Open Access

Homeotopy groups of rooted tree like non-singular foliations on the plane


Abstract

Let $F$ be a non-singular foliation on the plane with all leaves being closed subsets, $H^{+}(F)$ be the group of homeomorphisms of the plane which maps leaves onto leaves endowed with compact open topology, and $H^{+}_{0}(F)$ be the identity path component of $H^{+}(F)$. The quotient $\pi_0 H^{+}(F) = H^{+}(F)/H^{+}_{0}(F)$ is an analogue of a mapping class group for foliated homeomorphisms. We will describe the algebraic structure of $\pi_0 H^{+}(F)$ under an assumption that the corresponding space of leaves of $F$ has a structure similar to a rooted tree of finite diameter.

Key words: Non-singular foliations, homeotopy groups.


Full Text





Article Information

TitleHomeotopy groups of rooted tree like non-singular foliations on the plane
SourceMethods Funct. Anal. Topology, Vol. 22 (2016), no. 3, 283-294
MathSciNet MR3554654
zbMATH 06742112
MilestonesReceived 31/03/2016
CopyrightThe Author(s) 2016 (CC BY-SA)

Authors Information

Yu. Yu. Soroka
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine


Google Scholar Metrics

Citing articles in Google Scholar
Similar articles in Google Scholar

Export article

Save to Mendeley



Citation Example

Yu. Yu. Soroka, Homeotopy groups of rooted tree like non-singular foliations on the plane, Methods Funct. Anal. Topology 22 (2016), no. 3, 283-294.


BibTex

@article {MFAT894,
    AUTHOR = {Yu. Yu. Soroka},
     TITLE = {Homeotopy groups of rooted tree like non-singular foliations on the plane},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {22},
      YEAR = {2016},
    NUMBER = {3},
     PAGES = {283-294},
      ISSN = {1029-3531},
  MRNUMBER = {MR3554654},
 ZBLNUMBER = {06742112},
       URL = {http://mfat.imath.kiev.ua/article/?id=894},
}


References

  1. A. V. Bolsinov and A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem (Introduction to the topology of integrable Hamiltonian systems), Nauka, Moscow, 1997 (Russian).  MathSciNet
  2. William M. Boothby, The topology of regular curve families with multiple saddle points, Amer. J. Math. 73 (1951), 405-438.  MathSciNet
  3. D. B. A. Epstein, Curves on $2$-manifolds and isotopies, Acta Math. 115 (1966), 83-107.  MathSciNet
  4. James A. Jenkins and Marston Morse, Contour equivalent pseudoharmonic functions and pseudoconjugates, Amer. J. Math. 74 (1952), 23-51.  MathSciNet
  5. Wilfred Kaplan, Regular curve-families filling the plane, I, Duke Math. J. 7 (1940), 154-185.  MathSciNet
  6. Wilfred Kaplan, Regular curve-families filling the plane, II, Duke Math J. 8 (1941), 11-46.  MathSciNet
  7. K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Panstwowe Wydawnictwo Naukowe, Warsaw, 1966.  MathSciNet
  8. Sergiy Maksymenko and Eugene Polulyakh, Foliations with non-compact leaves on surfaces, Proceedings of Geometric Center 8 (2015), no. 3-4, 17-30.  arXiv:1512.07809
  9. A. A. Oshemkov, Morse functions on two-dimensional surfaces. Coding of singularities, Proc. Steklov Inst. Math. 205 (1995), no. 4, 119–127.  MathSciNet
  10. E. Polulyakh and I. Yurchuk, On the pseudo-harmonic functions defined on a disk, vol. 80, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 2009 (Ukrainian).  MathSciNet
  11. E. A. Polulyakh, Kronrod-Reeb graphs of functions on noncompact two-dimensional surfaces. I, Ukrainian Math. J. 67 (2015), no. 3, 431-454.  MathSciNet CrossRef
  12. A. O. Prishlyak, Conjugacy of Morse functions on surfaces with values on the line and circle, Ukrainian Math. J. 52 (2000), no. 10, 1623-1627.  MathSciNet CrossRef
  13. A. O. Prishlyak, Morse functions with finite number of singularities on a plane, Methods Funct. Anal. Topology 8 (2002), no. 1, 75-78.  MathSciNet MFAT Article
  14. V. V. Sharko, Smooth and topological equivalence of functions on surfaces, Ukrainian Math. J. 55 (2003), no. 5, 832-846.  MathSciNet CrossRef
  15. V. V. Sharko, Smooth functions on non-compact surfaces, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos. 3 (2006), no. 3, 443-473.  arXiv:0709.2511
  16. V. V. Sharko and Yu. Yu. Soroka, Topological equivalence to a projection, Methods Funct. Anal. Topology 21 (2015), no. 1, 3-5.  MathSciNet MFAT Article
  17. Hassler Whitney, Regular families of curves, Ann. of Math. (2) 34 (1933), no. 2, 244-270.  MathSciNet CrossRef


All Issues