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Abstract. The paper is devoted to the study of conditions for the Hausdorff-
Besicovitch faithfulness of the family of cylinders generated by Cantor series expan-
sions. We show that there exist subgeometric Cantor series expansions for which
the corresponding families of cylinders are not faithful for the Hausdorff-Besicovitch
dimension on the unit interval. On the other hand we found a rather wide subfamily
of subgeometric Cantor series expansions generating faithful families of cylinders.

We also study conditions for the Hausdorff-Besicovitch dimension preservation
on [0;1] by probability distribution functions of random variables with independent
symbols of arithmetic Cantor series expansions

1. Introduction

The notion of Hausdorff-Besicovitch dimension is widely known and plays an important
role in both mathematics and applied research (see, e.g., [11, 18, 26, 28, 33]). However, its
calculation or even estimation is a rather non-trivial problem ([3, 6, 12, 14, 18, 27, 29]).

Various approaches and special techniques for computing the Hausdorff-Besicovitch
dimension are described in detail in [18, 19, 26]. In particular, an approach based on the
theory of DP-transformations was presented in [8, 9] and developed in [4, 20, 22].

Definition 1.1. A bijective function f(x): [0; 1] \rightarrow [0; 1] is called a DP-transformation
on [0; 1] if

\forall E \subset [0; 1] : \mathrm{d}\mathrm{i}\mathrm{m}H(E) = \mathrm{d}\mathrm{i}\mathrm{m}H(f(E)).

Later in the work [5], an alternative approach was presented that is closely related
to the theory of DP-transformations and is also based on the notion of faithful families
of coverings, which significantly simplifies the calculation of the Hausdorff-Besicovitch
dimension for a given set.

The study of DP-transformations is important for two main reasons [8]: if a DP-
transformation maps a set E to a set E\prime and preserves the Hausdorff-Besicovitch dimension,
then it suffices to calculate the dimension of a simpler set. Fractal geometry can be
considered as the study of invariants of the group of DP-transformations of a space. So,
fractal geometry can be considered as a generalization of affine geometry, as the latter
discipline investigates the invariants of the affine transformation group, which forms a
subgroup of the group of DP-transformations.

The paper is devoted to the study the above mentioned problems (faithfulness and
DP-transformations) related to the Cantor series expansions. Let us recall ([15]) that
for a given sequence \{ nk\} of positive intergers nk \geq 2 any real number x from the unit
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interval [0, 1] can be represented in the following form:

x =

\infty \sum 
k=1

\alpha k(x)

n1 \cdot n2 \cdot . . . \cdot nk
, (1.1)

where \alpha k = \alpha k(x) \in \{ 0, 1, ..., nk - 1\} . Expansion (1.1) is said to be Cantor series expansion
of x. We shall also use the notation \Delta C

\alpha 1(x)\alpha 2(x)...\alpha k(x)...
for such an expansion. The above

\alpha 1(x), \alpha 2(x), ..., \alpha k(x), .. are said to be symbols (digits) of the Cantor series expansion of
x. Closed interval

\Delta C
\alpha 1(x)\alpha 2(x)...\alpha k(x)

:=

\left[  k\sum 
j=1

\alpha j(x)

n1 \cdot n2 \cdot . . . \cdot nj
,
1

nk
+

k\sum 
j=1

\alpha j(x)

n1 \cdot n2 \cdot . . . \cdot nj

\right]  
is said to be the cylinder of rank k containing x. Let us remark that for the case
nk = s,\forall k \in N, we get the clssical s-adic expansion of x. The Cantor series expansion can
also be considered as a special case of \widetilde Q-expansion([7]). A series of papers [2, 1, 17, 25, 30])
is devoted to normal properties of digits in the Cantor series expansions. In the paper [5]
necessary and sufficient conditions for the family of cylinders of Cantor series expansion
to be faithful for the Hausdorff-Besicovitch dimension calculation has been proven, and
fractal properies of the corresponding probability measures are studied.

This work is devoted to the study of DP-properties of probability distribution function
of random variables with independent symbols of Cantor arithmetic expansions and
to the problem of faithfulness for subgeometric Cantor series expansions. In Section
2 we show that for the subgeometric case (i.e., if the basic sequence \{ nk\} grows at
most geometrically), the corresponding family of cylinders can be non-faithful. We also
prove sufficient conditions for the family of cylinders generated by subgeometric Cantor
expansions to be faithful. In particular, if the basic sequence \{ nk\} satisfies the following
condition

ak \leq nk \leq bk, \forall k \in N,

with \{ ak\} being an arithmetic progression (a1 \geq 2 , d \geq 1), and \{ bk\} being a geometric
progression (b1 \geq 2, q \geq 1), then the corresponding family of cylinders is faithful.

