Open Access

Spectral inclusions of exponentially bounded $C$-semigroups


Abstract

In 1989 Ki Sik Ha [6] proved that if $A$ is a generator of an exponentially bounded $C$-semigroup $(S_t)_{t\geq 0}$ in a Banach space and $T_t=C^{-1}S_t$ for all $t\geq0$, then the spectral mapping theorem, $e^{t\sigma(A)}\subset\sigma(T_t)$ and $e^{t\sigma_p(A)}\subset\sigma_p(T_t)\subset e^{t\sigma_p(A)}\cup\{0\}$ for all $t\geq 0$, holds. In the present paper, we extend the results of [6] to Saphar, essentially Saphar, Kato, and essentially Kato spectrum.

У 1989 році Кі Сік Ха [6] довів, що якщо $A$ є генератором експоненціально обмеженої $C$-напівгрупи $(S_t)_{t\geq 0}$ у банаховому просторі та $T_t=C^{-1}S_t$ для всіх $t\geq0$, то виконується теорема про спектральне відображення: $e^{t\sigma(A)}\subset\sigma(T_t)$ і $e^{t\sigma_p(A)}\subset\sigma_p(T_t)\subset e^{t\sigma_p(A)}\cup\{0\}$ для всіх $t\geq 0$. Ми поширюємо результати [6] на спектр Сапфара, суттєвий спектр Сапфара, спектр Като і суттєвий спектра Като.

Key words: $C$-semigroup, $C_0$-semigroup, Kato operator, Saphar operator.


Full Text






Article Information

TitleSpectral inclusions of exponentially bounded $C$-semigroups
SourceMethods Funct. Anal. Topology, Vol. 28 (2022), no. 2, 169-175
DOI10.31392/MFAT-npu26_2.2022.09
MathSciNet   MR4548154
Milestones  Received 19/02/2021
CopyrightThe Author(s) 2022 (CC BY-SA)

Authors Information

Ahmed Toukmati
Abdelmalek Essaadi University Tetouan, Faculty of Sciences and Technology Al-Hociema, Morocco


Export article

Save to Mendeley



Citation Example

Ahmed Toukmati, Spectral inclusions of exponentially bounded $C$-semigroups, Methods Funct. Anal. Topology 28 (2022), no. 2, 169-175.


BibTex

@article {MFAT1792,
    AUTHOR = {Ahmed Toukmati},
     TITLE = {Spectral inclusions of exponentially bounded
  $C$-semigroups},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {28},
      YEAR = {2022},
    NUMBER = {2},
     PAGES = {169-175},
      ISSN = {1029-3531},
  MRNUMBER = {MR4548154},
       DOI = {10.31392/MFAT-npu26_2.2022.09},
       URL = {http://mfat.imath.kiev.ua/article/?id=1792},
}


References

Coming Soon.

All Issues