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ON THE REDUCTION OF A GRAM OPERATOR
THAT CORRESPONDS TO A MULTIROOTED GRAPH

OLEKSANDR STRILETS

Abstract. Any abstract Gram operator is consistent with some graph. For an
arbitrary operator B\Gamma that is consistent with a graph \Gamma , the question arises as to
when it is an abstract Gram operator, i.e., whether it is nonnegative. We study this
question for certain types of graphs. The simplest case is a star graph. Next, we use
the results obtained for star graphs to explore a more general case, where a graph \Gamma 
can be treated as a collection of rooted trees, with their roots connected by additional
edges into a connected subgraph \Gamma 0. The work shows that the question about the
nonnegativity of an operator B\Gamma for such a graph can be reduced to the corresponding
question for some operator that is consistent with the subgraph \Gamma 0.

1. Introduction

Let n be a natural number greater than 1 and V = \{ 1, . . . , n\} . We consider complex
Hilbert spaces Hi, i \in V , their external direct sum H = H1 \oplus \cdot \cdot \cdot \oplus Hn along with a
bounded operator B : H \rightarrow H. The operator B can be treated as a block matrix (Bij)i,j\in V

where its block elements are operators Bij : Hj \rightarrow Hi. If B is nonnegative (and thus
self-adjoint) with diagonal block elements being identity operators, we call it an abstract
Gram operator. The G-construction allows us to build a system of n subspaces for any
abstract Gram operator. We denote such a system by \scrG (H1, . . . ,Hn;B). Furthermore,
for any system of subspaces, the Gram operator of the system can be introduced and
satisfies all conditions of the abstract Gram operator definition. A system of subspaces
built via the G-construction applied to this operator is unitarily equivalent to the original
system. Criteria for the irreducibility of a system and the unitary equivalence of two
systems can be formulated in terms of their Gram operators. For more details about the
G-construction, we refer to [9] and [11].

All this makes the notion of an abstract Gram operator a useful tool for studying
classification problems of systems of subspaces (see for example [1,5,7–9]). To solve these
problems, one builds an operator B = (Bij)i,j\in V such that Bii = I and B\ast 

ij = Bji. To
demonstrate that it is an abstract Gram operator one needs to examine whether B is
nonnegative. This problem can be quite challenging but may become easier if some block
elements are zero. Note that a block element Bij , i \not = j, is zero if and only if related
subspaces of the system \scrG (H1, . . . ,Hn;B) are orthogonal. Finite simple undirected graphs
are useful for encoding the information about which block elements are zero. Namely, for
an operator B, where Bii = I and B\ast 

ij = Bji, i, j \in V , we construct a graph \Gamma = (V,E),
where two vertices i and j are considered adjacent (i.e., \gamma ij \in E) if and only if the block
element Bij is nonzero.

It was initially assumed that the set of indices V consisted of natural numbers from 1
to n, usually with n > 1, but all that was actually used was that V is a finite set. This
generalization is useful for our further consideration. Therefore, from now on, we assume
that V is an arbitrary finite set usually containing two or more elements. We denote
by x = (xi)i\in V a vector in the direct sum of the Hilbert spaces associated with vertices,
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where xi is the component corresponding to the i-th space. In this paper, we consider
only finite simple undirected graphs. For conciseness, we will refer to them as graphs.
Additionally, all operators are assumed to be bounded throughout this paper.

Definition 1.1. Let \Gamma = (V,E) be a graph and B = (Bij)i,j\in V be an operator in the
direct sum H of some Hilbert spaces Hi, i \in V . We say that B is consistent with \Gamma if the
operators Bij and Bji are nonzero for all edges \gamma ij \in E, and the equality

\langle Bx, x\rangle =
\sum 
i\in V

\| xi\| 2 +
\sum 

\gamma ij\in E

\mathrm{R}\mathrm{e}\langle (Bij +B\ast 
ji)xj , xi\rangle (1)

holds for any x = (xi)i\in V .

Proposition 1.2. An operator B = (Bij)i,j\in V is consistent with a graph \Gamma = (V,E) if
and only if its block elements fulfill the following conditions:

Bii = I, i \in V ; (2)
B\ast 

ij = Bji, i, j \in V ; (3)
Bij \not = 0\leftrightarrow \gamma ij \in E, i, j \in V, i \not = j. (4)

Proof. By definition of the inner product in the external direct sum of Hilbert spaces, we
have the following equality for any x = (xi)i\in V :

\langle Bx, x\rangle =
\sum 
i\in V

\langle Biixi, xi\rangle +
\sum 
i,j\in V
i<j

(\langle Bijxj , xi\rangle + \langle Bjixi, xj\rangle ).

Condition (2) implies that \langle Biixi, xi\rangle = \| xi\| 2, i \in V ; condition (3) implies equalities

\langle Bijxj , xi\rangle + \langle Bjixi, xj\rangle = 2\mathrm{R}\mathrm{e}\langle Bijxj , xi\rangle = \mathrm{R}\mathrm{e}\langle (Bij +B\ast 
ji)xj , xi\rangle , \gamma ij \in E;

and condition (4) provides us with a one-to-one correspondence between the set of edges E
and the set \{ (i, j) : i, j \in V, i < j,Bij \not = 0\} . Thus, it follows from these conditions that B
is consistent with \Gamma .

Now, suppose operator B is consistent with \Gamma .
For a vertex k \in V , consider x = (xi)i\in V such that xi = 0 if i \not = k and xk is an

arbitrary vector in Hk. Then, equality (1) takes the form \langle Bkkxk, xk\rangle = \| xk\| 2 and we
have proved (2).

For vertices j, k \in V , j \not = k, consider x = (xi)i\in V , such that xi = 0 if i \not \in \{ j, k\} and
xj , xk are arbitrary vectors in Hj , Hk correspondingly.

In the case where \gamma jk \not \in E equality (1) takes the form \langle Bjkxk, xj\rangle + \langle Bkjxj , xk\rangle = 0.
Thus, by Proposition A.3, we conclude that Bjk = B\ast 

kj = 0. Taking into account that
\gamma ij \in E implies Bij \not = 0, we have proved (4).

If \gamma jk \in E, equality (1) takes the form

\langle Bjkxk, xj\rangle + \langle Bkjxj , xk\rangle = \mathrm{R}\mathrm{e}\langle (Bjk +B\ast 
kj)xk, xj\rangle .

Then, by Proposition A.4, we obtain Bjk = B\ast 
kj . Thus, we have proved (3) for adjacent

vertices. For the remaining pairs of vertices, this is obvious. \square 

For brevity, an operator that is consistent with a graph \Gamma will be denoted by B\Gamma . It is
clear that such an operator is an abstract Gram operator if and only if it is nonnegative.
Note also that condition (3) implies that equality (1) can be shortened to the following
form:

\langle B\Gamma x, x\rangle =
\sum 
i\in V

\| xi\| 2 + 2
\sum 

\gamma ij\in E

\mathrm{R}\mathrm{e}\langle Bijxj , xi\rangle . (5)

In [6], the authors consider a unicyclic graph \Gamma = (C; \Gamma 1, . . . ,\Gamma m) and an operator B\Gamma 

such that for each pair of adjacent vertices i and j, there exists a number \tau ij = \tau ji \in (0, 1)
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such that \tau  - 1
ij Bij is a unitary operator. It was shown that the question of the nonnegativity

of B\Gamma can be reduced to the same question for some operator B\prime 
C . Later, in [10], this

result was generalized to the case where the cycle C is replaced with an arbitrary
graph \Gamma 0 = (V0, E0), and the blocks Bij are not required to be unitary up to a scalar for
adjacent vertices i and j belonging to V0. In this paper, we further generalize this result
by removing restrictions on the block elements Bij for all adjacent vertices i and j.