Section 3 is devoted to the study of properties of random variables with independent
symbols of Cantor series expansions, i.e., random variables of the following form

\xi =

\infty \sum 
k=1

\xi k
n1 \cdot n2 \cdot ... \cdot nk

=: \Delta C
\xi 1\xi 2...\xi k...

where \xi k is a sequence of independent random variables taking values 0, 1, ..., nk  - 1 with
probabilities p0k, p1k, ..., p(nk - 1)k correspondingly. Specifically, it provides necessary and
sufficient conditions for the probability distribution functions of random variables with
independent symbols of Cantor series expansions to be in to the DP-class, under the
condition that \{ nk\} is bounded and probabilities pik are separated from zero.

Section 4 shows that the well-known necessary conditions for the distribution function
of a random variable with independent Cantor symbols to belong to DP-transformations
are not sufficient, where the sequence \{ nk\} forms an arithmetic progression.

2. On some faithful families of coverings for the Hausdorff-Besicovich
dimension calculation generated by Cantor series expansions

Let E \subset [0; 1] and let \Phi be some family of subsets from this segment.

Definition 2.1. A family \Phi of subsets of [0; 1] is said to be locally fine if for any E \subset [0; 1]
there exists an at most countable \varepsilon -covering \{ Ej\} of E , Ej \in \Phi .
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Recall that the Hausdorff-Besicovitch dimension of a set E \subset [0; 1] with respect to \Phi is
the number

\mathrm{d}\mathrm{i}\mathrm{m}H(E,\Phi ) = \mathrm{i}\mathrm{n}\mathrm{f}\{ \alpha : H\alpha (E,\Phi ) = 0\} ,
where H\alpha (E,\Phi ) := \mathrm{l}\mathrm{i}\mathrm{m}

\varepsilon \rightarrow 0
H\alpha 
\varepsilon (E,\Phi ) = \mathrm{l}\mathrm{i}\mathrm{m}

\varepsilon \rightarrow 0
( \mathrm{i}\mathrm{n}\mathrm{f}
| Ek| \leq \varepsilon 

(
\sum 
k | Ek| \alpha ),

where infimum is taken over all possible \varepsilon -covering of E by subsets Ek from \Phi .

Definition 2.2. A locally fine covering family \Phi is said to be faithful for the calculation
of the Hausdorff-Besicovitch dimension on [0; 1] , if

\mathrm{d}\mathrm{i}\mathrm{m}H(E) = \mathrm{d}\mathrm{i}\mathrm{m}H(E,\Phi ), \forall E \subset [0; 1].

The problem on necessary and sufficient conditions for the faithfulness of certain locally
fine systems of coverings has been the subject of research by many scientists (see, e.g.,
[10, 13, 16, 34] and references therein). In particular, an important contribution was
made by A. S. Besicovitch, who first proved the faithfulness of systems of cylinders of
binary expansion [13] . Later, the faithfulness of various covering systems was studied
by: Patrick Billingsley (for families of s-adic cylinders [14]); Mykola Pratsiovytyi (for
families of Q-cylinders [34]); S. Albeverio, M. Pratsiovytyi, G. Torbin, M. Ibrahim, V.
Vasylenko (for families of cylinders of Q\ast -expansion [23, 35]); S. Albeverio, Y. Kondratiev,
R. Nikiforov, O. Smiyan, G. Torbin (for families of cylinders of Q\infty -expansion [6]); G.
Torbin, V. Vasylenko (for families of cylinders of \~Q-expansion [36]). Necessary and
sufficient conditions for the family of Cantor series cylinders to be faithful were found in
[5].

Theorem 2.3. The family \Phi (C) of cylinders of the Cantor series expansion is faithful
of the Hausdorff-Besicovitch dimension calculation on [0; 1] if and only if the following
condition holds:

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{l}\mathrm{n}(nk)

\mathrm{l}\mathrm{n}(n1 \cdot n2 \cdot ... \cdot nk - 1)
= 0

By using this result it is easy to produce examples of faithful as well as non-faithful
families \Phi (C) of Cantor series expansion cylinders:

a) if nk = 22
k

, then the family \Phi (C) is non-faithful;
b) if \{ nk\} is bounded, then the family \Phi (C) is faithful.
During several years the following conjecture was dominated: if the sequence \{ nk\} is

subgeometric (i.e., there exists a positive integer q such that nk \leq qk,\forall k \in N), then the
family \Phi (C) is faithful.

Unfortunately this conjecture fails to be true. The simplest counterexample can be
produced as follows: let

nk =

\Biggl\{ 
2, for k \not = 10s;

10k, for k = 10s, s \in N.

In such a case \{ nk\} is subgeometric ( nk \leq 10k), but the limit \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{l}\mathrm{n}(nk)
\mathrm{l}\mathrm{n}(n1\cdot n2\cdot ...\cdot nk - 1)

does not equal 0.
The following theorem gives sufficient conditions for subgeometric families of Cantor

series cylinders to be faithful.

