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ON THE REDUCTION OF A GRAM OPERATOR
THAT CORRESPONDS TO A MULTIROOTED GRAPH

OLEKSANDR STRILETS

ABSTRACT. Any abstract Gram operator is consistent with some graph. For an
arbitrary operator Br that is consistent with a graph I', the question arises as to
when it is an abstract Gram operator, i.e., whether it is nonnegative. We study this
question for certain types of graphs. The simplest case is a star graph. Next, we use
the results obtained for star graphs to explore a more general case, where a graph I"
can be treated as a collection of rooted trees, with their roots connected by additional
edges into a connected subgraph I'g. The work shows that the question about the
nonnegativity of an operator Br for such a graph can be reduced to the corresponding
question for some operator that is consistent with the subgraph I'g.

1. INTRODUCTION

Let n be a natural number greater than 1 and V = {1,...,n}. We consider complex
Hilbert spaces H;, i € V, their external direct sum H = H; & --- ® H, along with a
bounded operator B : H — H. The operator B can be treated as a block matrix (B;;); jev
where its block elements are operators B;; : H; — H;. If B is nonnegative (and thus
self-adjoint) with diagonal block elements being identity operators, we call it an abstract
Gram operator. The G-construction allows us to build a system of n subspaces for any
abstract Gram operator. We denote such a system by G(H;, ..., H,; B). Furthermore,
for any system of subspaces, the Gram operator of the system can be introduced and
satisfies all conditions of the abstract Gram operator definition. A system of subspaces
built via the G-construction applied to this operator is unitarily equivalent to the original
system. Criteria for the irreducibility of a system and the unitary equivalence of two
systems can be formulated in terms of their Gram operators. For more details about the
G-construction, we refer to [9] and [11].

All this makes the notion of an abstract Gram operator a useful tool for studying
classification problems of systems of subspaces (see for example [1,5,7-9]). To solve these
problems, one builds an operator B = (B;;); jev such that B;; = I and B}; = Bji. To
demonstrate that it is an abstract Gram operator one needs to examine whether B is
nonnegative. This problem can be quite challenging but may become easier if some block
elements are zero. Note that a block element B;j;, ¢ # j, is zero if and only if related
subspaces of the system G(H;, ..., H,; B) are orthogonal. Finite simple undirected graphs
are useful for encoding the information about which block elements are zero. Namely, for
an operator B, where B;; = I and Bj; = Bji, i,j € V, we construct a graph I' = (V, E),
where two vertices ¢ and j are considered adjacent (i.e., v;; € E) if and only if the block
element B;; is nonzero.

It was initially assumed that the set of indices V' consisted of natural numbers from 1
to n, usually with n > 1, but all that was actually used was that V is a finite set. This
generalization is useful for our further consideration. Therefore, from now on, we assume
that V is an arbitrary finite set usually containing two or more elements. We denote
by = (z;);cv a vector in the direct sum of the Hilbert spaces associated with vertices,
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where x; is the component corresponding to the i-th space. In this paper, we consider
only finite simple undirected graphs. For conciseness, we will refer to them as graphs.
Additionally, all operators are assumed to be bounded throughout this paper.

Definition 1.1. Let I' = (V, E) be a graph and B = (B;); jev be an operator in the
direct sum H of some Hilbert spaces H;, i € V. We say that B is consistent with T if the
operators B;; and B;; are nonzero for all edges v;; € E, and the equality

(Bz,z) =Y |lzl*+ > Re((Bij + Bj,)z;, z:) (1)
eV vi; EE
holds for any = = (z;):cv.

Proposition 1.2. An operator B = (B;;); jev is consistent with a graph T = (V, E) if
and only if its block elements fulfill the following conditions:

Bii =1, i€ V; 2)
B}; = Bji, i,7€V; (3)
Bij#0&y; €E,  i,jeV,i#]. (4)

Proof. By definition of the inner product in the external direct sum of Hilbert spaces, we
have the following equality for any « = (z;);ecv:

(Bz,z) =Y (Buzi,x:) + Y ((Bijj, i) + (Bjizs, x;)).
i€V i,jev
1<g
Condition (2) implies that (B;;z;,x;) = ||z;||?, i € V; condition (3) implies equalities
<Bijl‘j, l’i> + <Bjil‘i,l‘j> = 2R€<Bij$j,iEi> = R€<(Bij + B;i)xj,xi>, Yij € FE;

and condition (4) provides us with a one-to-one correspondence between the set of edges F
and the set {(4,7) : 4,5 € V,i < 4, B;; # 0}. Thus, it follows from these conditions that B
is consistent with I'.

Now, suppose operator B is consistent with I.

For a vertex k € V, consider © = (z;);ev such that x; = 0 if i # k and xj is an
arbitrary vector in Hy. Then, equality (1) takes the form (Byrzr, zx) = ||k ||* and we
have proved (2).

For vertices j,k € V, j # k, consider = (x;);cv, such that z; = 0 if i & {j,k} and
x;, T} are arbitrary vectors in Hj, Hy correspondingly.

In the case where ;i & E equality (1) takes the form (Bjrxy, z;) + (Brjxj, xx) = 0.
Thus, by Proposition A.3, we conclude that Bj;, = By; = 0. Taking into account that
vi; € E implies B;; # 0, we have proved (4).