We begin with a star graph \Gamma  \star (Sec. 2). In particular, we prove a criterion for the
nonnegativity of B\Gamma  \star 

. Then, we introduce the notion of a root subgraph and describe a
class of graphs that can be studied using the proposed approach (Sec. 3). We formulate the
main theorem of the paper (Sec. 4) and propose a reduction algorithm (Sec. 5). Choosing
a root subgraph in a graph leads to a partial order on vertices and splits them into layers.
At each step of the reduction algorithm, one selects a vertex k from the “pre-outer” layer
and calculates some operator Nk. To continue, this operator must be nonnegative. If so,
vertices adjacent to k from the “outer” layer are removed. For each vertex j not removed
and adjacent to k, the block elements Bkj are recalculated. This recalculation is simpler
and the algorithm more applicable if the operators Nk are invertible. Hence in Sec. 6, we
reformulate the main theorem of the paper for two special cases when all operators Nk

are guaranteed invertible.

2. Star

Definition 2.1. Let an operator B\Gamma = (Bij)i,j\in V be consistent with a graph \Gamma = (V,E).
For any vertex k \in V and any subset of vertices \scrV \subset V adjacent to vertex k, we define
two operators:

Sk(B\Gamma ,\scrV ) =
\sum 
i\in \scrV 

BkiBik : Hk \rightarrow Hk,

Nk(B\Gamma ,\scrV ) = I  - Sk(B\Gamma ,\scrV ) : Hk \rightarrow Hk.

Consider the graph \Gamma  \star = \Gamma  \star (k,\scrV ) = (V \star , E \star ), which is a star with center k \in V \star , i.e.,
V \star = \{ k\} \sqcup \scrV and E \star = \{ \gamma ki\} i\in \scrV .

r
rr

r r
\cdot \cdot \cdot 

r
k

If V \star = \{ 1, . . . , n\} then the operator B\Gamma  \star takes the form

B\Gamma  \star 
=

\left(            

I . . . 0 B1k 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . I Bk - 1k 0 . . . 0
Bk1 . . . Bkk - 1 I Bkk+1 . . . Bkn

0 . . . 0 Bk+1k I . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 Bnk 0 . . . I

\right)            
.

For brevity, let the operator Nk(B\Gamma  \star 
,\scrV ) be denoted as N \star .

Proposition 2.2. For any x = (xi)i\in V \star 

\langle B\Gamma  \star x, x\rangle = \langle N \star xk, xk\rangle +
\sum 
i\in \scrV 
\| xi +Bikxk\| 2. (6)

Proof. By (5) for any x, we have

\langle B\Gamma  \star 
x, x\rangle = \| xk\| 2 +

\sum 
i\in \scrV 

\bigl( 
\| xi\| 2 + 2\mathrm{R}\mathrm{e}\langle Bikxk, xi\rangle 

\bigr) 
.
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Taking into account that

\| y\| 2 + 2\mathrm{R}\mathrm{e}\langle x, y\rangle = \| y + x\| 2  - \| x\| 2

we obtain
\langle B\Gamma  \star x, x\rangle = \| xk\| 2 +

\sum 
i\in \scrV 

\bigl( 
\| xi +Bikxk\| 2  - \| Bikxk\| 2

\bigr) 
.

But
\| xk\| 2  - 

\sum 
i\in \scrV 
\| Bikxk\| 2 = \langle xk  - Sk(B\Gamma  \star ,\scrV )xk, xk\rangle ,

so we get (6). \square 

Theorem 2.3. The operator B\Gamma  \star 
is an abstract Gram operator if and only if the opera-

tor N \star = Nk(B\Gamma  \star 
,\scrV ) is nonnegative.

Proof. If \langle N \star xk, xk\rangle \geq 0 for any xk \in Hk, then for any x \in H, by equality (6), we get
\langle B\Gamma  \star 

x, x\rangle \geq 0.
Let B\Gamma  \star 

be nonnegative. For any xk \in Hk, define x = (xi)i\in V by setting xi =  - Bikxk,
i \in \scrV . Then, by equality (6), we obtain \langle N \star xk, xk\rangle = \langle B\Gamma  \star 

x, x\rangle \geq 0. \square 

Corollary 2.4. Let B\Gamma  \star 
be an abstract Gram operator. Then, its kernel consists of all

vectors x = (xi)i\in V \star such that xk \in \mathrm{k}\mathrm{e}\mathrm{r}N \star and xi =  - Bikxk, i \in \scrV .

Remark. Note that Theorem 2.3 is a corollary of the following statement (to see this,
set H1 = \oplus i\in \scrV H0,i, H2 = H0,k, Ai = I for i = 1, 2, and X = (Bik)i\in \scrV ):

Theorem 2.5. Let H1 and H2 be Hilbert spaces, and let

A =

\biggl( 
A1 X
X\ast A2

\biggr) 
: H1 \oplus H2 \rightarrow H1 \oplus H2,

where A1, A2, and X are bounded operators. If A1 is nonnegative and invertible, then
A \geq 0 if and only if A2 \geq X\ast A - 1

1 X.

This theorem is a well-known result in matrix analysis; see, for example, Theorem 1.3.3
in [2] and the discussion of its history in Section 1.7. In [4], the authors provide three
different proofs of this theorem for operators in Hilbert spaces, assuming that H1 and H2

coincide (see Theorem 5.1). However, this restriction is not essential for the proofs. Let
us note that the proofs of Proposition 2.2 and Theorem 2.3 follow the same ideas as the
third proof in [4].

Recall that a subgraph of a graph \Gamma is called an induced subgraph if any two vertices
of the subgraph that are adjacent in the graph \Gamma are adjacent in the subgraph. Let
a graph \=\Gamma = (\=V , \=E) be an induced subgraph of the graph \Gamma = (V,E), then for any
vector \=x = (\=xi)i\in \=V , we can define the vector x = (xi)i\in V by setting xi = \=xi if i \in \=V , and
xi = 0 otherwise. Thus, the nonnegativity of the operator B\Gamma = (Bij)i,j\in V implies that
the operator B\=\Gamma = (Bij)i,j\in \=V is nonnegative, since by (5) we have equality \langle B\=\Gamma \=x, \=x\rangle =
\langle B\Gamma x, x\rangle . Hence, we get a useful consequence of Theorem 2.3:

Corollary 2.6. Let B\Gamma be an abstract Gram operator. If a star \Gamma  \star (k,\scrV ) is an induced
subgraph of the graph \Gamma , then the operator Nk(B\Gamma ,\scrV ) is nonnegative.