Theorem 2.4. Let the basic sequence \{ nk\} satisfies the following condition:

ak \leq nk \leq bk, \forall k \in N,

where \{ ak\} forms an arithmetic progression with a1 \geq 2, d \geq 1,
and \{ bk\} forms a geometric progression with b1 \geq 2, q \geq 1,
then the family \Phi (C) of Cantor series cylinders is faithful for the Hausdorff-Besicovitch

dimension calculation on [0; 1].
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Proof. Consider the expression
\mathrm{l}\mathrm{n}(nk)

\mathrm{l}\mathrm{n}(n1 \cdot n2 \cdot ... \cdot nk - 1)
\leq \mathrm{l}\mathrm{n}(bk)

\mathrm{l}\mathrm{n}(a1 \cdot a2 \cdot ... \cdot ak - 1)
=

=
\mathrm{l}\mathrm{n}(b1q

k - 1)

\mathrm{l}\mathrm{n}(a1 \cdot (a1 + d) \cdot ... \cdot (a1 + (k  - 2)d)
\leq \mathrm{l}\mathrm{n}(b1) + (k  - 1) \mathrm{l}\mathrm{n}(q)

\mathrm{l}\mathrm{n}(2 \cdot (2 + 1) \cdot ... \cdot (k  - 2))
=

=
\mathrm{l}\mathrm{n}(b1) + (k  - 1) \mathrm{l}\mathrm{n}(q)

\mathrm{l}\mathrm{n}(k  - 2)!
\leq \mathrm{l}\mathrm{n}(b1) + (k  - 1) \mathrm{l}\mathrm{n}(q)

\mathrm{l}\mathrm{n}(
\sqrt{} 
2\pi (k  - 2) \cdot (k - 2

e )k - 2 \cdot e\theta k - 2)
,

where | \theta k - 2| \leq 1
12(k - 2) .

So,
\mathrm{l}\mathrm{n}(nk)

\mathrm{l}\mathrm{n}(n1 \cdot n2 \cdot ... \cdot nk - 1)
\leq \mathrm{l}\mathrm{n}(b1) + (k  - 1) \mathrm{l}\mathrm{n}(q)

\mathrm{l}\mathrm{n}(
\sqrt{} 
2\pi (k  - 2) + (k  - 2) \mathrm{l}\mathrm{n}(k - 2

e ) + \theta k - 2)
\rightarrow 0 (as k \rightarrow \infty )

Therefore,

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{l}\mathrm{n}(nk)

\mathrm{l}\mathrm{n}(n1 \cdot n2 \cdot ... \cdot nk - 1)
= 0

Taking into account results from [5], we get the faithfulness of \Phi (C). \square 

Corollary 2.5. If \{ nk\} is strictly increasing and subgeometric (i.e., there exists a
constant q such that nk \leq qk,\forall k \in N), then \Phi (C) is faithful for the Hausdorff-Besicovitch
dimension calculation on [0; 1].

Proof. Since n1 \geq 2 and \{ nk\} is increasing, we have nk \geq k + 1. Therefore,

ak \leq nk \leq bk, \forall k \in N,

where ak = k + 1, bk = qk.
The faithfulness of \Phi follows from the previous theorem. \square 

3. DP-transformations generated by Cantor series expansions

Despite the fact that Cantor series expansions are natural generalizations of s-adic
representations, the vast majority of problems that are completely solved for s-adic
representations are still very far from being solved for Cantor series expansions. In
particular, the problem of finding necessary and sufficient conditions for the distribution
function F\xi to belong to the DP-class, i.e. to preserve the Hausdorff-Besicovitch dimension
of an arbitrary subset on [0; 1]. Important steps in the study of this problem have been
made in the works of M. V. Pratsiovytyi, G. M. Torbin and their students.

Before presenting the new results of our study, let us recall the following definitions.

Definition 3.1. Let \{ \xi k\} be a sequence of independent random variables taking values
0, 1, ..., nk - 1 with probabilities p0k, p1k, ..., p(nk - 1)k correspondingly. The random variable

\xi =

\infty \sum 
k=1

\xi k
n1 \cdot n2 \cdot ... \cdot nk

=: \Delta C
\xi 1\xi 2...\xi k...

is said to be the random variable with independent symbols of Cantor series expansion.

Definition 3.2. A number

\mathrm{d}\mathrm{i}\mathrm{m}H \mu \psi = \mathrm{i}\mathrm{n}\mathrm{f}
\mu \psi (E)=1

\{ \mathrm{d}\mathrm{i}\mathrm{m}H E\} 

is said to be the Hausdorff dimension of the measure \mu \psi .