If v;1 € E, equality (1) takes the form

(Bjkay,xj) + (Brjzj, xr) = Re((Bji + Byj)Tk, T5)-

Then, by Proposition A.4, we obtain Bj;, = By;. Thus, we have proved (3) for adjacent
vertices. For the remaining pairs of vertices, this is obvious. 0

For brevity, an operator that is consistent with a graph I' will be denoted by Br. It is
clear that such an operator is an abstract Gram operator if and only if it is nonnegative.
Note also that condition (3) implies that equality (1) can be shortened to the following

form:
(Bra,z) =Y [ll> +2 Y Re(Bya;, ). (5)
eV vi; EE
In [6], the authors consider a unicyclic graph T' = (C;T'y,...,I';,) and an operator Br

such that for each pair of adjacent vertices 7 and j, there exists a number 7,; = 7, € (0, 1)
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such that Tingij is a unitary operator. It was shown that the question of the nonnegativity
of Br can be reduced to the same question for some operator By,. Later, in [10], this
result was generalized to the case where the cycle C is replaced with an arbitrary
graph I'g = (V, Ey), and the blocks B;; are not required to be unitary up to a scalar for
adjacent vertices ¢ and j belonging to Vj. In this paper, we further generalize this result
by removing restrictions on the block elements B;; for all adjacent vertices ¢ and j.

We begin with a star graph Ty (Sec. 2). In particular, we prove a criterion for the
nonnegativity of Br,. Then, we introduce the notion of a root subgraph and describe a
class of graphs that can be studied using the proposed approach (Sec. 3). We formulate the
main theorem of the paper (Sec. 4) and propose a reduction algorithm (Sec. 5). Choosing
a root subgraph in a graph leads to a partial order on vertices and splits them into layers.
At each step of the reduction algorithm, one selects a vertex k from the “pre-outer” layer
and calculates some operator Ni. To continue, this operator must be nonnegative. If so,
vertices adjacent to k from the “outer” layer are removed. For each vertex j not removed
and adjacent to k, the block elements Bj; are recalculated. This recalculation is simpler
and the algorithm more applicable if the operators Ny are invertible. Hence in Sec. 6, we
reformulate the main theorem of the paper for two special cases when all operators Ny,
are guaranteed invertible.

2. STAR

Definition 2.1. Let an operator Br = (B;;); jev be consistent with a graph I = (V, E).
For any vertex k € V and any subset of vertices V C V adjacent to vertex k, we define
two operators:

Sk(Br,V) = BgiBi : Hy — H,
=
Nk(BF,V) =1- Sk(BF,V) : Hk — Hk.
Consider the graph T', =T, (k, V) = (V, E,), which is a star with center k € V,, i.e.,
Vi={k}UV and E, = {V }iev-

If V., ={1,...,n} then the operator Br, takes the form

I 0 By, 0 0
0 I B _1% 0 0
Br,=|Br1 ... Brr-1 I Bik+1 .-+ Bin
0 ... 0 Bupwx I ... 0
0 0 B,i 0 I

For brevity, let the operator Ni(Br,,V) be denoted as N.
Proposition 2.2. For any x = (z;)icv,
(Br, z,x) = (NyTk, Tp) + Z lzs + Barae||*. (6)
i€V
Proof. By (5) for any x, we have

(Br,z,z) = laxl|” + ) (lv:l* + 2Re(Bisar, 2:)) .
i€V
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Taking into account that

lylI* + 2 Re(z,y) = [ly + |* — [|=]*

we obtain
(Br,z,z) = lakl|® + Y (loi + Birzxl® — | Birwr|?) -
i€y
But
lzkl® = 1Bikael® = (wx — Sk(Br,, V)ak, zx),
ey
so we get (6). O

Theorem 2.3. The operator Br, is an abstract Gram operator if and only if the opera-
tor N, = Ni(Br,,V) is nonnegative.

Proof. If (Nyxy,x) > 0 for any xp € Hy, then for any @ € H, by equality (6), we get
(Br,z,z) > 0.

Let Br, be nonnegative. For any zj € Hy, define x = (x;);ev by setting x; = — By,
i € V. Then, by equality (6), we obtain (N,xg,zr) = (Br,z,z) > 0. O

Corollary 2.4. Let Br, be an abstract Gram operator. Then, its kernel consists of all
vectors © = (x;)iey, such that xj € ker N, and x; = — Bz, 1 € V.

Remark. Note that Theorem 2.3 is a corollary of the following statement (to see this,
set Hy = ®i€VHO,i7 Hy = HO,Im A, =1fori= 1,2, and X = (Bik)iev):

Theorem 2.5. Let H; and Hy be Hilbert spaces, and let

A X
14:()(&< A2):H1@H2—>H1@H2,

where A1, Ao, and X are bounded operators. If A1 is nonnegative and invertible, then
A >0 if and only if Ay > X*Ale.