Definition 2.7. Let a star \Gamma  \star = \Gamma  \star (k,\scrV ) be an induced subgraph of a graph \Gamma , and let
\v \scrV be some nonempty subset of vertices V \setminus V \star . We say that the star \Gamma  \star can be extended
by vertices \v \scrV if the star \Gamma  \star (k,\scrV \sqcup \v \scrV ) is an induced subgraph of the graph \Gamma . If the set
contains only one vertex, we aslo say that the star can be extended by the vertex.
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Corollary 2.8. Let an operator B\Gamma be a Gram operator, and let a star \Gamma  \star = \Gamma  \star (k,\scrV )
be an induced subgraph of the graph \Gamma . If \Gamma  \star can be extended by some vertices \v \scrV such
that the operator S = Sk(B\Gamma , \v \scrV ) is invertible, then the operator N = Nk(B\Gamma ,\scrV ) is also
invertible.

Proof. Since \Gamma  \star can be extended by vertices \v \scrV , it follows from Definition 2.7 that the
star \Gamma  \star (k,\scrV \sqcup \v \scrV ) is also an induced subgraph of \Gamma . Hence, by Corollary 2.6, the operator
Nk(B\Gamma ,\scrV \sqcup \v \scrV ) = N  - S is nonnegative, i.e., 0 \leq S \leq N . Thus, if the operator S is
invertible, then so is N . \square 

3. Graph with a root subgraph

Suppose \Gamma 0 = (V0, E0) is a connected graph and, for each r \in V0, let \Gamma r = (Vr, Er) be
a rooted tree. Consider a graph \Gamma = (V,E), formed by identifying each vertex r of the
graph \Gamma 0 with the root of the corresponding tree \Gamma r. In other words,

V =
\bigsqcup 
r\in V0

Vr and E \setminus E0 =
\bigsqcup 
r\in V0

Er.

We call \Gamma 0 a root subgraph of \Gamma . For a graph with a selected root subgraph, we write
\Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0). Usually, depending on the context, we use the symbol \Gamma to denote
both a graph with a selected root subgraph and the graph itself. If we need to distinguish
them clearly, we will use the notation \zeta (\Gamma ) to refer to the graph itself after disregarding
the root subgraph.

(a)

\Gamma rr r r
r r r r r r

r r r r r r
r r r

r r

(b) \Gamma 0 1

2

3

4rr r r
r r r r r r

r r r r r r
r r r

r r

(c) \Gamma 1

\Gamma 2

\Gamma 3

\Gamma 4rr
r r

r
r r r

r
r r r

r r r r r
r r

r
r

Figure 1. A graph (a), a selected root subgraph (b), and the rooted trees (c)

For each vertex i \in Vr, there exists a unique path from i to the root of \Gamma r. Thus, we
can define the distance d(i) = d(\Gamma , i) from that vertex to \Gamma 0 as the length of this path.
The depth d = d(\Gamma ) of \Gamma is defined as \mathrm{m}\mathrm{a}\mathrm{x}\{ d(i) : i \in V \} . For each vertex i \not \in V0, the
previous vertex p(i) = p(\Gamma , i) is defined as a vertex in the path from i to the root such
that d(i) = d(p(i)) + 1. Then, for each vertex j \in V , the set of following vertices can be
defined as

\scrV j = \scrV j(\Gamma ) = \{ i \in V : p(i) = j\} .
The set of all vertices V can be split into layers

V =

d\bigsqcup 
q=0

\scrL q, \scrL q = \scrL q(\Gamma ) = \{ i \in V : d(i) = q\} , q = 0, . . . , d.

Note that the following equalities hold:

\scrL 0 = V0, \scrL q =
\bigsqcup 

j\in \scrL q - 1

\scrV j , q = 1, . . . , d.

Let V+ = V+(\Gamma ) denote the set of vertices, each of which has a nonempty set of
following vertices. Then, for any vertex j \in V+, the star \Gamma j

 \star = \Gamma  \star (j,\scrV j) is an induced
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d = 3

\scrL 0 rr r r
\scrL 1

r r r r r r
\scrL 2
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\scrL 3r r r
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Figure 2. Distance from a vertex to the root subgraph (a), following
and previous vertices (b), the layers (c)

subgraph of the graph \Gamma . Moreover, \Gamma j
 \star can be extended by the previous vertex p(j) if

j \not \in V0, or—taking into account that \Gamma 0 is assumed to be connected—with at least one
vertex from V0 if j \in V0 and | V0| \geq 2.

(a)

V+(\Gamma )

r
r r r

r r r r
r r r

r r

r r r
r r rr r

(b)

k

j
\Gamma j
 \star 

\Gamma k
 \star 

p(k)

r
r r

r r r r r
r r

r
r r rr

r r r

r r
r

(c)
\~\Gamma (k)

k

\scrV k

rr r r
r r r r r r

r r r r r r
r r

r r r

Figure 3. The vertices that have a nonempty set of the following
vertices (a), examples of extensions of star subgraphs (b), \~\Gamma (k) as a root
subgraph (c)

It is easy to see that a root subgraph is not unique in general. While it is not particularly
useful, we can treat any graph as its own root subgraph: \Gamma \prime = (\Gamma ; \{ \Gamma \prime 

r\} r\in V ), where trees \Gamma \prime 
r

are trivial, i.e., V \prime 
r = \{ r\} and E\prime 

r = \varnothing . In this case, d = 0, V+(\Gamma 
\prime ) = \varnothing , and \zeta (\Gamma \prime ) = \zeta (\Gamma ).

Suppose d > 0. By the definition of the depth d, the set \scrL d is nonempty. Then, the
set \scrL d - 1\cap V+ cannot be empty either. Fix a vertex k from this set and define the induced
subgraph \~\Gamma (k) = ( \~V , \~E) of the graph \Gamma such that \~V = V \setminus \scrV k and \~E = E \setminus \{ \gamma ki\} i\in \scrV k

.
Then, the graph \Gamma 0 is an induced subgraph of \~\Gamma (k) and can be selected as a root subgraph
of \~\Gamma (k). Therefore, we set

\~\Gamma (k) = (\Gamma 0; \{ \~\Gamma r\} r\in V0)
\~\Gamma r = (\~Vr, \~Er) = (Vr \setminus \scrV k, Er \setminus \{ \gamma ki\} i\in \scrV k

). (7)

Futhermore, we can select \~\Gamma (k) to be a root subgraph of graph \Gamma and define

\^\Gamma (k) = (\~\Gamma (k); \{ \^\Gamma r\} r\in \~V ),
\^\Gamma r = (\^Vr, \^Er) =

\Biggl\{ 
\Gamma k
 \star , r = k,

(\{ r\} ,\varnothing ), r \in \~V \setminus \{ k\} .
(8)

Proposition 3.1. Let \~\Gamma = \~\Gamma (k) and \^\Gamma = \^\Gamma (k) be defined by (7) and (8), respectively. If
we denote \^V+ = V+(\^\Gamma ), \^\scrV j = \scrV j(\^\Gamma ), j \in V , \~V+ = V+(\~\Gamma ), and \~\scrV j = \scrV j(\~\Gamma ), j \in \~V , then

(i) \^V+ = \{ k\} , \^\scrV j = \varnothing if j \not = k, and \^\scrV k = \scrV k;
(ii) \~V+ = V+ \setminus \{ k\} , \~\scrV j = \scrV j if j \not = k, and \~\scrV k = \varnothing .



