Open Access

On the generation of Beurling type Carleman ultradifferentiable $C_0$-semigroups by scalar type spectral operators


Abstract

A characterization of the scalar type spectral generators of Beurling type Carleman ultradifferentiable $C_0$-semigroups is established, the important case of the Gevrey ultradifferentiability is considered in detail, the implementation of the general criterion corresponding to a certain rapidly growing defining sequence is observed.

Key words: Scalar type spectral operator, $C_0$-semigroup of linear operators, Carleman classes of functions and vectors.


Full Text






Article Information

TitleOn the generation of Beurling type Carleman ultradifferentiable $C_0$-semigroups by scalar type spectral operators
SourceMethods Funct. Anal. Topology, Vol. 22 (2016), no. 2, 169-183
MathSciNet   MR3522858
zbMATH 06665386
Milestones  Received 04/06/2015
CopyrightThe Author(s) 2016 (CC BY-SA)

Authors Information

Marat V. Markin
Department of Mathematics, California State University, Fresno 5245 N. Backer Avenue, M/S PB 108 Fresno, CA 93740-8001


Export article

Save to Mendeley



Citation Example

Marat V. Markin, On the generation of Beurling type Carleman ultradifferentiable $C_0$-semigroups by scalar type spectral operators, Methods Funct. Anal. Topology 22 (2016), no. 2, 169-183.


BibTex

@article {MFAT848,
    AUTHOR = {Markin, Marat V.},
     TITLE = {On the generation of Beurling type Carleman ultradifferentiable $C_0$-semigroups by scalar type spectral operators},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {22},
      YEAR = {2016},
    NUMBER = {2},
     PAGES = {169-183},
      ISSN = {1029-3531},
  MRNUMBER = {MR3522858},
 ZBLNUMBER = {06665386},
       URL = {http://mfat.imath.kiev.ua/article/?id=848},
}


References

  1. J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc. 63 (1977), no. 2, 370-373.  MathSciNet CrossRef
  2. Earl Berkson, Semi-groups of scalar type operators and a theorem of Stone, Illinois J. Math. 10 (1966), 345-352.  MathSciNet
  3. T. Carleman, Edition Complete des Articles de Torsten Carleman, Institut Mathematique Mittag-Leffler, Djursholm, Suede, 1960.
  4. Nelson Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274.  MathSciNet
  5. Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Interscience Publishers, New York, 1958.  MathSciNet
  6. Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers, New York, 1963.  MathSciNet
  7. Nelson Dunford and Jacob T. Schwartz, Linear operators. Part III: Spectral operators, Interscience Publishers, New York, 1971.  MathSciNet
  8. Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000.  MathSciNet
  9. M. Gevrey, Sur la nature analytique des solutions des \equations aux d\eriv\ees partielles, Ann. Ec. Norm. Sup. Paris 35 (1918), 129-196.
  10. Roe W. Goodman, Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math. Soc. 143 (1969), 55-76.  MathSciNet
  11. V. I. Gorbachuk, Spaces of infinitely differentiable vectors of a nonnegative self-adjoint operator, Ukrainian Math. J. 35 (1983), no. 5, 531-534.  MathSciNet CrossRef
  12. V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Kluwer Academic Publishers, Dordrecht-Boston-London, 1991.  MathSciNet CrossRef
  13. V. I. Gorbachuk and A. V. Knyazyuk, Boundary values of solutions of operator-differential equations, Russian Math. Surveys 44 (1989), no. 3, 67-111.  MathSciNet CrossRef
  14. Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957.  MathSciNet
  15. Hikosaburo Komatsu, Ultradistributions. I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25-105.  MathSciNet
  16. S. Mandelbrojt, Series de Fourier et Classes Quasi-Analytiques de Fonctions, Gauthier-Villars, Paris, 1935.
  17. Marat V. Markin, On an abstract evolution equation with a spectral operator of scalar type, Int. J. Math. Math. Sci. 32 (2002), no. 9, 555-563.  MathSciNet CrossRef
  18. Marat V. Markin, A note on the spectral operators of scalar type and semigroups of bounded linear operators, Int. J. Math. Math. Sci. 32 (2002), no. 10, 635-640.  MathSciNet CrossRef
  19. Marat V. Markin, On scalar type spectral operators, infinite differentiable and Gevrey ultradifferentiable $C_ 0$-semigroups, Int. J. Math. Math. Sci. (2004), no. 45-48, 2401-2422.  MathSciNet CrossRef
  20. Marat V. Markin, On the Carleman classes of vectors of a scalar type spectral operator, Int. J. Math. Math. Sci. 2004 (2004), 3219-3235.  MathSciNet CrossRef
  21. M. V. Markin, On scalar-type spectral operators and Carleman ultradifferentiable $C_ 0$-semigroups, Ukrainian Math. J. 60 (2008), no. 9, 1418-1436.  MathSciNet CrossRef
  22. Marat V. Markin, On the Carleman ultradifferentiability of weak solutions of an abstract evolution equation, Modern analysis and applications. The Mark Krein Centenary Conference. Vol. 2: Differential operators and mechanics, Oper. Theory Adv. Appl., vol. 191, Birkhauser Verlag, Basel, 2009, pp. 407-443.  MathSciNet CrossRef
  23. M. V. Markin, On the Carleman ultradifferentiable vectors of a scalar type spectral operator, Methods Funct. Anal. Topol. 21 (2015), no. 4, 360-369. MFAT Article
  24. Edward Nelson, Analytic vectors, Ann. of Math. 70 (1959), no. 3, 572-615.  MathSciNet CrossRef
  25. T. V. Panchapagesan, Semi-groups of scalar type operators in Banach spaces, Pacific J. Math. 30 (1969), 489-517.  MathSciNet
  26. A. Pazy, On the differentiability and compactness of semigroups of linear operators, J. Math. Mech. 17 (1968), 1131-1141.  MathSciNet
  27. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983.  MathSciNet CrossRef
  28. A. I. Plesner, Spectral theory of linear operators, Izdat. ``Nauka'', Moscow, 1965.  MathSciNet
  29. Ya. V. Radyno, The space of vectors of exponential type, Dokl. Akad. Nauk BSSR 27 (1983), no. 9, 791-793.  MathSciNet
  30. John Wermer, Commuting spectral measures on Hilbert space, Pacific J. Math. 4 (1954), 355-361.  MathSciNet
  31. Kosaku Yosida, On the differentiability of semigroups of linear operators, Proc. Japan Acad. 34 (1958), 337-340.  MathSciNet
  32. Kosaku Yosida, Functional analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980.  MathSciNet


All Issues