This theorem is a well-known result in matrix analysis; see, for example, Theorem 1.3.3
in [2] and the discussion of its history in Section 1.7. In [4], the authors provide three
different proofs of this theorem for operators in Hilbert spaces, assuming that H; and Hs
coincide (see Theorem 5.1). However, this restriction is not essential for the proofs. Let
us note that the proofs of Proposition 2.2 and Theorem 2.3 follow the same ideas as the
third proof in [4].

Recall that a subgraph of a graph I is called an induced subgraph if any two vertices
of the subgraph that are adjacent in the graph I' are adjacent in the subgraph. Let
a graph [' = (V, E) be an induced subgraph of the graph I' = (V, E), then for any
vector = (Z;);cv, we can define the vector x = (x;);ey by setting x; = 7; if i € V, and
x; = 0 otherwise. Thus, the nonnegativity of the operator Br = (B;;); jev implies that
the operator Bp = (Bjj); jey is nonnegative, since by (5) we have equality (Bpz,7) =
(Brz, z). Hence, we get a useful consequence of Theorem 2.3:

Corollary 2.6. Let Br be an abstract Gram operator. If a star I'y(k,V) is an induced
subgraph of the graph T, then the operator Ni(Br, V) is nonnegative.

Definition 2.7. Let a star T'y = I'4(k, V) be an induced subgraph of a graph T, and let
Y be some nonempty subset of vertices V \ Vi. We say that the star I'y can be extended
by vertices V if the star T',(k,V UV) is an induced subgraph of the graph T'. If the set
contains only one vertex, we aslo say that the star can be extended by the vertex.
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Corollary 2.8. Let an operator Br be a Gram operator, and let a star T'y = T'y(k,V)
be an induced subgraph of the graph T'. IfT', can be extended by some vertices V such
that the operator S = Sy(Br, V) is invertible, then the operator N = Ny(Br,V) is also
tnvertible.

Proof. Since T, can be extended by vertices V), it follows from Definition 2.7 that the
star Ty (k, VU f/) is also an induced subgraph of I'. Hence, by Corollary 2.6, the operator
Ni(Br,YUV) = N — S is nonnegative, i.e., 0 < § < N. Thus, if the operator S is
invertible, then so is V. O

3. GRAPH WITH A ROOT SUBGRAPH

Suppose T'g = (Vp, Ep) is a connected graph and, for each r € Vg, let T = (V,., E,.) be
a rooted tree. Consider a graph I' = (V| E), formed by identifying each vertex r of the
graph I'g with the root of the corresponding tree I',.. In other words,

V=[]V, and E\E =[] E.
reVo reVo
We call Ty a root subgraph of I'. For a graph with a selected root subgraph, we write
I'= (Ty;{C, }rev, ). Usually, depending on the context, we use the symbol I" to denote
both a graph with a selected root subgraph and the graph itself. If we need to distinguish
them clearly, we will use the notation ((I") to refer to the graph itself after disregarding
the root subgraph.

(a) (b) Ty (© T

FIGURE 1. A graph (a), a selected root subgraph (b), and the rooted trees (c)

For each vertex ¢ € V,., there exists a unique path from ¢ to the root of I',.. Thus, we
can define the distance d(i) = d(T',¢) from that vertex to 'y as the length of this path.
The depth d = d(T') of T is defined as max{d(i) : ¢« € V}. For each vertex i ¢ Vj, the
previous vertex p(i) = p(T',4) is defined as a vertex in the path from ¢ to the root such
that d(i) = d(p(i)) + 1. Then, for each vertex j € V, the set of following vertices can be
defined as

V; = Vy(T) = {i € V : pli) = j}.

The set of all vertices V' can be split into layers
d
V=||£L, Ly=£,@0)={icV:d(i)=q}, ¢=0,....d
q=0

Note that the following equalities hold:
Lo=Vo, Lg= || Vi, ¢=1,....d
JELG—1
Let Vi = Vi (T") denote the set of vertices, each of which has a nonempty set of
following vertices. Then, for any vertex j € V4, the star I', = I'.(4,V;) is an induced
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FIGURE 2. Distance from a vertex to the root subgraph (a), following
and previous vertices (b), the layers (c)

subgraph of the graph I'. Moreover, I'J can be extended by the previous vertex p(j) if
j & Vi, or—taking into account that I'y is assumed to be connected—with at least one
vertex from Vp if j € Vj and |Vp| > 2.

V() « 9 e 9 e 0
Vi
[ . 0 [ . ) F): . ) J . 0 [ ’ » A
b "4:/’/ k k \ b / ,,'«V""/’
.:, [ P ’ p(k) . ' l ’

FIGURE 3. The vertices that have a nonempty set of the following
vertices (a), examples of extensions of star subgraphs (b), I'(k) as a root
subgraph (c)

It is easy to see that a root subgraph is not unique in general. While it is not particularly
useful, we can treat any graph as its own root subgraph: IV = (T'; {T').} ,cv ), where trees I'.
are trivial, i.e., V! = {r} and E]. = @. In this case, d =0, V4 (I'') = @, and ((I") = ¢(T).