350 OLEKSANDR STRILETS

As a sample (see figures above), we choose a graph containing two cycles and illustrate
the introduced notions on it.

4. Reduction theorem

Definition 4.1. Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0
). An operator B\Gamma , consistent with the graph \Gamma ,

can be reduced on the root subgraph \Gamma 0 if there exist
(a) a Hilbert space H0

i and an injective operator Ti : H
0
i \rightarrow Hi for each vertex i \in V ;

(b) an operator Dij : Hj \rightarrow H0
i for each pair of vertices j \in V+ and i \in \scrV j ;

(c) an operator B0
\Gamma 0

= (B0
ij)i,j\in V0

consistent with \Gamma 0, where B0
ij : H

0
j \rightarrow H0

i ;
and the following conditions hold:

Bij = TiDij , j \in V+, i \in \scrV j , (9)

Bij = TiB
0
ijT

\ast 
j , \gamma ij \in E0, (10)

I = Bjj = TjT
\ast 
j +

\sum 
i\in \scrV j

D\ast 
ijDij , j \in V. (11)

B0
\Gamma 0

is called a reduction of B\Gamma on \Gamma 0.

The reduction is not unique. To show this, consider arbitrary unitary operators Ui :
H0

i \rightarrow \~H0
i , i \in V . Then, the operators \~Ti = TiU

\ast 
i , i \in V ; \~Dij = UiDij , j \in V+,

i \in \scrV j ; and \~B0
ij = UiB

0
ijU

\ast 
j , \gamma ij \in E0; fulfill conditions (9), (10), and (11). The following

proposition shows that any two reductions are connected in this way and introduces
uniquely defined operators Ni, i \in V .

Proposition 4.2. Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0
) and suppose that B\Gamma can be reduced on \Gamma 0.

Define operators Ni = TiT
\ast 
i and natural embeddings Ji : \mathrm{I}\mathrm{m}Ni \rightarrow Hi : x \mapsto \rightarrow x, i \in V .

Then,

(i) there exist unitary operators Ui, i \in V , such that Ti = N
1/2
i JiUi;

(ii) the operators Ni are uniquely defined;
(iii) if Ni = 0 then i \in V0 and it is the only vertex of V0.

Proof. (i) Since \mathrm{k}\mathrm{e}\mathrm{r}Ti = \{ 0\} , the partial isometry Wi of the polar decomposition Ti =

N
1/2
i Wi maps H0

i onto \mathrm{I}\mathrm{m}Ni unitarily. Thus, Ti = N
1/2
i JiUi, where Ui : H

0
i \rightarrow \mathrm{I}\mathrm{m}Ni :

x \mapsto \rightarrow Wix is a unitary operator.
(ii) Note that for i \not \in V+, equality (11) takes the form Ni = I. Thus, the operators Ni

are uniquely defined for the layer \scrL d, as this layer does not intersect V+. Suppose that
the operators Ni are uniquely defined for some layer \scrL q with 0 < q \leq d. Then the
operators \=Ti = N

1/2
i Ji are uniquely defined for this layer as well. Since \mathrm{k}\mathrm{e}\mathrm{r} \=Ti = \{ 0\} ,

the solution \=Dij of the equation Bij = \=Ti
\=Dij is unique for any pair of vertices i \in \scrL q

and j = p(i) \in \scrL q - 1. Thus, any Ti and Dij for i \in \scrL q, j = p(i) \in \scrL q - 1, are equal
to \=TiUi and U\ast 

i
\=Dij , respectively, where Ui is a certain unitary operator. Therefore,

D\ast 
ijDij = \=D\ast 

ij
\=Dij and equation (11) uniquely determines Nj for j \in \scrL q - 1.

(iii) If Ni = 0, then Ti = 0. Let j be a vertex adjacent to i. It cannot be the previous
vertex to i, because otherwise, by (9), we would have Bij = 0. This implies i \in V0.
Now, the vertex j cannot belong to V0, because otherwise, by (10), we would again have
Bij = 0. Since we assume that \Gamma 0 is connected, we conclude that V0 = \{ i\} . \square 

The main result of the paper is the following theorem.

Theorem 4.3. Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0
). The operator B\Gamma is an abstract Gram operator

if and only if it can be reduced on the root subgraph \Gamma 0 with its reduction B0
\Gamma 0

also being
an abstract Gram operator.
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Lemma 4.4. Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0
). The operator B\Gamma can be reduced on the root

subgraph \Gamma 0 if and only if there exist objects introduced by items (a), (b), and (c) of
Definition 4.1, such that for any vector x = (xi)i\in V , the following equality holds:

\langle B\Gamma x, x\rangle = \langle B0
\Gamma 0
z, z\rangle +

\sum 
j\in V+

\sum 
i\in \scrV j

\| T \ast 
i xi +Dijxj\| 2, z = (T \ast 

i xi)i\in V0 . (12)

The proof of this lemma in one direction relies on equality (5). To prove it in another
direction, we use ideas similar to those of Proposition 1.2. For details of the proof, see
Appendix B.

Corollary 4.5. Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0) and let the operator B\Gamma can be reduced on the root
subgraph \Gamma 0. Then, B\Gamma is an abstract Gram operator if and only if so is its reduction B0

\Gamma 0
.

Proof. By the previous lemma, equality (12) holds for any x = (xi)i\in V , since the opera-
tor B\Gamma can be reduced on \Gamma 0. Thus, if operator B0

\Gamma 0
is nonnegative then the right-hand

side of (12) is nonnegative for any x, so operator B\Gamma is also nonnegative.
Now suppose that B\Gamma is nonnegative while B0

\Gamma 0
is not. Since \mathrm{k}\mathrm{e}\mathrm{r}Ti = \{ 0\} , the

set \mathrm{I}\mathrm{m}T \ast 
i is dense in H0

i for any i \in V . Therefore, if for some vector \=z = (\=zi)i\in V0
we

have \langle B0
\Gamma 0
\=z, \=z\rangle < 0 then there exists a vector z = (T \ast 

i xi)i\in V0 such that \langle B0
\Gamma 0
z, z\rangle < 0. Fix

these vectors xi, i \in V0 = \scrL 0, and define positive numbers \lambda and \varepsilon by equalities

\lambda =  - \langle B0
\Gamma 0
z, z\rangle , \varepsilon =

\sqrt{} 
\lambda 

| V | 
.

For each vertex i \in \scrL q, q = 1, . . . , d, there exists a unique previous vertex j. It belongs to
the layer \scrL q - 1. Since \mathrm{I}\mathrm{m}T \ast 

i is dense in H0
i and  - Dijxj \in H0

i , for a given vector xj \in Hj ,
we can find a vector xi \in Hi such that \| T \ast 

i xi +Dijxj\| < \varepsilon . Fix these vectors. Thus, we
have fully defined the vector x = (xi)i\in V for which by (12) we obtain the estimate

\langle B\Gamma x, x\rangle <  - \lambda + \varepsilon 2| V \setminus V0| < 0.

This contradicts the assumption that B\Gamma is nonnegative. \square 

This corollary implies that proving the following lemma completes the proof of Theo-
rem 4.3.