Definition 3.3. The spectrum of a random variable \psi is the set

S\psi := \{ x : F\psi (x+ \varepsilon ) - F\psi (x - \varepsilon ) > 0,\forall \varepsilon > 0\} 
i.e. , S\psi is the minimal closed support of the measure \mu \psi .
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Properties of Cantor expansions and properties of random variable \xi were studied by
M. Pratsiovytyi, G. Torbin, M. Lebid, B. Mance, R. Nikiforov and other authors.

A fundamentally important breakthrough in the development of the metric and di-
mensional theory of Cantor series expansion was made in [5], where, in addition to the
criterion for the faithfulness of the system of cylinders of the Cantor series expansions
for the calculating of the Hausdorff-Besicovitch dimension on [0; 1], authors also proved
formulae for the calculating the Hausdorff dimension of the measure \mu \xi under the following
restriction:

\infty \sum 
k=1

\biggl( 
\mathrm{l}\mathrm{n}nk

\mathrm{l}\mathrm{n}(n1 \cdot n2 \cdot ... \cdot nk - 1)

\biggr) 2

< +\infty ,

where \{ nk\} is the basic sequence that determines the Cantor series expansion.
The study of DP-properties of distribution functions F\xi at this moment is limited only

to cases when the sequence \{ nk\} is bounded [24]. In particular, the following fact has
been proven.

Theorem 3.4. If \{ nk\} is bounded and there exists a constant p0 > 0 : pik \geq p0, then the
probability distribution function of random variable \xi with independent symbols of Cantor
series expansion is DP-transformation if and only if

\mathrm{d}\mathrm{i}\mathrm{m}H \mu \xi = 1.

4. Counterexample related to DP-transformations generated by
arithmetic Cantor series expansions

If the sequence \{ nk\} is unbounded (for example, when \{ nk\} forms an arithmetic
progression), the condition of separation of pik from zero is impossible to fulfill since
\mathrm{m}\mathrm{i}\mathrm{n}
i
pik \leq 1

nk
and if \{ nk\} is unbounded, the sequence \{ 1

nk
\} has a subsequence tending to

0. Therefore, the previous theorem cannot be applied to the class of unbounded sequences
\{ nk\} .

At the same time, we note that the general necessary conditions for F\xi to belong to
the DP-class are the following ones:

1)pik > 0, \forall i \in \{ 0, ..., nk  - 1\} ;
2) \mathrm{d}\mathrm{i}\mathrm{m}H \mu \xi = 1.
Let us construct a counterexample that demonstrates that for arithmetic Cantor series

expansions, even the simultaneous fulfillment of the above two conditions is not sufficient
for F\xi to belong to the DP-class.

Example 4.1. Let nk = k + 1 and random variable \xi :

\xi =

\infty \sum 
k=1

\xi k
(k + 1)!

,

where the random variable \xi k takes values 0, 1, ..., k with probabilities 1
k+1 for any

k \in A := \{ n : n \not = 10s, s \in N\} ; and for any k \in \=A the random varialbe \xi k takes value 0

with probability 1

101010
k , and takes values 1, 2, ..., k with probabilities

1 - 1

1010
10k

k .

Lets us check whether \mathrm{d}\mathrm{i}\mathrm{m}H \mu \xi = 1 .
Since

\infty \sum 
k=1

\biggl( 
\mathrm{l}\mathrm{n}nk

\mathrm{l}\mathrm{n}(n1 \cdot n2 \cdot ... \cdot nk - 1)

\biggr) 2

=

\infty \sum 
k=1

\biggl( 
\mathrm{l}\mathrm{n}(k + 1)

\mathrm{l}\mathrm{n}(k!)

\biggr) 2

< +\infty ,

we can calculate the Hausdorff dimension of the measure by the following formula [5]:

\mathrm{d}\mathrm{i}\mathrm{m}H \mu \xi = \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

h1 + h2 + ...+ hk
\mathrm{l}\mathrm{n}(n1 \cdot n2 \cdot ... \cdot nk)

,
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where hk is the entropy of the random variable \xi k, i.e. hk =  - 
nk - 1\sum 
i=0

pik \mathrm{l}\mathrm{n} pik

If k \in A, then hk = \mathrm{l}\mathrm{n} (k + 1).

If k \in \=A = B, then hk =  - 
\biggl( 

1

101010
k \mathrm{l}\mathrm{n} 1

101010
k + k \cdot 

1 - 1

1010
10k

k \mathrm{l}\mathrm{n}
1 - 1

1010
10k

k

\biggr) 
\sim \mathrm{l}\mathrm{n} k

because \mathrm{l}\mathrm{i}\mathrm{m}
x\rightarrow 0+

x \mathrm{l}\mathrm{n}x = 0.