Suppose d > 0. By the definition of the depth d, the set L4 is nonempty. Then, the
set L4—1 NV, cannot be empty either. Fix a vertex k from this set and define the induced
subgraph T'(k) = (V, E) of the graph T such that V =V \ V, and E = E \ {yi}icv, -
Then, the graph I'y is an induced subgraph of f(k) and can be selected as a root subgraph
of (k). Therefore, we set

L(k) = Coi{Ts}revy)  Tr= (Vi By) = (Vo \ Vi, B2 \ {7 }ievs)- (7)
Futhermore, we can select f‘(k) to be a root subgraph of graph I and define
Ik r=k,
({r}.@), reV\{k}
Proposition 3.1. Let f‘A: (k) and I= f‘(lj:) be defined by (7) and (8), respectively. If
we denote Vo =V, (I"), V; =V;(I1), jeV, Ve =V (D), and V; =V;(I'), j €V, then

() Vi = {k}, Vi =@ if j # k, and Vi = Vi;
(i) Vi =Vi\{k}, V=V, ifj#k, and Vy, = 2.

L(k) = C(k):{Tr},ep), o= (Vi Ep) = { (8)
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As a sample (see figures above), we choose a graph containing two cycles and illustrate
the introduced notions on it.

4. REDUCTION THEOREM
Definition 4.1. Let I' = (TI'p; {I'; }+cv, ). An operator Br, consistent with the graph T,
can be reduced on the root subgraph I'g if there exist

(a) a Hilbert space H? and an injective operator T; : HY — H; for each vertex i € V;
(b) an operator D;; : Hj — H? for each pair of vertices j € V; and i € Vj;
(c) an operator BY, = (BY;)i jev, consistent with Ty, where BY; : H) — H};

and the following conditions hold:

Bij = TiDija ] S V+, 1€ Vj, (9)

B;; = TiB?ij» Yi; € Eo, (10)

I=Bj; =T,T; + Y _ D;Dij, jeV. (11)
iEVj

BIQO is called a reduction of Br on I'y.

The reduction is not unique. To show this, consider arbitrary unitary operators Uj :
H? — H?, i € V. Then, the operators T; = T;U;, i € V; Dij = U;Dy;, j € Vi,
i € Vj; and BY = U;BYUY, vi; € Ey; fulfill conditions (9), (10), and (11). The following
proposition shows that any two reductions are connected in this way and introduces

uniquely defined operators N;, i € V.

Proposition 4.2. Let I' = (T'g; {T's }rev,) and suppose that Br can be reduced on Ty.
Define operators N; = T;T; and natural embeddings J; : ImN; — H; : v — x, 1 € V.
Then,
(i) there exist unitary operators U;, i € V', such that T; = Nil/QJiUi;
(ii) the operators N; are uniquely defined;
(iii) if N; =0 then i € Vi and it is the only vertex of V.

Proof. (i) Since ker T; = {0}, the partial isometry W; of the polar decomposition T; =
Nil/QWZ- maps H? onto Im N; unitarily. Thus, T; = Ni1/2JZ-Ui, where U; : Hi0 —ImN; :
x — W;x is a unitary operator.

(ii) Note that for i & V., equality (11) takes the form N; = I. Thus, the operators N;
are uniquely defined for the layer L4, as this layer does not intersect V.. Suppose that

the operators N; are uniquely defined for some layer £, with 0 < ¢ < d. Then the

operators T; = Nil/ 2Ji are uniquely defined for this layer as well. Since ker T; = {0},
the solution Dij of the equation B;; = TiDij is unique for any pair of vertices i € L,
and j = p(i) € L4—1. Thus, any T; and D;; for i € Ly, j = p(i) € L4—1, are equal
to T;U; and U;"Dij, respectively, where U; is a certain unitary operator. Therefore,
Dj;Dij = Dj;Dy; and equation (11) uniquely determines N; for j € L,_1.

(iii) If N; =0, then T; = 0. Let j be a vertex adjacent to ¢. It cannot be the previous
vertex to ¢, because otherwise, by (9), we would have B;; = 0. This implies i € V;.
Now, the vertex j cannot belong to Vp, because otherwise, by (10), we would again have
B;; = 0. Since we assume that I'y is connected, we conclude that V = {i}. O

The main result of the paper is the following theorem.

Theorem 4.3. LetT' = (T'o; {T'y }revy ). The operator Br is an abstract Gram operator
if and only if it can be reduced on the root subgraph I'g with its reduction BIQO also being
an abstract Gram operator.
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Lemma 4.4. Let I' = (T'0;{l', }rev,). The operator Br can be reduced on the root
subgraph Tqo if and only if there exist objects introduced by items (a), (b), and (c) of
Definition 4.1, such that for any vector x = (x;);cv, the following equality holds:

(Bra,z) = (B z,2) + Y T @i + Dijaj|®, 2= (T z:)iev,- (12)
JjEVL 1eV;

The proof of this lemma in one direction relies on equality (5). To prove it in another
direction, we use ideas similar to those of Proposition 1.2. For details of the proof, see
Appendix B.

Corollary 4.5. LetT' = (To; {T'; }rev,) and let the operator Br can be reduced on the root
subgraph T'y. Then, Br is an abstract Gram operator if and only if so is its reduction quo-

Proof. By the previous lemma, equality (12) holds for any = = (z;);cv, since the opera-
tor Br can be reduced on I'y. Thus, if operator quo is nonnegative then the right-hand
side of (12) is nonnegative for any x, so operator Br is also nonnegative.