Lemma 4.6. Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0
). If B\Gamma is an abstract Gram operator, then it can be

reduced on the root subgraph \Gamma 0.

5. Reduction algorithm

Definition 5.1. Let an operator B\Gamma = (Bij)i,j\in V be consistent with a graph \Gamma = (V,E).
For a vertex k \in V and a subset of vertices \scrV \subset V that are adjacent to k, such that the
operator N = Nk(B\Gamma ,\scrV ) is nonnegative, denote by J the natural embedding of \mathrm{I}\mathrm{m}N
into Hk and define the operator

Tk(B\Gamma ,\scrV ) = N1/2J.

Proposition 5.2. Under the conditions of the previous definition, let T = Tk(B\Gamma ,\scrV ) and
suppose j is a vertex in V \setminus \scrV that is adjacent to k. If BkjBjk \leq N , then there exists a
unique operator Dj such that Bkj = TDj.

Proof. Note that the operator T is injective and satisfies the equality N = TT \ast . Then,
since BkjB

\ast 
kj \leq TT \ast , Douglas’ lemma (see [3]) implies that a solution Dj to the equa-

tion Bkj = TDj exists. The solution is unique because \mathrm{k}\mathrm{e}\mathrm{r}T = \{ 0\} . \square 

By Dkj(B\Gamma ,\scrV ) denote the operator whose existence was established by the previous
proposition.
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Proposition 5.3. Suppose the star \Gamma  \star = \Gamma  \star (k,\scrV ) is an induced subgraph of \Gamma and can
be extended by a vertex j \in V \setminus \scrV . If B\Gamma is an abstract Gram operator, then all conditions
required to define the operator Dj = Dkj(B\Gamma ,\scrV ) are satisfied.

Proof. It follows from Definition 2.7 that the star \Gamma  \star (k,\scrV \sqcup \{ j\} ) is an induced subgraph
of \Gamma . Hence, by Corollary 2.6, the operator Nk(B\Gamma ,\scrV \sqcup \{ j\} ) = N  - BkjBjk is nonnegative,
i.e., 0 \leq BkjBjk \leq N. \square 

Corollary 5.4. Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0
) and V+ = \{ k\} . If B\Gamma is an abstract Gram

operator then it can be reduced on the root subgraph \Gamma 0.

Proof. Set Ni = Ni(B\Gamma ,\scrV i) for i \in V . Then all of them are equal to the identity unless
i = k. In the latter case the operator Nk is nonnegative by Corollary 2.6. Thus, we
can define H0

i = \mathrm{I}\mathrm{m}Ni and Ti = Ti(B\Gamma ,\scrV i), i \in V . Note that Ti = I and H0
i = Hi for

all i \not = k.
To fulfill (9), Dik, i \in \scrV k, must be equal to Bik. In this case, equalities (11) hold, as

Nk = TkT
\ast 
k . Now let i and j be adjacent vertices of \Gamma 0. To fulfill (10), B0

ij has to coincide
with Bij if neither i nor j equals k, and B0

kj must be equal to Dj = Dkj(B\Gamma ,\scrV k). Then
B0

jk = D\ast 
j and thus B\Gamma can be reduced on \Gamma 0. \square 

Using this corollary, we prove Lemma 4.6 by induction on the number of elements in
the set V+ (see Appendix C). Therefore, Theorem 4.3 is proved.

Algorithm 1 Reduction algorithm

1: function isGramOperator(B\Gamma )
2: while d = d(\Gamma ) > 0 do  \triangleleft \Gamma = (\Gamma 0, \{ \Gamma r\} r\in V0

)
\Gamma 0 = (V0, E0)
\Gamma r = (Vr, Er), r \in V0

\zeta (\Gamma ) = (V,E)
B\Gamma = (Bij)i,j\in V

3: k \leftarrow some element of \scrL d - 1(\Gamma ) \cap V+(\Gamma )
4: \scrV \leftarrow \scrV k(\Gamma )
5: \~V \leftarrow V \setminus \scrV 
6: N \leftarrow Nk(B\Gamma ,\scrV )
7: guard N \geq 0 else
8: return false
9: end guard

10: for all j \in \~V , \gamma jk \in E do
11: guard BkjBjk \leq N else
12: return false
13: end guard
14: Dj \leftarrow Dkj(B\Gamma ,\scrV )
15: end for
16: for all i, j \in \~V , \gamma ij \in E do

17: \~Bij \leftarrow 

\left\{     
Dj , i = k,

D\ast 
i , j = k,

Bij , otherwise.
18: end for
19: \Gamma \leftarrow 

\bigl( 
\Gamma 0; \{ (Vr \setminus \scrV , Er \setminus \{ \gamma ki\} i\in \scrV )\} r\in V0

\bigr) 
20: B\Gamma \leftarrow ( \~Bij)i,j\in \~V

21: end while
22: return (B\Gamma \geq 0)  \triangleleft \zeta (\Gamma ) = \Gamma 0

23: end function

Corollary 5.4, together with Corollary 4.5, provides us with Algorithm 1. Let us take
a closer look at it. The algorithm is represented as a function that takes an operator B\Gamma 
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consistent with \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0
) and returns true or false. It assumes (line 22) that we

have an effective way to check whether an operator consistent with the root subgraph \Gamma 0

is a Gram operator.
The core of the function is a while loop (lines 2–21), executed until the graph \Gamma 

coincides with \Gamma 0. At each iteration:
\bullet It chooses an arbitrary vertex k from the pre-outer layer with a nonempty set of

following vertices \scrV (line 3).
\bullet The algorithm checks whether B\Gamma can be reduced on the root subgraph \~\Gamma (k),

which is \Gamma after removing vertices \scrV together with the corresponding edges, and
computes operators Dj for each vertex j \in V \setminus \scrV adjacent to k (lines 7–15).

\bullet Using operators Dj , it recalculates the block elements related to edges of the
induced subgraph \~\Gamma (k) (lines 16–18).

\bullet It then replaces the graph \Gamma with \~\Gamma (k) (line 19) and the operator B\Gamma with the
one constructed from the updated block elements (line 20).

If B\Gamma is a Gram operator at the start of an iteration, then the iteration cannot terminate
prematurely, and the updated B\Gamma , which is the reduction of B\Gamma on \~\Gamma (k), is also a Gram
operator. Conversely, if the iteration proceeds successfully, then the original B\Gamma is a Gram
operator if and only if the updated operator is. Thus, if some iteration fails, the original
operator B\Gamma is not a Gram operator. Otherwise, when the loop finishes and \Gamma coincides
with \Gamma 0, the original and updated operators are either both Gram operators or neither is.