Therefore,

\mathrm{d}\mathrm{i}\mathrm{m}H \mu \xi = \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

h1 + h2 + ...+ hk
\mathrm{l}\mathrm{n}(n1 \cdot n2 \cdot ... \cdot nk)

=

= \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{l}\mathrm{n} (2 \cdot 3 \cdot 4 \cdot ... \cdot 9 \cdot 10 \cdot 10 \cdot 12 \cdot ... \cdot 100 \cdot 100 \cdot 102 \cdot ... \cdot 10k \cdot 10k)
\mathrm{l}\mathrm{n} (2 \cdot 3 \cdot 4 \cdot ... \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot ... \cdot 100 \cdot 101 \cdot 102 \cdot ... \cdot 10k \cdot (10k + 1))

=

= \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{l}\mathrm{n} (2 \cdot 3 \cdot 4 \cdot ... \cdot 10k \cdot (10k + 1)) - \mathrm{l}\mathrm{n} ( 1110 \cdot 101
100 \cdot ... \cdot 10k+1

10k
)

\mathrm{l}\mathrm{n} (2 \cdot 3 \cdot 4 \cdot ... \cdot 10k \cdot (10k + 1))
=

= \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

1 - 
\mathrm{l}\mathrm{n} ((1 + 1

10 ) \cdot (1 +
1

102 ) \cdot ... \cdot (1 +
1

10k
))

\mathrm{l}\mathrm{n} (2 \cdot 3 \cdot 4 \cdot ... \cdot 10k \cdot (10k + 1))
= 1,

because
\infty \prod 
k=1

(1 + 1
10k

) is convergent.

Hence, \mathrm{d}\mathrm{i}\mathrm{m}H \mu \xi = 1 .
Consider the set V :

V = \{ x : x = \Delta C
\alpha 1...\alpha 90\alpha 11...\alpha 990\alpha 101...\} =

= \{ x : x = \Delta C
\alpha 1\alpha 2...\alpha k...

, \alpha i \in \{ 0, 1, ..., i\} i \in A, \alpha i = 0 i \in B\} 
Let us show that \mathrm{d}\mathrm{i}\mathrm{m}H(V ) \not = \mathrm{d}\mathrm{i}\mathrm{m}H(F\xi (V )) .

2. Let’s calculate \mathrm{d}\mathrm{i}\mathrm{m}H(V ) .
Consider the random variable \psi = \Delta C

\psi 1\psi 2...\psi k...
, where the random variables \psi k are

independent with the following distributions

\psi k 0 1 ... k
1
k+1

1
k+1 ... 1

k+1

\forall k \in A := \{ n : n \not = 10s, s \in N\} 

\psi k 0 1 ... k
1 0 ... 0

\forall k \in \=A = B

It is easy to see that the set V is the spectrum of the random variable \psi .
If

\infty \sum 
k=1

\biggl( 
\mathrm{l}\mathrm{n}nk

\mathrm{l}\mathrm{n}(n1 \cdot n2 \cdot ... \cdot nk - 1)

\biggr) 2

=

\infty \sum 
k=1

\biggl( 
\mathrm{l}\mathrm{n} (k + 1)

\mathrm{l}\mathrm{n} (k!)

\biggr) 2

< +\infty ,

then the Hausdorff-Besicovitch dimension of the spectrum can be calculated by the
following formula [37]:

\mathrm{d}\mathrm{i}\mathrm{m}H S\psi = \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{l}\mathrm{n} (m1 \cdot m2 \cdot ... \cdot mk)

\mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot nk)
,

where mk is the number of non-zero probabilities among p0k, p1k, ..., p(nk - 1)k .

\mathrm{d}\mathrm{i}\mathrm{m}H S\psi = \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{l}\mathrm{n} (m1 \cdot m2 \cdot ... \cdot mk)

\mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot nk)
=

= \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{l}\mathrm{n}(2 \cdot 3 \cdot ... \cdot 9 \cdot 10 \cdot 1 \cdot 12 \cdot ... \cdot 100 \cdot 1 \cdot 102 \cdot ... \cdot 10k \cdot 1)
\mathrm{l}\mathrm{n}(n1 \cdot n2 \cdot ... \cdot n10k)

=
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= \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{l}\mathrm{n} (2 \cdot 3 \cdot ... \cdot 10k \cdot (10k + 1)) - \mathrm{l}\mathrm{n} (11 \cdot 101 \cdot ... \cdot (10k + 1))

\mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot n10k)
=

= \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\biggl( 
1 - \mathrm{l}\mathrm{n}(11 \cdot 101 \cdot ... \cdot (10k + 1))

\mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot n10k)

\biggr) 
Since

\mathrm{l}\mathrm{n}(11 \cdot 101 \cdot 1001 \cdot ... \cdot (10k + 1))

\mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot n10k)
\leq \mathrm{l}\mathrm{n}(10 \cdot 100 \cdot 1000 \cdot ... \cdot 10k+1)

\mathrm{l}\mathrm{n} (2 \cdot 3 \cdot 4 \cdot ... \cdot (10k + 1))
=

=
\mathrm{l}\mathrm{n}(10 \cdot 102 \cdot 103 \cdot ... \cdot 10k+1)