Now suppose that Br is nonnegative while BIQO is not. Since ker7; = {0}, the
set Im T} is dense in HY for any i € V. Therefore, if for some vector z = (%;);cv, we
have (B %, Z) < 0 then there exists a vector z = (T} z;);cv, such that (Bp z, z) < 0. Fix
these vectors z;, ¢ € Vj = L, and define positive numbers A and € by equalities

A
A= —(Bp 2,2), €=/ .
’ V]
For each vertex ¢ € L4, ¢ = 1,...,d, there exists a unique previous vertex j. It belongs to

the layer £,_1. Since Im T} is dense in H? and —D;jx; € HY, for a given vector x; € Hj,

we can find a vector x; € H; such that ||T;z; + D;;x;|| < €. Fix these vectors. Thus, we

have fully defined the vector & = (;);cy for which by (12) we obtain the estimate
(Bro,x) < —A+ %V \ V| <O0.

This contradicts the assumption that Br is nonnegative. O

This corollary implies that proving the following lemma completes the proof of Theo-
rem 4.3.

Lemma 4.6. Let T = (To;{I's }rev,). If Br is an abstract Gram operator, then it can be
reduced on the root subgraph T'y.

5. REDUCTION ALGORITHM

Definition 5.1. Let an operator Br = (B;j); jev be consistent with a graph I' = (V, E).
For a vertex k € V and a subset of vertices V C V that are adjacent to k, such that the
operator N = N (Br,V) is nonnegative, denote by J the natural embedding of Im N
into Hy and define the operator

Tw(Br,V) = NY/2J.

Proposition 5.2. Under the conditions of the previous definition, let T = Ty(Br,V) and
suppose j is a vertex in V' \ 'V that is adjacent to k. If By;Bji, < N, then there exists a
unique operator D; such that B; = TDj.

Proof. Note that the operator T is injective and satisfies the equality N = TT™*. Then,
since By;By; < TT*, Douglas’ lemma (see [3]) implies that a solution D; to the equa-
tion By; = T'D; exists. The solution is unique because ker T' = {0}. O

By Dy;(Br,V) denote the operator whose existence was established by the previous
proposition.
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Proposition 5.3. Suppose the star I'y = T',(k,V) is an induced subgraph of T' and can
be extended by a vertex j € V\V. If Br is an abstract Gram operator, then all conditions
required to define the operator D; = Dy;(Br,V) are satisfied.

Proof. Tt follows from Definition 2.7 that the star T',(k,V U {j}) is an induced subgraph
of I'. Hence, by Corollary 2.6, the operator Ni(Br,VU{j}) = N — By; B} is nonnegative,
i, 0< BB < N. O

Corollary 5.4. Let T' = (T'g;{T+}rev,) and Vi = {k}. If Br is an abstract Gram
operator then it can be reduced on the root subgraph T'y.

Proof. Set N; = N;(Br,V;) for i € V. Then all of them are equal to the identity unless
¢ = k. In the latter case the operator i is nonnegative by Corollary 2.6. Thus, we
can define HY = Im N; and T; = T;(Br,V;), i € V. Note that T; = I and HY = H; for
all i # k.

To fulfill (9), Djx, @ € Vi, must be equal to B;;. In this case, equalities (11) hold, as
Ny, =T, T{. Now let i and j be adjacent vertices of I'g. To fulfill (10), B% has to coincide
with B;; if neither ¢ nor j equals k, and ng must be equal to D; = Dy;(Br, Vi). Then
B?k = Dj and thus Br can be reduced on T'. O

Using this corollary, we prove Lemma 4.6 by induction on the number of elements in
the set V. (see Appendix C). Therefore, Theorem 4.3 is proved.

Algorithm 1 Reduction algorithm

1: function ISGRAMOPERATOR(Br)
2. while d =d(T) > 0 do > T'=(To,{T"}rew)
3 k + some element of L4 1(T') NV (T) o = (Vo, Eo)
4: Y V(D) L= (Vi Ep), r €V
5: Ve« V\V () =(V,E)
6: N < Ni(Br,V) Br = (Bij)ijev
7 guard N > 0 else
8 return false
9: end guard
10: for all j € v, vk € E do
11: guard By; B, < N else
12: return false
13: end guard
14: Dj — ij<BF, V)
15: end for
16: for all i,j €V, v; € E do
D;, i=k,
17: Bij < {Dr, j=k,
B;j;, otherwise.
18: end for
19: I' (FOJ {(‘/7 \ V, &, \ {’Yki}iEV)}TEVo)
20: Br + (Bij)i,jef/
21: end while
22; return (Br > 0) > ¢(I') =T

23: end function

Corollary 5.4, together with Corollary 4.5, provides us with Algorithm 1. Let us take
a closer look at it. The algorithm is represented as a function that takes an operator Br
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consistent with I' = (T'o; {I'; }rev, ) and returns true or false. It assumes (line 22) that we
have an effective way to check whether an operator consistent with the root subgraph I'y
is a Gram operator.

