Open Access

Boundary problems and initial-boundary value problems for one class of nonlinear parabolic equations with Lévy Laplacian


Abstract

We develop a method to construct a solution to a boundary problem and an initial-boundary value problem in a fundamental domain of a Hilbert space for a class of nonlinear parabolic equations not containing explicitly the unknown function, $$\frac{\partial U(t,x)}{\partial t}=f(t,\Delta_LU(t,x)),$$ where $\Delta _L$ is the infinite dimensional Lévy Laplacian.


Full Text





Article Information

TitleBoundary problems and initial-boundary value problems for one class of nonlinear parabolic equations with Lévy Laplacian
SourceMethods Funct. Anal. Topology, Vol. 17 (2011), no. 2, 118-125
MathSciNet MR2849472
CopyrightThe Author(s) 2011 (CC BY-SA)

Authors Information

M. N. Feller
UkrNII ``Resurs'', 84 Bozhenko, Kyiv, 03150, Ukraine

I. I. Kovtun
National University of Life and Environmental Sciences of Ukraine, 15 Geroiv Oborony, Kyiv, 03041, Ukraine 


Google Scholar Metrics

Citing articles in Google Scholar
Similar articles in Google Scholar

Export article

Save to Mendeley



Citation Example

M. N. Feller and I. I. Kovtun, Boundary problems and initial-boundary value problems for one class of nonlinear parabolic equations with Lévy Laplacian, Methods Funct. Anal. Topology 17 (2011), no. 2, 118-125.


BibTex

@article {MFAT531,
    AUTHOR = {Feller, M. N. and Kovtun, I. I.},
     TITLE = {Boundary problems and initial-boundary value problems for one class of nonlinear parabolic equations with Lévy Laplacian},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {17},
      YEAR = {2011},
    NUMBER = {2},
     PAGES = {118-125},
      ISSN = {1029-3531},
       URL = {http://mfat.imath.kiev.ua/article/?id=531},
}


All Issues