6. Invertibility

Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0
) and suppose that B\Gamma can be reduced on \Gamma 0. It follows from

Proposition 4.2, that we can assume that Ti = N
1/2
i Ji and H0

i = \mathrm{I}\mathrm{m}Ni for i \in V .
If \mathrm{k}\mathrm{e}\mathrm{r}Ni = \{ 0\} , then H0

i = Hi and Ti = T \ast 
i = N

1/2
i . Moreover, if for some i \in V \setminus V0 the

operator Ni is invertible, then Ti is also invertible, hence Dij = N
 - 1/2
i Bij for j = p(i). If

we suppose that the operators Ni are invertible for all i \in \scrV j , then we have the following
relation:

Nj = I  - 
\sum 
i\in \scrV j

BjiN
 - 1
i Bij , j \in V. (13)

In the case where both Ni and Nj , i, j \in V0, are invertible, we obtain

B0
ij = N

 - 1/2
i BijN

 - 1/2
j , \gamma ij \in E0. (14)

Proposition 6.1. Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0). If the operator B\Gamma is such that all operators Nj ,
j \in V , defined by (13), are nonnegative and invertible, then B\Gamma is an abstract Gram
operator if and only if so is the operator B0

\Gamma 0
= (B0

ij)i,j\in V0
, defined by (14).

Proof. The nonnegativity and invertibility of the operators Nj , j \in V , imply that all of
them are well-defined by (13), and B0

\Gamma 0
is well-defined by (14). This also ensures that B0

\Gamma 0

is a reduction of B\Gamma on \Gamma 0. Thus, we can apply Corollary 4.5. \square 

In general, the nonnegativity of the operator B\Gamma does not imply the invertibility
of the operator Nk(B\Gamma ,\scrV ) associated with the induced star subgraph \Gamma  \star (k,\scrV ). For
example, consider the star \Gamma = (V = \{ 1, 2, 3, 4\} , E = \{ \gamma 12, \gamma 23, \gamma 24\} ) and its induced star
subgraph \Gamma  \star = (V \star = \{ 2, 3, 4\} , E \star = \{ \gamma 23, \gamma 24\} ).

r
rr r

1

2
3

4
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Let

B\Gamma =

\left(       
1 0

\surd 
0.3 0 0

0 1 0
\surd 
0.4

\surd 
0.6\surd 

0.3 0 1 0 0

0
\surd 
0.4 0 1 0

0
\surd 
0.6 0 0 1

\right)       .

Then, the operator

N2(B\Gamma , \{ 3, 4\} ) =
\biggl( 
1 0
0 1

\biggr) 
 - 
\biggl( 
0.4 0
0 0

\biggr) 
 - 

\biggl( 
0.6 0
0 0

\biggr) 
=

\biggl( 
0 0
0 1

\biggr) 
is nonnegative but not invertible. On the other hand, B\Gamma is nonnegative, as the operator

N2(B\Gamma , \{ 1, 3, 4\} ) =
\biggl( 
1 0
0 1

\biggr) 
 - 
\biggl( 
0 0
0 0.3

\biggr) 
 - 

\biggl( 
0.4 0
0 0

\biggr) 
 - 

\biggl( 
0.6 0
0 0

\biggr) 
=

\biggl( 
0 0
0 0.7

\biggr) 
is nonnegative.

Lemma 6.2. Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0
). Suppose the operator B\Gamma is an abstract Gram

operator, and for each vertex j \in V+, the star \Gamma j
 \star can be extended by some vertices \v \scrV j , such

that the operator Sj = Sj(B\Gamma , \v \scrV j) is invertible. Then the operators Nj, j \in V , defined
by (13), are nonnegative and invertible.

We prove this lemma by induction on the number of elements in the set V+ (see
Appendix D). Combining it with Propositions 6.1 we get the following criterion.

Theorem 6.3. Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0
). If for each vertex j \in V+ the star \Gamma j

 \star can be
extended by vertices \v \scrV j such that operator Sj = Sj(B\Gamma , \v \scrV j) is invertible, then B\Gamma is an
abstract Gram operator if, and only if,

(i) all operators Nj, j \in V , defined by (13), are nonnegative and invertible;
(ii) the operator B0

\Gamma 0
= (B0

ij)i,j\in V0
, defined by (14), is an abstract Gram operator.

Now consider the case where the operator B\Gamma is such that, for each pair of vertices j \in V+

and i \in \scrV j , there exists a number \tau ij \in (0, 1) so that \tau  - 1
ij Bij is a unitary operator. Suppose

B\Gamma can be reduced on \Gamma 0. If Ni = \nu iI, \nu i > 0, for any vertex i from some layer \scrL q,
0 < q \leq d, then, by (13), the operators Nj are scalar for all j \in \scrL q - 1 as well, i.e.,
Nj = \nu jI for some numbers \nu j \geq 0. But by Propositions 4.2, \nu j can only be zero if q = 1
and V0 = \{ j\} . Taking into account that Ni = I for all i \in \scrL d, we obtain that Nj = \nu jI
for j \in V ,

B0
ij =

Bij\surd 
\nu i\nu j

, \gamma ij \in E0, (15)

where

\nu j = 1 - 
\sum 
i\in \scrV j

\tau 2ij
\nu i

, j \in V, (16)

and the following lemma holds.

Lemma 6.4. Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0) and | V0| \geq 2. Suppose the operator B\Gamma is such that,
for each edge \gamma ij \in E \setminus E0, a number \tau ij \in (0, 1) is specified, and the operator \tau  - 1

ij Bij is
unitary. If B\Gamma is an abstract Gram operator then the numbers \nu j , j \in V , defined by (16),
are positive.

Combining this lemma with Proposition 6.1, we obtain the following theorem (see
also [10], Theorem 1).
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Theorem 6.5. Let \Gamma = (\Gamma 0; \{ \Gamma r\} r\in V0
) and | V0| \geq 2. Suppose the operator B\Gamma is such

that, for each edge \gamma ij \in E \setminus E0, a number \tau ij \in (0, 1) is specified, and the operator \tau  - 1
ij Bij

is unitary. Then, B\Gamma is an abstract Gram operator if and only if
(i) the numbers \nu j, j \in V , defined by (16), are positive;
(ii) the operator B0

\Gamma 0
, defined by (15), is an abstract Gram operator.

Appendix A.

In this appendix, we prove several elementary but useful propositions. In the following
statements, H, H1 and H2 are arbitrary Hilbert spaces.

Proposition A.1. For any x, y \in H,
(i) \mathrm{I}\mathrm{m}\langle x, y\rangle = \mathrm{R}\mathrm{e}\langle x, iy\rangle ,
(ii) \mathrm{R}\mathrm{e}\langle x, y\rangle =  - \mathrm{I}\mathrm{m}\langle x, iy\rangle ,
(iii) \langle x, y\rangle = \mathrm{R}\mathrm{e}\langle x, y\rangle + i\mathrm{R}\mathrm{e}\langle x, iy\rangle =  - \mathrm{I}\mathrm{m}\langle x, iy\rangle + i \mathrm{I}\mathrm{m}\langle x, y\rangle .

Proof. Let \langle x, y\rangle = a+ ib, where a, b \in \BbbR . Then \langle x, iy\rangle =  - i\langle x, y\rangle = b - ia. \square 

As a corollary, we get the following statements.

Proposition A.2. Let A : H1 \rightarrow H2 be an operator. If

\mathrm{R}\mathrm{e}\langle Ax, y\rangle = 0 or \mathrm{I}\mathrm{m}\langle Ax, y\rangle = 0

for any x \in H1 and y \in H2, then A = 0.

Proposition A.3. Let A : H1 \rightarrow H2 and B : H2 \rightarrow H1 be operators. If

\langle Ax, y\rangle + \langle By, x\rangle = 0

for any x \in H1, y \in H2, then A = B\ast = 0.