The core of the function is a while loop (lines 2-21), executed until the graph T’
coincides with I'g. At each iteration:

e It chooses an arbitrary vertex k from the pre-outer layer with a nonempty set of
following vertices V (line 3).

e The algorithm checks whether Bp can be reduced on the root subgraph T'(k),
which is I' after removing vertices V together with the corresponding edges, and
computes operators D; for each vertex j € V' \ V adjacent to k (lines 7-15).

e Using operators Dj, it recalculates the block elements related to edges of the
induced subgraph T'(k) (lines 16-18).

e It then replaces the graph I' with f‘(k) (line 19) and the operator Br with the
one constructed from the updated block elements (line 20).

If Br is a Gram operator at the start of an iteration, then the iteration cannot terminate
prematurely, and the updated Br, which is the reduction of Br on f(k), is also a Gram
operator. Conversely, if the iteration proceeds successfully, then the original Br is a Gram
operator if and only if the updated operator is. Thus, if some iteration fails, the original
operator Br is not a Gram operator. Otherwise, when the loop finishes and I' coincides
with [, the original and updated operators are either both Gram operators or neither is.

6. INVERTIBILITY

Let T' = (Tg; {I'» }»cv,) and suppose that Br can be reduced on T'y. It follows from
Proposition 4.2, that we can assume that T; = Ni1/2Ji and HZQ =ImN, fori € V.
If ker N; = {0}, then H) = H; and T; = T} = Nil/z. Moreover, if for some i € V'\ V, the
operator IV; is invertible, then 7; is also invertible, hence D;; = N[l/QBij for j = p(s). If
we suppose that the operators IV; are invertible for all ¢ € V;, then we have the following
relation:

Nj=I-Y BN 'By, jeV. (13)
i€V,
In the case where both N; and Nj, 4, j € Vy, are invertible, we obtain

BY = N;'?ByN; 2~y € By (14)

Proposition 6.1. LetT' = (T'o; {I'; }rev;,). If the operator Br is such that all operators Ny,
Jj €V, defined by (13), are nonnegative and invertible, then Br is an abstract Gram
operator if and only if so is the operator BY = (B};)i jev,, defined by (14).

Proof. The nonnegativity and invertibility of the operators N, j € V, imply that all of
them are well-defined by (13), and B is well-defined by (14). This also ensures that Bp.
is a reduction of Br on I'g. Thus, we can apply Corollary 4.5. O

In general, the nonnegativity of the operator Br does not imply the invertibility
of the operator Ni(Br,V) associated with the induced star subgraph T'.(k,V). For
example, consider the star ' = (V = {1,2,3,4}, F = {712,723, 724}) and its induced star
Subgraph F* = (V* = {2, 3,4}, E* = {’)/23,’724}).
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Let
1 0 03| o0 0
0 1 0 |+04]+06
Br=| V03] 0 1 0 0
0 |v04 0 1 0
0 |v06 0 0 1

Then, the operator

Ny(Br,{3,4}) = <(1) 2) - <0(')4 8) - <0(’)6 8) = <8 ?)

is nonnegative but not invertible. On the other hand, Br is nonnegative, as the operator

10 0 0 04 0 0.6 0 0 O
Na(Br,{1,3,4}) = (o 1> - (o o.3> - ( 0 o> - ( 0 0) - <0 0.7>
is nonnegative.

Lemma 6.2. Let T' = (To;{Ts}revy). Suppose the operator Br is an abstract Gram
operator, and for each vertex j € V., the star % can be extended by some vertices f/j, such
that the operator S; = Sj(Bp,f)j) is invertible. Then the operators N;, j € V, defined
by (13), are nonnegative and invertible.

We prove this lemma by induction on the number of elements in the set V. (see
Appendix D). Combining it with Propositions 6.1 we get the following criterion.

Theorem 6.3. Let T = (o; {T, }revy ). If for each vertex j € Vi the star T can be
extended by vertices V; such that operator S; = S;(Br,V;) is invertible, then Br is an
abstract Gram operator if, and only if,

(1) all operators N;, j € V, defined by (13), are nonnegative and invertible;
(ii) the operator BY = (BY)i jev,, defined by (14), is an abstract Gram operator.

Now consider the case where the operator By is such that, for each pair of vertices j € V.
and ¢ € V;, there exists a number 7;; € (0,1) so that Tingij is a unitary operator. Suppose
Br can be reduced on I'y. If N; = v;1, v; > 0, for any vertex ¢ from some layer L,
0 < ¢ < d, then, by (13), the operators N, are scalar for all j € £,_1 as well, i.e.,
N; = v;I for some numbers v; > 0. But by Propositions 4.2, v; can only be zero if ¢ =1
and V = {j}. Taking into account that N; = I for all i € L4, we obtain that N; = v;I
for j eV,

o By
B;; = o Yij € Eo, (15)
where
Th
ujzlfzj, jev, (16)
iEVj

and the following lemma holds.

Lemma 6.4. LetT' = (To; {T }revy) and |Vo| > 2. Suppose the operator Br is such that,
for each edge ~;; € E'\ Ey, a number ;; € (0,1) is specified, and the operator Tingij 18
unstary. If Br is an abstract Gram operator then the numbers v;, j € V, defined by (16),
are positive.

