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NEW DEFINITION OF NZ-SUMUDU CONFORMABLE TRANSFORM

BAHLOUL RACHID AND RACHAD HOUSSAME

ABsTrAcT. Using the new definition of the N/R-derivative function introduced by
Juan E. Népoles Valdés and al. (2020), we provide a new definition for the A g-Sumudu
transform, N'#-Sumudu conformable transform. Additionally, we establish several
important results related to these new transforms. We also give a new definition of
convolution related to this Nl‘;‘-derivative and we show that it is commutative and
associative.

1. INTRODUCTION

The Sumudu transform is a fundamental tool in mathematical analysis, widely used
for solving differential equations, control theory, signal processing, and various areas of
physics and engineering. However, in recent years, the classical Laplace transform has
been extended to accommodate more complex behaviors in systems, particularly those
involving memory effects, fractional-order dynamics, and nonlocal operators. One such
extension is the conformable fractional Laplace transform, which has proven to be an
effective generalization for analyzing systems with fractional dynamics and anomalous
diffusion. The conformable fractional Sumudu transform introduces additional flexibility
by incorporating a fractional parameter o and a modulating function F (¢, «), providing a
broader framework for solving problems that go beyond classical integer-order systems.
This generalization retains many of the essential properties of the classical Laplace
transform while extending its applicability to fractional calculus, which plays a critical
role in modeling phenomena such as viscoelasticity, fluid dynamics, and complex networks.
In this article, we examine a number of findings from the conformable fractional Laplace
transform inthis article. Within the framework of this novel transform, the properties
and theorems offered crucial tools of managing integrals, convolutions and differential
equations of fractional order. By extending these classical results into the realm of
conformable fractional calculus, this work provides a comprehensive overview of the
capabilities of the conformable fractional Laplace transform. The results presented not
only generalize

classical Sumudu theory but also provide powerful tools for researchers and engineers
working with systems characterized by fractional dynamics. This study serves as a
foundation for further explorations into the application of conformable fractional calculus
to real-world problems where traditional integer-order models are insufficient to capture
complex behaviors.

The paper is organized as follows: Section 2 provides definitions and preliminary
results, including a review of the N g-derivative and its properties. Section 3 presents the
main results concerning the Sumudu transform of exponential functions and integrals. In
Section 4, we presents the main results concerning the conformable Sumudu transform.
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2. BASIC NOTIONS
Definition 2.1. [1] The function f is N'g-derivative at ¢ if the quotient
Flt+ miay) — F(1)
h

has a limit when A tends to 0. In this case, the limit is denoted

_ f+ wy) — F@)
NEF(1) i= Jim 0
with o € (0,1], F(t, ) # 0, for all t € [0, +o0].

)

Definition 2.2. Let 0 < @ <1 and f: [0, +oo[— R.
(1) We say that f is Ng-differentiable on [0, +oco[ if f is NZ-differentiable at every
point of [0, +oo].
(2) We say that f is n times N#-differentiable on [0, +oo[ if f is continuous, Vj €
{0,...n} N;;]a)f(t) = NZ2WNE...(N&(f)))(t), 7 times, exist for all ¢ €]0, 4o00[ and
N £(0) = limy_y0+ NY f(2) exists.
Theorem 2.3. [1] Let v be in (0,1] and f, g : [0,+00) — R N3-differentiable. Then for
allt >0

(1) NE(af +bg)(t) = aNE(f)(t) +bNE(9)(1), a,b € R.

(2) NE(A) =0, eR

(3) Ne(f9)(®) = Ni(H)(D)g(t) + F(HNE(9)(2)

(4) Nﬁ(g)(t) _ g(t)NF(f)(tg);(tf)(t)-’\/p(g)(t) ]

(5) If, in addition, f is differentiable then Ng(f)(t) = %

Example 2.4. :
Let f and F(t,«) be two real functions defined on [0, +oo[ by f(t) = t* + Zt + 2t and
F(t,a) = a(t + 2), where a € (0,1]. Then

NEF(t) = 3t+1

for all t > 0.

Definition 2.5. (N3-integral)
Let f be a real function taking its values in a segment [0,¢] and a € (0, 1], then the
Ng-integral of f on [0,¢], defined and denoted

Zef(t) :/0 Fv,a)f(v)dv, te]0,+o0].

Example 2.6. Let F(t,«a) = at + 3. Then
Z¢(e™) = —ate™" — (3+a)e " +3+a.

