alpha t)
1
\alpha )\} (s).

\square 

Theorem 4.3. Consider the \scrN \alpha 
F -differentiable function f defined and \alpha \in (0, 1]. Then

c\scrS \alpha 
F (\scrN \alpha 

F f(t))(u) =
c\scrS \alpha 

F (f(t))(u)

u
 - f(0)

u
, s > 0.

Proof. Let’s apply Theorems 4.2 and 3.3,

c\scrS \alpha 
F (\scrN \alpha 

F f(x))(u) = \scrS \alpha 
F (\scrN \alpha 

F f((\alpha t)
1
\alpha )))(u)

=
\scrS \alpha 
F (f((\alpha t)

1
\alpha )))(u)

u
 - f(0)

u

=
c\scrS \alpha 

F (f(t))(u)

u
 - f(0)

u
.

\square 

Theorem 4.4. Let f : [0,\infty ) \rightarrow \BbbR be a given continuous function and 0 < \alpha \leq 1. Then

c\scrS \alpha 
F (\scrI \alpha 

F f(t))(u) = u c\scrS \alpha 
F (f(t))(u), s > 0.

Proof. According to the previous Theorem 4.3

c\scrS \alpha 
F (\scrN \alpha 

F \scrI \alpha 
F f(x))(u) =

c\scrS \alpha 
F (\scrI \alpha 

F f(t))(u)

u
 - \scrI \alpha 

F f(0)

u
=

c\scrS \alpha 
F (\scrI \alpha 

F f(t))(u)

u
and by Lemma 2.7

c\scrS \alpha 
F (\scrI \alpha 

F f(t))(u)

u
=c \scrS \alpha 

F (f(t))(u)

then
c\scrS \alpha 

F (\scrI \alpha 
F f(t))(u) = u c\scrS \alpha 

F (f(t))(u).

\square 

Theorem 4.5. Consider two differentiable functions G\alpha 
1 (t) and G\alpha 

2 (t) such that G\prime \alpha 
1 (t) =

F1(t, \alpha ) and G\prime \alpha 
2 (t) = F2(t, \alpha ). Then

c\scrS \alpha 
F1+F2

(f(t))(s) = c\scrS \alpha 
F1
(e - sG\alpha 

2 (t)f(t))(s) + c\scrS \alpha 
F2
(e - sG\alpha 

1 (t)f(t))(s)

where \alpha \in (0, 1].

Proof. By direct application of Theorem 3.6 and Theorem 4.2. \square 

Theorem 4.6. Let n \geq 2 and i \in \{ 1, 2, ..., n\} . Asume that G\alpha 
i (t) derivables functions,

we have

c\scrS \alpha 
(
\sum n

i=1 Fi)
(f(t))(s) =

n\sum 
i=1

c\scrS \alpha 
Fi
(e - s[

\sum n
j=1,j \not =i G

\alpha 
j (t)]f(t))(s).

where \alpha \in (0, 1] and G\prime \alpha 
i (t) = Fi(t, \alpha ).
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Proof. To prove this Theorem, we can use Theorem 4.2 and Theorem 3.7. \square 

Theorem 4.7. The c\scrN \alpha 
F -Sumudu transform changes the \scrN \alpha 

F -convolution product into a
product:

c\scrS \alpha 
F ((f \ast \alpha F g)(t))(u) = u c\scrS \alpha 

F (f(t))(u). c\scrS \alpha 
F (g(t))(u).

Proof. By direct application of Theorems 4.2 and Theorem 3.8. \square 

5. Conclusion

The definition of \scrN \alpha 
F -derivative introduced by Juan E. Nápoles Valdés et al [1] has

been investigated. Many results and examples related to this definition have been given
and proved. A new definition of the conformable \scrN \alpha 

F -Sumudu transform has been
given. A relationship between the conformable \scrN \alpha 

F -Sumudu transform and the classical
\scrN \alpha 

F -Sumudu transform have been established. Many results relating to the classical
\scrN \alpha 

F -Sumudu transform case have been obtained and demonstrated in the conformable
\scrN \alpha 

F -Sumudu case. Our interest for future work is to apply this results to solve some
conformable partial differential equations.
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