Combining this lemma with Proposition 6.1, we obtain the following theorem (see
also [10], Theorem 1).
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Theorem 6.5. Let I' = (To; {T'y }rev,,) and |Vo| > 2. Suppose the operator Br is such
that, for each edge v;; € E'\ Ey, a number 7;; € (0,1) is specified, and the operator Tingij
is unitary. Then, Br is an abstract Gram operator if and only if

(i) the numbers v, j € V, defined by (16), are positive;
ii) the operator BS , defined by (15), is an abstract Gram operator.
T'o

APPENDIX A.

In this appendix, we prove several elementary but useful propositions. In the following
statements, H, Hy and Hs are arbitrary Hilbert spaces.

Proposition A.1. For any z,y € H,

(i) Im(z,y) = Re(z,iy),
(ii) Re(z,y) = —Im(x,iy),
(iii) (z,y) = Re(x,y) +iRe(x,iy) = — Im(z,dy) + i Im(z,y).

Proof. Let (z,y) = a + ib, where a,b € R. Then (z,iy) = —i(x,y) = b — ia. O
As a corollary, we get the following statements.
Proposition A.2. Let A: Hy — Hy be an operator. If
Re(Ax,y) =0 or Im(Az,y) =0
for any x € Hy and y € Ha, then A =0.
Proposition A.3. Let A: Hy — Hy and B : Hy — Hy be operators. If
(Az,y) + (By,z) =0
for any x € Hy, y € Hy, then A= B* =0.
Proof. For any x € Hy, y € Ho, we have

0= Re((Az, ) + (By, ) = Re(A + B*)z, y),
0= Im((Az, ) + (By, ) = Im{(A — B*)a, y),

so by Proposition A.2, we get A+ B* =0 and A — B* = 0. O
Proposition A.4. Let A: Hy — Hy and B : Hy — Hy be operators. If
(Az,y) + (By,z) = Re{(A+ B*)x,y)
for any x € Hy, y € Hy, then A = B*.
Proof. We have
0= (Az,y) + (By,z) — Re{(A + B*)z,y) = iIlm({Az, y) + (By, z)).
So Im((A — B*)x,y) = 0. Thus by Proposition A.2, we get A = B*. O

APPENDIX B.

Proof of Lemma 4.4. (=) Suppose that Br can be reduced on I'y. From (5), for z =
(TFx:)iev,, we get

(BPz2) = > T zil> +2 ) Re(B)T ), T; a;).
%) vij; €EEo
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Taking into account that E'\ Ey = {~;; : j € V4,4 € V;} and applying (9), (10), and (11),
we find from (5) that

(Bra,x) =Y lla;l> +2 Y Re(Bijaj,zi) =Y (ITa1° + Y [1Dijayll°)

Jjev vij€E JEV i€V,
+2 > Re(ByT iz, Tiw) +2 Y Y Re(Djja;, Tjx;).
Yij €Eo JEV i€V,
Since V\Vo= || Vyand V, = {j e V:V; # &},
JeVy
(Bra,x) = (BRyz,2) = Y > (1T will® + 2Re(Dyjy, T wi) + || Dijas |°) -
j€V+ ier

Thus, we conclude equality (12).

(<) Now let (12) hold for some objects introduced by items (a), (b), and (c) of
Definition 4.1.

For a vertex k € V consider © = (x;);cv such that x; = 0 for all vertices i # k and xy,
is an arbitrary vector from Hy. Then, equality (12) takes the form

lwll® = 1 T5wnl® + D I1Dswarl. (17)
1€ Vg

The last one is equivalent to (11).

For a pair of vertices j € V and k € V;, consider & = (x;);cv such that z; = 0 for all
i & {j,k}, and z;, x), are arbitrary vectors from H;, Hy, respectively. Then, equality (12)
takes the form

;1% + |z ]|* + 2 Re(Byjzj, 2x)
=Tz + > Dyl + 1 Ti ek + Dijas | + D | Diwel®
i€V \{k} i€V,
Taking into account that equality (17) holds for k and j we get
2Re (Byjzj, ax) = | Tiaw + Dijajl® — | Tiwr]? — | Drja;||* = 2Re (Dyjay, Tiaw).

Thus by Proposition A.2, we conclude equality (9).

For a pair of vertices k,j € Vg, k # j, consider & = (z;);ev such that z; = 0 for all
i ¢ {k,j}, and z;, ) are arbitrary vectors from H;, Hy, respectively. Then, equality (12)
takes the form

2511 + llx|I* + 2 Re(Buj, we)

= 1T} )| + | T ael? + 2Re(BY Twy, Traw) + D | Dl + > 1Dy |1
1€V iEVj

After applying equality (17) for k and j, we get Re(Byjz;, zx) = Re(B,ng;‘a:j,T,:xk).
Hence by Proposition A.2, equality (10) follows immediately. O

APPENDIX C.

Proof of Lemma 4.6. We fix the root subgraph I'y and prove the lemma by induction on
the number of elements m = m(T") in the set V; = V4 (I"). The case m = 0 is trivial, so
we assume that m > 0.

The base case. The case m = 1 has been proved in Corollary 5.4.