Lemma 2.7. [1] Let us consider a € (0,1] and the continuous function f : [0,4+00) — R.
Then, for all t € (0,400)

NE(Ze()(@) = ().
Example 2.8. Let F be a function defined by F(t,«) = at + 3. Then by Example 2.6
and Theorem 2.3

airar -t l—ateTt =B+ a)e " +3+a]
NF(IF(e ) = ot 13 =e .
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Lemma 2.9. [1| Let us consider o € (0,1] and the Ng-differentiable function f :
[0,400) — R. Then, for all t € (0,+00)

IrNEN@) = f(t) = £(0).

Consider the following continuous function F(t, a) such that F(t,«) > 0 for all t > 0
and G, (t) its primitive function verifies G, (0) = 0 and lim;_, ;o G (t) = 400, where
0 < a < 1. For example

F(t,a) = 8at + 2 and G, (t) = 4at? + 2t.

Now, we will present some results and proofs of N2-Sumudu transform.

3. N¥-SUMUDU TRANSFORM

Definition 3.1. Across the subsequent collection of functions:

Ga (1)] ,
Ap ={f(t) : Fk,r1, o, [f()] < ke 75 sif Ga(t) € (1)) X [0,+00),j = 1,2}
The definition of the Ng-Sumudu transform of f is
I
SO = [ e EO Pt (31)
0

u

assuming the integral converges .
Theorem 3.2. Let u,k,aa € R and 0 < a < 1. Then we have:
(i) Sglk]=k.

(ii) S [er@=®)] = o !

,ou> —.
1—pu “ W

(iii) S [sin(u(Ga@)))]:#;uQ, w>

w) S§[cos Go(t =— u>—.
Proof. Follows by applying Definition 3.1 and integrating by parts. O

Theorem 3.3. Consider the N&-differentiable function f and o € (0,1]. Then

SpNE( @) = FLD_TO

u u

Proof. Let u > 0.
1 [ _1
SENESONW) = [ e OOt

0
Through part-by-part integration, we have:

/ e*%Ga(t)f’(t)dt:—f(0)+l/ e OO F()F(t, o)t
0 wJo
then

SENE(FB)) () = IO TO)

u u

Example 3.4. Consider F(t,a) = a, G4 (t) = at and f(t) = t>. We have

SE(P) () = 2o

and

SENE () (w) = ~u
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thus
_ S )

u u

SEWNE (1)) (u)
Theorem 3.5. Consider the continuous function f defined on [0, +00) and 0 < o < 1.
Sp(Zr(f)))(uw) =u Sp(f(t))(u),u > 0.
Proof. Let u > 0. By Theorem 2.7
SEWEZH(f(1)(w) = SE(f (1)) (u)
and by Theorem 3.3
SHNETE(F() () = SpEpf®)(w)  Ipf(0)  SEIZEf(H)(w)

u u u

thus
Sp(Tr(f0)))(uw) = u SE(f(1))(w).

O

Theorem 3.6. Consider two differentiable functions G§(t) and G§(t) such that Gi*(t) =

Fi(t,«) and G (t) = Fa(t,«). Then

Str (F(0))(5) = S, (e7*FE W (1)) (s) + Sp, (e W f (1)) (s).
where o € (0, 1].
Proof. We have
Shar () = 1 [ e EHOTCEO ()R (0) + Fylt, )i
0
1

o0 [e3 « 1 o0 « (3
== / e wCOTM (e=w W0 (1) Fy(t, a)dt + — / e~ w02 (e w W (1) Fy(t, a)dt
u Jo u Jo

= S (e7 O £(1))(u) + Sgi, (€7D £(1)) (u).
O

Theorem 3.7. Letn > 2 and i € {1,2,...,n}. Asume that G(t) derivables functions,
we have

@
J

Sen my(F(D)(s) =Y S (e Bi=rsm &
=1

where a € (0,1] and Gi*(t) = F;(t, o).

WF)(s)

Proof. demonstration by recurrence.
For n = 2, see Theorem 3.6.
suppose that

St ey (FE)(w) = Sp (e7 # =i GO £ (1)) (w),
=1

and prove that

n+1
n+1

Stgrn SO = 3 S8 (e 452 ST O £ (1)) ),

We have, by Theorem 3.6 and recurrence hypotheses
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(> R, SO W) = SCr, sy (F(B)(w)
= Sp (e I FOL () () + S| oy (e T f(1)) (w)

- S° (e*%[Z?ﬂl#nH GO £ (1) (u)+28ﬁ(675[21 12 T O) (e~ 2GR (0 £ (1)) (u)

Fri1
i=1
_ S?‘"_Fl (6_%[Z;L+11J¢n+l b (t)]f( (U) + Z S}% (6_%[2;211]#"’ G? (t)]f(t) (u)
=1
n+1 1
=88 (e H B GO £ (1) (w).
1=1

O

Theorem 3.8. The N¥-Sumudu transform changes the Ng-convolution product into a
product:

Spl(f *p 9)(D)](u) = uSp(f(1))(w)-Sg(g(t)) (u).