\mathrm{l}\mathrm{n} ((10k + 1)!)
=

=
k(k+1)

2 \mathrm{l}\mathrm{n} 10

\mathrm{l}\mathrm{n}(
\sqrt{} 
2\pi (10k + 1)) + (10k + 1) \mathrm{l}\mathrm{n}( 10

k+1
e ) + \theta k

\rightarrow 0(k \rightarrow \infty ),

because 0 < \theta k <
1

12k .
Therefore,

= \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\biggl( 
1 - \mathrm{l}\mathrm{n}(11 \cdot 101 \cdot ... \cdot (10k + 1))

\mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot n10k)

\biggr) 
= 1.

\mathrm{d}\mathrm{i}\mathrm{m}H(V ) = \mathrm{d}\mathrm{i}\mathrm{m}H S\psi = 1

3. Now let‘s calculate \mathrm{d}\mathrm{i}\mathrm{m}H(F\xi (V )).
For any x \in V consider the limit

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{l}\mathrm{n}\lambda (\Delta \alpha 1(x)\alpha 2(x)...\alpha k(x))

\mathrm{l}\mathrm{n}\mu \xi (\Delta \alpha 1(x)\alpha 2(x)...\alpha k(x))
= \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

 - \mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot nk)
\mathrm{l}\mathrm{n}(p\alpha 1(x)1 \cdot p\alpha 2(x)2 \cdot ... \cdot p\alpha k(x)k)

Let us show that this limit exists for any x \in V .
Let

bk(x) :=
\mathrm{l}\mathrm{n}\lambda (\Delta \alpha 1(x)\alpha 2(x)...\alpha k(x))

\mathrm{l}\mathrm{n}\mu \xi (\Delta \alpha 1(x)\alpha 2(x)...\alpha k(x))
=

 - \mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot nk)
\mathrm{l}\mathrm{n} (p\alpha 1(x)1 \cdot p\alpha 2(x)2 \cdot ... \cdot p\alpha k(x)k)

.

Let‘s consider \{ bk(x)\} :

b1(x) =
 - \mathrm{l}\mathrm{n}(n1)

\mathrm{l}\mathrm{n}(p\alpha 1(x)1)
= 1, \forall x \in V

b2(x) =
 - \mathrm{l}\mathrm{n}(n1 \cdot n2)

\mathrm{l}\mathrm{n}(p\alpha 1(x)1 \cdot p\alpha 2(x)2)
= 1, \forall x \in V

...

b9(x) =
 - \mathrm{l}\mathrm{n}(n1 \cdot ... \cdot n9)

\mathrm{l}\mathrm{n}(p\alpha 1(x)1 \cdot ... \cdot p\alpha 9(x)9)
= 1, \forall x \in V

b10(x) =
 - \mathrm{l}\mathrm{n}(n1 \cdot ... \cdot n9 \cdot n10)

\mathrm{l}\mathrm{n}(p\alpha 1(x)1 \cdot ... \cdot p\alpha 9(x)9 \cdot p\alpha 10(x)10)
=

\mathrm{l}\mathrm{n}(2 \cdot ... \cdot 10 \cdot 11)
\mathrm{l}\mathrm{n}(2 \cdot ... \cdot 10 \cdot 101010)

< 1, \forall x \in V

b11(x) =
 - \mathrm{l}\mathrm{n}(n1 \cdot ... \cdot n10 \cdot n11)

\mathrm{l}\mathrm{n}(p\alpha 1(x)1 \cdot ... \cdot p\alpha 10(x)10 \cdot p\alpha 11(x)11)
=

\mathrm{l}\mathrm{n}(2 \cdot ... \cdot 11 \cdot 12)
\mathrm{l}\mathrm{n}(2 \cdot ... \cdot 101010 \cdot 12)

< 1, \forall x \in V

Hence

b1(x) = b2(x) = ... = b9(x) > b10(x)

b10(x) < b11(x) < ... < b99(x) > b100(x)

b100(x) < b101(x) < ... < b999(x) > b1000(x)
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...

b1000(x) < b1001(x) < ... < b9999(x) > b10000(x)

...

b10k(x) < b10k+1(x) < ... < b10k+1 - 1(x) > b10k+1(x), \forall k \in N

To show that \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

bk(x) exists and is equal to 0, we calculate:

1) \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

bk(x) = \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

b10k(x) = \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

 - \mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot n10k)

\mathrm{l}\mathrm{n}
\Bigl( 
p\alpha 1(x)1 \cdot p\alpha 2(x)2 \cdot ... \cdot p\alpha 10k