Proof. For any x \in H1, y \in H2, we have

0 = \mathrm{R}\mathrm{e}(\langle Ax, y\rangle + \langle By, x\rangle ) = \mathrm{R}\mathrm{e}\langle (A+B\ast )x, y\rangle ,
0 = \mathrm{I}\mathrm{m}(\langle Ax, y\rangle + \langle By, x\rangle ) = \mathrm{I}\mathrm{m}\langle (A - B\ast )x, y\rangle ,

so by Proposition A.2, we get A+B\ast = 0 and A - B\ast = 0. \square 

Proposition A.4. Let A : H1 \rightarrow H2 and B : H2 \rightarrow H1 be operators. If

\langle Ax, y\rangle + \langle By, x\rangle = \mathrm{R}\mathrm{e}\langle (A+B\ast )x, y\rangle 

for any x \in H1, y \in H2, then A = B\ast .

Proof. We have

0 = \langle Ax, y\rangle + \langle By, x\rangle  - \mathrm{R}\mathrm{e}\langle (A+B\ast )x, y\rangle = i \mathrm{I}\mathrm{m}(\langle Ax, y\rangle + \langle By, x\rangle ).

So \mathrm{I}\mathrm{m}\langle (A - B\ast )x, y\rangle = 0. Thus by Proposition A.2, we get A = B\ast . \square 

Appendix B.

Proof of Lemma 4.4. (\Rightarrow ) Suppose that B\Gamma can be reduced on \Gamma 0. From (5), for z =
(T \ast 

i xi)i\in V0
, we get

\langle B0
\Gamma 0
z, z\rangle =

\sum 
i\in V0

\| T \ast 
i xi\| 2 + 2

\sum 
\gamma ij\in E0

\mathrm{R}\mathrm{e}\langle B0
ijT

\ast 
j xj , T

\ast 
i xi\rangle .
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Taking into account that E \setminus E0 = \{ \gamma ij : j \in V+, i \in \scrV j\} and applying (9), (10), and (11),
we find from (5) that

\langle B\Gamma x, x\rangle =
\sum 
j\in V

\| xj\| 2 + 2
\sum 

\gamma ij\in E

\mathrm{R}\mathrm{e}\langle Bijxj , xi\rangle =
\sum 
j\in V

\bigl( 
\| T \ast 

j xj\| 2 +
\sum 
i\in \scrV j

\| Dijxj\| 2
\bigr) 

+ 2
\sum 

\gamma ij\in E0

\mathrm{R}\mathrm{e}\langle B0
ijT

\ast 
j xj , T

\ast 
i xi\rangle + 2

\sum 
j\in V+

\sum 
i\in \scrV j

\mathrm{R}\mathrm{e}\langle Dijxj , T
\ast 
i xi\rangle .

Since V \setminus V0 =
\bigsqcup 

j\in V+

\scrV j and V+ = \{ j \in V : \scrV j \not = \varnothing \} ,

\langle B\Gamma x, x\rangle  - \langle B0
\Gamma 0
z, z\rangle =

\sum 
j\in V+

\sum 
i\in \scrV j

\bigl( 
\| T \ast 

i xi\| 2 + 2\mathrm{R}\mathrm{e}\langle Dijxj , T
\ast 
i xi\rangle + \| Dijxj\| 2

\bigr) 
.

Thus, we conclude equality (12).
(\Leftarrow ) Now let (12) hold for some objects introduced by items (a), (b), and (c) of

Definition 4.1.
For a vertex k \in V consider x = (xi)i\in V such that xi = 0 for all vertices i \not = k and xk

is an arbitrary vector from Hk. Then, equality (12) takes the form

\| xk\| 2 = \| T \ast 
k xk\| 2 +

\sum 
i\in \scrV k

\| Dikxk\| 2. (17)

The last one is equivalent to (11).
For a pair of vertices j \in V+ and k \in \scrV j , consider x = (xi)i\in V such that xi = 0 for all

i \not \in \{ j, k\} , and xj , xk are arbitrary vectors from Hj , Hk, respectively. Then, equality (12)
takes the form

\| xj\| 2 + \| xk\| 2 + 2\mathrm{R}\mathrm{e}\langle Bkjxj , xk\rangle 

= \| T \ast 
j xj\| 2 +

\sum 
i\in \scrV j\setminus \{ k\} 

\| Dijxj\| 2 + \| T \ast 
k xk +Dkjxj\| 2 +

\sum 
i\in \scrV k

\| Dikxk\| 2

Taking into account that equality (17) holds for k and j we get

2\mathrm{R}\mathrm{e} \langle Bkjxj , xk\rangle = \| T \ast 
k xk +Dkjxj\| 2  - \| T \ast 

k xk\| 2  - \| Dkjxj\| 2 = 2\mathrm{R}\mathrm{e} \langle Dkjxj , T
\ast 
k xk\rangle .

Thus by Proposition A.2, we conclude equality (9).
For a pair of vertices k, j \in V0, k \not = j, consider x = (xi)i\in V such that xi = 0 for all

i \not \in \{ k, j\} , and xj , xk are arbitrary vectors from Hj , Hk, respectively. Then, equality (12)
takes the form

\| xj\| 2 + \| xk\| 2 + 2\mathrm{R}\mathrm{e}\langle Bkjxj , xk\rangle 

= \| T \ast 
j xj\| 2 + \| T \ast 

k xk\| 2 + 2\mathrm{R}\mathrm{e}\langle B0
kjT

\ast 
j xj , T

\ast 
k xk\rangle +

\sum 
i\in \scrV k

\| Dikxk\| 2 +
\sum 
i\in \scrV j

\| Dijxj\| 2.

After applying equality (17) for k and j, we get \mathrm{R}\mathrm{e}\langle Bkjxj , xk\rangle = \mathrm{R}\mathrm{e}\langle B0
kjT

\ast 
j xj , T

\ast 
k xk\rangle .

Hence by Proposition A.2, equality (10) follows immediately. \square 

Appendix C.

Proof of Lemma 4.6. We fix the root subgraph \Gamma 0 and prove the lemma by induction on
the number of elements m = m(\Gamma ) in the set V+ = V+(\Gamma ). The case m = 0 is trivial, so
we assume that m > 0.

The base case. The case m = 1 has been proved in Corollary 5.4.
The induction step. Suppose m > 1. Fix a vertex k \in \scrL d - 1 \cap V+, and define \~\Gamma = \~\Gamma (k)

by (7) and \^\Gamma = \^\Gamma (k) by (8).
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By Corollary 5.4, the operator B\^\Gamma —which is B\Gamma —can be reduced on \~\Gamma . Thus, taking
into account statement (i) of Proposition 3.1, there exist (a) spaces \~Hi and injective
operators \^Ti : \~Hi \rightarrow Hi, i \in V ; (b) operators \^Dik : Hk \rightarrow \~Hi, i \in \scrV k; and (c) the
operator \~B\~\Gamma = ( \~Bij)i,j\in \~V , \~Bij : \~Hj \rightarrow \~Hi; such that

Bik = \^Ti
\^Dik, i \in \scrV k,

Bij = \^Ti
\~Bij

\^T \ast 
j , \gamma ij \in \~E,

IHj
= \^Tj

\^T \ast 
j +

\sum 
i\in \^\scrV j

\^D\ast 
ij
\^Dij , j \in V.

