Open Access

On Reeb graphs induced from smooth functions on $3$-dimensional closed manifolds which may not be orientable


Abstract

The Reeb space of a smooth function is a topological and combinatorial object. It is important in understanding the manifold. It is a graph defined as the quotient space of the manifold where the equivalence relation is as follows: two points in the manifold are equivalent if and only if they are in a same connected component of a level set. If the function is a Morse(-Bott) function for example, then this is the graph (Reeb graph) whose vertex set is the set of all points containing some singular points in the corresponding connected component of the level set.

The author previously constructed explicit smooth functions on suitable 3-dimensional closed and orientable manifolds whose Reeb graphs are isomorphic to prescribed graphs and whose preimages are of prescribed types. The present paper concerns a variant in the case where the 3-dimensional manifolds may not be non-orientable.

Простiр Реба гладкої функцiї є топологiчним i комбiнаторним об’єктом. Вiн грає важливу роль для розумiння многовиду. Вiн є графом, який визначається як фактор-простiр многовиду, де вiдношення еквiвалентностi таке: двi точки многовида еквiвалентнi тодi i тiльки тодi, коли вони знаходяться в одному i тому ж зв’язному компонентi поверхнi рiвня. Якщо функцiя є функцiєю Морса(-Ботта), тодi це є графом (графом Реба), множина вершин якого є множиною всiх точок, що мiстять певнi особливi точки у вiдповiдних зв’язних компонентах множини рiвнiв.

Ранiше автор побудував явнi гладкi функцiї на вiдповiдних 3 - вимiрних замкнутих i орiєнтованих многовидах, графи Реба яких iзоморфнi заданим графам i прообрази яких мають заданi типи. У цiй статтi розглядається варiант в випадку, коли 3-мiрнi многовиди можуть не бути неорiєнтованими.

Key words: Smooth functions and maps. Reeb spaces and Reeb graphs. Morse functions and fold maps, Differential topology.


Full Text






Article Information

TitleOn Reeb graphs induced from smooth functions on $3$-dimensional closed manifolds which may not be orientable
SourceMethods Funct. Anal. Topology, Vol. 29 (2023), no. 1-2, 57-72
DOI10.31392/MFAT-npu26_1–2.2023.05
MathSciNet   MR4753768
CopyrightThe Author(s) 2023 (CC BY-SA)

Authors Information

Naoki Kitazawa
Institute of Mathematis for Industry, Kyushu University, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan


Export article

Save to Mendeley



Citation Example

Naoki Kitazawa, On Reeb graphs induced from smooth functions on $3$-dimensional closed manifolds which may not be orientable, Methods Funct. Anal. Topology 29 (2023), no. 1, 57-72.


BibTex

@article {MFAT1911,
    AUTHOR = {Naoki Kitazawa},
     TITLE = {On Reeb graphs induced from smooth functions on $3$-dimensional closed manifolds which may not be orientable},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {29},
      YEAR = {2023},
    NUMBER = {1},
     PAGES = {57-72},
      ISSN = {1029-3531},
  MRNUMBER = {MR4753768},
       DOI = {10.31392/MFAT-npu26_1–2.2023.05},
       URL = {http://mfat.imath.kiev.ua/article/?id=1911},
}


References

Coming Soon.

All Issues