(x)10k

\Bigr) 
Since

\mathrm{l}\mathrm{n}

\Biggl( 
1

p\alpha 1(x)1
\cdot 1

p\alpha 2(x)2
\cdot ... \cdot 1

p\alpha 
10k

(x)10k

\Biggr) 
=

= \mathrm{l}\mathrm{n} 2 \cdot 3 \cdot ... \cdot 10 \cdot 1010
1010

1

\cdot 12 \cdot ... \cdot 99 \cdot 100 \cdot 1010
1010

2

\cdot ... \cdot 1010
1010

k

>

> \mathrm{l}\mathrm{n} 1010
1010

k

= 1010
10k

\mathrm{l}\mathrm{n} 10

and
\mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot n10k) = \mathrm{l}\mathrm{n} (10k + 1)! < \mathrm{l}\mathrm{n} (10k)! =

= \mathrm{l}\mathrm{n}

\left(  \sqrt{} 2\pi 10k \cdot 
\biggl( 
10k

e

\biggr) 10k

\cdot \theta k

\right)  = \mathrm{l}\mathrm{n}
\Bigl( \sqrt{} 

2\pi 10k
\Bigr) 
+ 10k \mathrm{l}\mathrm{n}

\biggl( 
10k

e

\biggr) 
+ \mathrm{l}\mathrm{n} \theta k,

where 0 < \theta k <
1

12k ,
we have

\mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot n10k)

\mathrm{l}\mathrm{n}

\biggl( 
1

p\alpha 1(x)1
\cdot 1
p\alpha 2(x)2

\cdot ... \cdot 1
p
\alpha 
10k

(x)10k

\biggr) 

<
\mathrm{l}\mathrm{n}
\Bigl( \surd 

2\pi 10k
\Bigr) 
+ 10k \mathrm{l}\mathrm{n}

\Bigl( 
10k

e

\Bigr) 
+ \mathrm{l}\mathrm{n} \theta k

1010
10k

\mathrm{l}\mathrm{n} 10
\rightarrow 0 (k \rightarrow \infty )

Therefore
\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot n10k)

\mathrm{l}\mathrm{n}

\biggl( 
1

p\alpha 1(x)1
\cdot 1
p\alpha 2(x)2

\cdot ... \cdot 1
p
\alpha 
10k

(x)10k

\biggr) = 0.

2) \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

bk(x) = \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

b(10k - 1)(x) = \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

 - \mathrm{l}\mathrm{n} (n1 \cdot n2 \cdot ... \cdot n(10k - 1))

\mathrm{l}\mathrm{n}
\Bigl( 
p\alpha 1(x)1 \cdot p\alpha 2(x)2 \cdot ... \cdot p\alpha (10k - 1)

(x)(10k - 1)

\Bigr) 
Since

\mathrm{l}\mathrm{n}

\Biggl( 
1

p\alpha 1(x)1
\cdot 1

p\alpha 2(x)2
\cdot ... \cdot 1

p\alpha 
(10k - 1)

(x)(10k - 1)

\Biggr) 
=

= \mathrm{l}\mathrm{n}(2 \cdot ... \cdot 10 \cdot 1010
1010

1

\cdot 12 \cdot ... \cdot 102 \cdot 1010
1010

2

\cdot ... \cdot 10k - 1 \cdot 1010
1010

k - 1

\cdot ... \cdot 10k) >

> \mathrm{l}\mathrm{n} 1010
1010

k - 1

= 1010
10k - 1

\mathrm{l}\mathrm{n} 10
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and
\mathrm{l}\mathrm{n}
\bigl( 
n1 \cdot n2 \cdot ... \cdot n(10k - 1)

\bigr) 
= \mathrm{l}\mathrm{n} (10k)! =

= \mathrm{l}\mathrm{n}

\left(  \sqrt{} 2\pi 10k \cdot 
\biggl( 
10k

e

\biggr) 10k

\cdot \theta k

\right)  = \mathrm{l}\mathrm{n}
\Bigl( \sqrt{} 

2\pi 10k
\Bigr) 
+ 10k \mathrm{l}\mathrm{n}

\biggl( 
10k

e

\biggr) 
+ \mathrm{l}\mathrm{n} \theta k,

where 0 < \theta k <
1

12k ,
we have

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

 - \mathrm{l}\mathrm{n}
\bigl( 
n1 \cdot n2 \cdot ... \cdot n(10k - 1)

\bigr) 
\mathrm{l}\mathrm{n}
\Bigl( 
p\alpha 1(x)1 \cdot p\alpha 2(x)2 \cdot ... \cdot p\alpha (10k - 1)

(x)(10k - 1)

\Bigr) 
\leq \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\mathrm{l}\mathrm{n}
\Bigl( \surd 

2\pi 10k
\Bigr) 
+ 10k \mathrm{l}\mathrm{n}

\Bigl( 
10k

e

\Bigr) 
+ \mathrm{l}\mathrm{n} \theta k

1010
10k - 1

\mathrm{l}\mathrm{n} 10
= 0

If
0 = \mathrm{l}\mathrm{i}\mathrm{m}

k\rightarrow \infty 
bk(x) \leq \mathrm{l}\mathrm{i}\mathrm{m}

k\rightarrow \infty 
bk(x) \leq 0,

then
\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

bk = 0.