Then, by Corollary 4.5, \~B\~\Gamma is nonnegative. By statement (ii) of Proposition 3.1,
m(\~\Gamma ) = m  - 1, so the operator \~B\~\Gamma can be reduced on \Gamma 0 based on the inductive
assumption. Thus, there exist (a) spaces H0

i and injective operators \~Ti : H
0
i \rightarrow \~Hi, i \in \~V ;

(b) operators \~Dij : \~Hj \rightarrow H0
i , j \in \~V+ and i \in \scrV j ; and (c) the operator B0

\Gamma 0
= (B0

ij)i,j\in V0
,

B0
ij : H

0
j \rightarrow H0

i ; such that

\~Bij = \~Ti
\~Dij , j \in \~V+, i \in \scrV j ,

\~Bij = \~TiB
0
ij
\~T \ast 
j , \gamma ij \in E0,

I \~Hj
= \~Tj

\~T \ast 
j +

\sum 
i\in \~\scrV j

\~D\ast 
ij
\~Dij , j \in \~V .

The spaces H0
i are defined for i \in \~V = V \setminus \scrV k. For i \in \scrV k, we set H0

i = \~Hi, and then
define the operators Ti and Dij as follows:

Ti =

\Biggl\{ 
\^Ti, i \in \scrV k,
\^Ti
\~Ti, i \in \~V ,

Dij =

\Biggl\{ 
\^Dik, j = k, i \in \scrV k,
\~Dij

\^T \ast 
j , j \in \~V+, i \in \scrV j .

For j \in V+ and i \in \scrV j , we obtain

TiDij =

\Biggl\{ 
\^Ti
\^Dik = Bik, j = k, i \in \scrV k,

\^Ti
\~Ti
\~Dij

\^T \ast 
j = \^Ti

\~Bij
\^T \ast 
j = Bij , j \in \~V+, i \in \scrV j .

Thus, we have proved equality (9).
Since V0 \subset \~V , for adjacent vertices i and j from V0, we get

TiB
0
ijT

\ast 
j = \^Ti

\~TiB
0
ij
\~T \ast 
j
\^T \ast 
j = \^Ti

\~Bij
\^T \ast 
j = Bij .

This proves equality (10).
For j \in \scrV k, we have \^\scrV j = \scrV j = \varnothing , and therefore, IHj

= \^Tj
\^T \ast 
j = TjT

\ast 
j . Let j = k.

In this case, \~\scrV k = \varnothing , so I \~Hk
= \~Tk

\~T \ast 
k , and therefore, \^Tk

\^T \ast 
k = \^Tk

\~Tk
\~T \ast 
k
\^T \ast 
k = TkT

\ast 
k . Since

\^\scrV k = \scrV k, it follows that

IHk
= \^Tk

\^T \ast 
k +

\sum 
i\in \^\scrV k

\^D\ast 
ik

\^Dik = TkT
\ast 
k +

\sum 
i\in \scrV k

D\ast 
ikDik.

The last case is j \in \~V \setminus \{ k\} . In this case, \^\scrV j = \varnothing and \~\scrV j = \scrV j , so

IHj
= \^Tj

\^T \ast 
j = \^TjI \~Hj

\^T \ast 
j = \^Tj

\Bigl( 
\~Tj

\~T \ast 
j +

\sum 
i\in \~\scrV j

\~D\ast 
ij
\~Dij

\Bigr) 
\^T \ast 
j = TjT

\ast 
j +

\sum 
i\in \scrV j

D\ast 
ijDij

Thus, in all three possible cases, condition (11) is fulfilled. \square 
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Appendix D.

Proof of Lemma 6.2. We prove the proposition by induction on the number of elements
m = m(\Gamma ) in the set V+ = V+(\Gamma ). Case m = 0 is trivial, so assume that m > 0.

The base case. In the case where m = 1, Corollary 2.6 establishes the nonnegativity of
the operators Nj , and Corollary 2.8 proves their invertibility.

The induction step. Suppose m > 1, fix k \in \scrL d - 1 \cap V+, and define \~\Gamma = \~\Gamma (k) by (7)
and \^\Gamma = \^\Gamma (k) by (8).

By statement (i) of Proposition 3.1, \^V+ = \{ k\} , so \^Nj = I for j \in V \setminus \{ k\} , and

\^Nk = I  - 
\sum 
i\in \^\scrV k

Bki
\^N - 1
i Bik = I  - 

\sum 
i\in \scrV k

BkiBik = Nk

is nonnegative by Corollary 2.6 and invertible by Corollary 2.8. Then, by Proposition 6.1,
the operator \~B\~\Gamma = ( \~Bij)i,j\in \~V ,

\~Bij =

\left\{     
N

 - 1/2
k Bkj , i = k,

BikN
 - 1/2
k , j = k,

Bij , otherwise,
\gamma ij \in \~E,

is an abstract Gram operator, as B\Gamma is assumed to be one.
By statement (ii) of Proposition 3.1, \~V+ = V+ \setminus \{ k\} and \~\scrV j = \scrV j for j \in \~V+. Thus, for

any j \in V+ \setminus \{ k\} , the star \~\Gamma j
 \star = \Gamma  \star (j, \~\scrV j) coincides with \Gamma j

 \star and can be extended by \v \scrV j as
an induced subgraph of \~\Gamma . Let us show that the operators \~Sj = Sj( \~B\~\Gamma ,

\v \scrV j) are invertible.
It is clear that \~Sj = Sj if k \not \in \v \scrV j . Let k \in \v \scrV j . Taking into account the inequality

\| Bkjx\| 2 \leq \| Nk\| \| N - 1/2
k Bkjx\| 2 \leq \| \~Bkjx\| 2

we get that Sj \leq \~Sj . So, all operators \~Sj , j \in \~V+, are invertible and operators \~Nj , j \in \~V ,
are nonnegative and invertible by the inductive assumption.

To finish the proof, we need to show that \~Nj = Nj for all j \in \~V+. It holds for j \in 
\scrL d - 1 \cap \~V+ because \~Ni = I = Ni and \~Bij = Bij for any i \in \scrV j . Suppose that for some
0 < q \leq d, the equality holds for all j \in \scrL q\cap \~V+. Let j \in \scrL q - 1\cap \~V+, then for vertex i \in \scrV j
there are three possibilities: (i) i \in \scrL q \cap \~V+, (ii) i \in \scrL q \setminus V+, and (iii) q = d - 1, i = k. In
the first case, \~Ni = Ni by the inductive assumption; in the second one, \~Ni = Ni = I; and
in both these cases, \~Bij = Bij , so

\~Bji
\~N - 1
i

\~Bij = BjiN
 - 1
i Bij , i \in \scrV j \setminus \{ k\} .

In the last case,

\~Bjk
\~N - 1
k

\~Bkj = (BjkN
 - 1/2
k ) \cdot I \cdot (N - 1/2

k Bkj) = BjkN
 - 1
k Bkj .

Thus, \~Nj = Nj in all three possible cases. \square 
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