Proof. This is easily seen by operating the following change of variable: v = G, (G () —
Ga(8)),

(f %3 9)(t / £(s Gult) — Gal))]F(s, 0)ds
/ e — Gu(0))lg(w) F(v, a)dv
(g2 1)(2).
Then
SEIf +3 9) (1)) ()
_ l a(t) — s s.a)ds (o
= L[ et ([ 00167 (Gt~ Guls] s, )i ) Pt

3 +mﬂs) ( A uGa<t>g[Ga1<Ga<t>Ga<s>>]F<t,a>dt) P(s,a)ds

u

+oo +oo
1/ f(s) (/ e_fli[G“(”)+G”(S)]Q(U)F(v,a)dv) F(s,a)ds
0 0

u

(L[ e~ G () F(v, a)dv - e~ =G (g(s)F (s, 0)ds
u Jo 0

= uSp(f(1))(u).SE(9(1)) (w).

O

The Np-Sumudu Conformable transform will now be defined and some findings will
be shown.

4. Np-SuMuDU CONFORMABLE TRANSFORM

Definition 4.1. Across the subsequent collection of functions:

[e3
|Ga(t)] o

Af ={f@) : Ik, r,re, [f(W) < ke 7 5if Ga ( ) € (=1)7 x [0,+00),j = 1,2}
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The definition of the Ng-Sumudu transform of f is

SEFO)w =5, [ T eten ) (S petan (4.2)

0
Theorem 4.2. Consider the function f defined on [0,+00). Then

SEL0)}(s) = SE{F((at) ) }(s).

Proof. By using Definition 4.1 and letting v = £, we have:

«

1 [ e N
SEION) = 5 [ O (00 )P0
then, by Definition of Ng-Sumudu transform of f

SELF()}(s) = Sp{F((at) =)} (s).
O

Theorem 4.3. Consider the N&-differentiable function f defined and o € (0,1]. Then

CS?-(NI?f(t))(U) — CS?‘(f(t))(u) _ f(o)’s > 0.

u u

Proof. Let’s apply Theorems 4.2 and 3.3,

O
Theorem 4.4. Let f:[0,00) = R be a given continuous function and 0 < o < 1. Then
SE(IEf () (u) = u Sp(f(t))(u),s > 0.

Proof. According to the previous Theorem 4.3
SRVETE Fa)) () — SSEERIO)W) _ TRAO) _ SHIE0) ()

u u u

Sp(Zrf (1)) (u)

u

SE(Trf)(u) = u SE(f(1)(w).

and by Lemma 2.7

=c Sp(f(1))(u)
then

O

Theorem 4.5. Consider two differentiable functions G(t) and G5 (t) such that G{*(t) =
Fi(t,a) and G5 (t) = Fa(t,«). Then
Stver (F0)(s) = Si (e FOf(1))(s) + Sh, (e T f())(s)
where o € (0, 1].
Proof. By direct application of Theorem 3.6 and Theorem 4.2. O

Theorem 4.6. Let n > 2 and i € {1,2,...,n}. Asume that G(t) derivables functions,

we have
n

S, ry()5) = 3 oS (e s SO f(1)(5).
i=1

where o € (0,1] and G (t) = Fi(t, ).
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Proof. To prove this Theorem, we can use Theorem 4.2 and Theorem 3.7. g

Theorem 4.7. The JN2-Sumudu transform changes the N g-convolution product into a
product:

SE((f *F 9)()(w) = u Sp(f(t))(w). SE(g(t))(u).
Proof. By direct application of Theorems 4.2 and Theorem 3.8. O

5. CONCLUSION

The definition of N 2-derivative introduced by Juan E. Népoles Valdés et al [1] has
been investigated. Many results and examples related to this definition have been given
and proved. A new definition of the conformable Ng-Sumudu transform has been
given. A relationship between the conformable Ng-Sumudu transform and the classical
Ng@-Sumudu transform have been established. Many results relating to the classical
NZ-Sumudu transform case have been obtained and demonstrated in the conformable
N@-Sumudu case. Our interest for future work is to apply this results to solve some
conformable partial differential equations.
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