According to Billingsley’s theorem[14], if

V =

\biggl\{ 
x : \mathrm{l}\mathrm{i}\mathrm{m}

k\rightarrow \infty 

\mathrm{l}\mathrm{n}\lambda (\Delta \alpha 1(x)\alpha 2(x)...\alpha k(x))

\mathrm{l}\mathrm{n}\mu \xi (\Delta \alpha 1(x)\alpha 2(x)...\alpha k(x))
= \delta 

\biggr\} 
,

then
\mathrm{d}\mathrm{i}\mathrm{m}H(V, \mu \xi ,\Phi ) = \delta \mathrm{d}\mathrm{i}\mathrm{m}H(V, \lambda ,\Phi ).

1. \mathrm{d}\mathrm{i}\mathrm{m}H(V, \lambda ,\Phi ) = \mathrm{i}\mathrm{n}\mathrm{f}\{ \alpha : H\alpha (V, \lambda ,\Phi (C)) = 0\} ,

where \Phi (C) – family of cylinders of the Cantor expansion.

H\alpha 
\varepsilon ((V, \lambda ,\Phi (C)) = \mathrm{i}\mathrm{n}\mathrm{f}

| Ej | \leq \varepsilon 

\sum 
j

\lambda (Ej)
\alpha 
, Ej \in \Phi (C))

It is not difficult to prove that, if the sequence \{ nk\} forms an arithmetic progression,
then \Phi (C) is a faithful family for computing the Hausdorff-Besicovitch dimension, i.e.

\mathrm{d}\mathrm{i}\mathrm{m}H(E) = \mathrm{d}\mathrm{i}\mathrm{m}H(E,\Phi (C)), \forall E \subset [0; 1].

Therefore
\mathrm{d}\mathrm{i}\mathrm{m}H(V, \lambda ,\Phi (C)) = \mathrm{d}\mathrm{i}\mathrm{m}H(V, \lambda ) = \mathrm{d}\mathrm{i}\mathrm{m}H(V )

2. \mathrm{d}\mathrm{i}\mathrm{m}H(V, \mu \xi ,\Phi ) = \mathrm{i}\mathrm{n}\mathrm{f}\{ \alpha : H\alpha (V, \mu \xi ,\Phi (C)) = 0\} 

H\alpha 
\varepsilon (V, \mu \xi ,\Phi (C)) = \mathrm{i}\mathrm{n}\mathrm{f}

| Vj | \leq \varepsilon 

\sum 
j

\mu \xi (Vj)
\alpha 
, Vj \in \Phi (C))

It is easy to see that

\mu \xi (\Delta \alpha 1(x)\alpha 2(x)...\alpha k(x)) = p\alpha 1(x)1 \cdot p\alpha 2(x)2 \cdot ... \cdot p\alpha k(x)k =

=
\bigm| \bigm| \bigm| \Delta \~P

\alpha 1(x)\alpha 2(x)...\alpha k(x)

\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| F\xi \Bigl( \Delta C
\alpha 1(x)\alpha 2(x)...\alpha k(x)

\Bigr) \bigm| \bigm| \bigm| .
Since V was covered by \{ Vj\} , we conclude that F\xi (V ) can be covered by \{ F\xi (Vj)\} .
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Therefore

\mathrm{d}\mathrm{i}\mathrm{m}H(V, \mu \xi ,\Phi (C)) = \mathrm{d}\mathrm{i}\mathrm{m}H(F\xi (V ), \lambda , F\xi (\Phi (C))) = \mathrm{d}\mathrm{i}\mathrm{m}H(F\xi (V ),\Phi \prime ),

where \Phi \prime = F\xi (\Phi (C)) .
According to the article by V. Vasylenko, V. Misky, G. Torbin [36] at nk \leq n0 and

pik \geq p0 > 0 : \Phi \prime = \Phi \prime ( \~Q) is faithful.
Hence, \mathrm{d}\mathrm{i}\mathrm{m}H(V, \mu \xi ) = \mathrm{d}\mathrm{i}\mathrm{m}H(F\xi (V )) .
So,

\mathrm{d}\mathrm{i}\mathrm{m}H(F\xi (V )) = 0 \cdot \mathrm{d}\mathrm{i}\mathrm{m}H(V )

\mathrm{d}\mathrm{i}\mathrm{m}H(F\xi (V )) = 0.

That is \mathrm{d}\mathrm{i}\mathrm{m}H(V ) = 1 \not = 0 = \mathrm{d}\mathrm{i}\mathrm{m}H(V ).
This means that F\xi is not a DP-transformation.
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