The induction step. Suppose m > 1. Fix a vertex k € L4_1 NV, and define T’ = f‘(k)
by (7) and T' = I'(k) by (8).
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By Corollary 5.4, the operator By—which is Br—can be reduced on . Thus, taking
into account statement (i) of Proposition 3.1, there exist (a) spaces H; and injective
operators T; : H; — H;, i € V; (b) operators Dix : H, — H;, i € Vg; and (c) the
operator B = (B”)”Ev, B” H — H;; such that

Biy = Ti:Dy, i € Vg,

Bz‘j = Al'BijT;, Yij € E,

IHj = Tjj’; + Z f);}f)ij, j eV.
zeY)j

Then, by Corollary 4.5, Bf is nonnegative. By statement (ii) of Proposition 3.1,
m(T) = m — 1, so the operator Bf can be reduced on I'g based on the inductive
assumption. Thus, there exist (a) spaces H? and injective operators T, : HY — ﬁi, i€ ‘7;
(b) operators Dy : H; — H?, j € V, and i € Vj; and (c) the operator BY, = (BY;)ijeve
BY; - H — H}; such that

B = z[)ija je‘N/_F,Z'EVj,
Bij = TBZOJT Yij € EQ,
Iy =T/T;+ > DjDy, jeV.

ief/j

The spaces H? are defined for i € V=V \ V. For i € Vj, we set HY = H;, and then
define the operators 7T; and D;; as follows:

o Ti; ZEV}C) D, — bilﬁ j:k7i€Vk;,
! TiTi; xS ‘7, " Diji;k7 je V+, 1€ Vj.
For j € V. and i € V;, we obtain
Tl/fzf)ljj—'* = TZBZ]T* = Bij, j € V+, xS Vj.

J

ﬁﬁz :B'La ‘:kv.evv
T'Dij{ k k J v k
J

Thus, we have proved equality (9).
Since V) C V, for adjacent vertices ¢ and j from Vj, we get

0 _ i RO ks _ i ok
TBYT = T, BYT T = T,ByT! = By

This proves equality (10).
For j € V), we have V = V; = 9, and therefore, Iy, = TT* TjTj*. Let j = k.

In this case, V), = J, S0 IHk = Tka, and therefore, Tka = TkaT,;‘T,;‘ = T}y . Since
Vi = Vg, it follows that

Iy, = TkTI: + Z kaDik = TkT; + Z D;(kDilv
i€Vk i€V,
The last case is j € V' \ {k}. In this case, V; = @ and V; =V}, so
Iy, = TyTy = T30 77 =1, (T]T; +y D;;Dij)f; =T,T; + > DD
i€V; i€V;

Thus, in all three possible cases, condition (11) is fulfilled. O
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APPENDIX D.

Proof of Lemma 6.2. We prove the proposition by induction on the number of elements
m =m(T) in the set V; = V. (T"). Case m = 0 is trivial, so assume that m > 0.

The base case. In the case where m = 1, Corollary 2.6 establishes the nonnegativity of
the operators IV;, and Corollary 2.8 proves their invertibility.

The induction step. Suppose m > 1, fix k € L4_1 NV, and define T' = T'(k) by (7)
and T' = T'(k) by (8).

By statement (i) of Proposition 3.1, Vy = {k}, so N; = I for j € V \ {k}, and

Np=I- BN, 'Byx =1~ BBy = Ni
i€V i€V

is nonnegative by Corollary 2.6 and invertible by Corollary 2.8. Then, by Proposition 6.1,
the operator By = (Bi;)

i,jev
N.V?By;, i=k,
Bi; =< BN, %, j=k, vij € E,
B otherwise,

YK
is an abstract Gram operator, as Br is assumed to be one.

By statement (ii) of Proposition 3.1, Vi, = Vi \ {k} and V; = V; for j € V... Thus, for
any j € V, \ {k}, the star T} = T, (4, V;) coincides with T and can be extended by V; as
an induced subgraph of T. Let us show that the operators S; = S;(Bg, V;) are invertible.
It is clear that S’j =5;ifk ¢ f/-. Let k € f/-. Taking into account the inequality

—1/2

1Brjal® < [INkl[[INy ™" Brjll* < || Byl

we get that S; < Sj. So, all operators Sj, j e f/+, are invertible and operators Nj, j € v,
are nonnegative and invertible by the inductive assumption.

To finish the proof we need to show that N = N; forall j € V+ It holds for j €
Lg_1N V+ because N; = I = N; and Bw = B” for any ¢ € V;. Suppose that for some
0 < ¢ < d, the equality holds for all j € £, NV,. Let j € Ly ﬁV+, then for vertex i € V;
there are three possibilities: (i) i € L, N Vi, (i) i€ L,\ Vi, and (i) g=d—1,i=k. In
the first case, N; = N; by the inductive assumption; in the second one, N, =N, =1I; and
in both these cases, B; i = Bij, so

B;iN7'B;; = BjiN; 'Bj, i€ V;\{k}.
In the last case,
BjxN; "By = (Bji N, '/?) - 1 (N'/?Byj) = Bjx Ny ' By,
Thus, Nj = Nj in all three possible cases. O
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