- MFAT
- Vol. 22 (2016), no. 4
- pp. 295-310
Elliptic boundary-value problems in Hörmander spaces
Anna Anop
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka, Kyiv, 01601, Ukraine; Chernihiv National Pedagogical University, 53 Het’mana Polubotka, Chernihiv, 14013, Ukraine
Tetiana Kasirenko
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka, Kyiv, 01601, Ukraine
Abstract
We investigate general elliptic boundary-value problems in Hörmander inner product spaces that form the extended Sobolev scale. The latter consists of all Hilbert spaces that are interpolation spaces with respect to the Sobolev Hilbert scale. We prove that the operator corresponding to an arbitrary elliptic problem is Fredholm in appropriate couples of the Hörmander spaces and induces a collection of isomorphisms on the extended Sobolev scale. We obtain a local a priory estimate for generalized solutions to this problem and prove a theorem on their local regularity in the Hörmander spaces. We find new sufficient conditions under which generalized derivatives (of a given order) of the solutions are continuous.
Key words: Elliptic problem, Hörmander space, extended Sobolev scale, RO-varying function, Fredholm property, a priori estimate, local regularity
Full Text
Article Information
Title | Elliptic boundary-value problems in Hörmander spaces |
Source | Methods Funct. Anal. Topology, Vol. 22 (2016), no. 4, 295-310 |
MathSciNet | MR3591082 |
zbMATH | 06742113 |
Milestones | Received 19/09/2016 |
Copyright | The Author(s) 2016 (CC BY-SA) |
Authors Information
Anna Anop
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka, Kyiv, 01601, Ukraine; Chernihiv National Pedagogical University, 53 Het’mana Polubotka, Chernihiv, 14013, Ukraine
Tetiana Kasirenko
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka, Kyiv, 01601, Ukraine
Google Scholar Metrics
Citing articles in Google Scholar
Similar articles in Google Scholar
Export article
Citation Example
Anna Anop and Tetiana Kasirenko, Elliptic boundary-value problems in Hörmander spaces, Methods Funct. Anal. Topology 22 (2016), no. 4, 295-310.
BibTex
@article {MFAT911, AUTHOR = {Anop, Anna and Kasirenko, Tetiana}, TITLE = {Elliptic boundary-value problems in Hörmander spaces}, JOURNAL = {Methods Funct. Anal. Topology}, FJOURNAL = {Methods of Functional Analysis and Topology}, VOLUME = {22}, YEAR = {2016}, NUMBER = {4}, PAGES = {295-310}, ISSN = {1029-3531}, MRNUMBER = {MR3591082}, ZBLNUMBER = {06742113}, URL = {http://mfat.imath.kiev.ua/article/?id=911}, }
References
- M. S. Agranovich, Elliptic boundary problems, Partial differential equations, IX, Encyclopaedia Math. Sci., vol. 79, Springer, Berlin, 1997, MathSciNet CrossRef
- A. V. Anop, Elliptic boundary-value problems in a multiply connected domain on the extended Sobolev scale, Zb. Pr. Inst. Mat. Nats. Akad. Nauk Ukr., vol. 10, no. 2, 2013, pp. 37-59 (Ukrainian).
- A. V. Anop, Elliptic boundary-value problems for systems of differential equations in the spaces of generalized smoothness, Zb. Pr. Inst. Mat. Nats. Akad. Nauk Ukr., vol. 11, no. 2, 2014, pp. 7-34 (Ukrainian).
- A. V. Anop, A general elliptic boundary-value problem on the extended Sobolev scale, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (2014), no. 4, 7-14 (Ukrainian).
- A. V. Anop and A. A. Murach, Parameter-elliptic problems and interpolation with a function parameter, Methods Funct. Anal. Topology 20 (2014), no. 2, 103-116. MathSciNet
- A. V. Anop and A. A. Murach, Regular elliptic boundary-value problems in the extended Sobolev scale, Ukrainian Math. J. 66 (2014), no. 7, 969-985. MathSciNet CrossRef
- V. G. Avakumovi, O jednom O-inverznom stavu, Rad Jugoslovenske Akad. Znatn. Umjetnosti 254 (1936), 167-186.
- Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968. MathSciNet
- Joran Bergh and Jorgen Lofstrom, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. MathSciNet
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1989. MathSciNet
- Yu. V. Egorov, Linear differential equations of principal type, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986. MathSciNet
- C. Foias and J.-L. Lions, Sur certains theor\`emes dinterpolation, Acta Sci. Math. Szeged 22 (1961), 269-282. MathSciNet
- Lars Hormander, Linear partial differential operators, Grundlehren Math. Wiss 116, Springer-Verlag, Berlin, 1963. MathSciNet
- Lars Hormander, The analysis of linear partial differential operators. II. Differential operators with constant coefficients, Grundlehren Math. Wiss 257, Springer-Verlag, Berlin, 1983. MathSciNet CrossRef
- Lars Hormander, The analysis of linear partial differential operators. III, Grundlehren Math. Wiss 274, Springer-Verlag, Berlin, 1985. MathSciNet
- N. Jacob, Pseudo differential operators and Markov processes. Vol. I. Fourier analysis and semigroups, Imperial College Press, London, 2001. MathSciNet CrossRef
- V. A. Kozlov, V. G. Maz′ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs, vol. 52, American Mathematical Society, Providence, RI, 1997. MathSciNet
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Grundlehren Math. Wiss 181, Springer-Verlag, New York-Heidelberg, 1972. MathSciNet
- W. Matuszewska, On a generalization of regularly increasing functions, Studia Math. 24 (1964), 271-279. MathSciNet
- V. A. Mikhailets and A. A. Murach, Elliptic operators in a refined scale of function spaces, Ukrainian Math. J. 57 (2005), no. 5, 817-825. MathSciNet CrossRef
- V. A. Mikhailets and A. A. Murach, Refined scales of spaces, and elliptic boundary value problems. II, Ukrainian Math. J. 58 (2006), no. 3, 398-417. MathSciNet CrossRef
- V. A. Mikhailets and A. A. Murach, A regular elliptic boundary value problem for a homogeneous equation in a two-sided refined scale of spaces, Ukrainian Math. J. 58 (2006), no. 11, 1748-1767. MathSciNet CrossRef
- V. A. Mikhailets and A. A. Murach, Refined scales of spaces, and elliptic boundary value problems. III, Ukrainian Math. J. 59 (2007), no. 5, 744-765. MathSciNet CrossRef
- V. A. Mikhailets and A. A. Murach, An elliptic boundary value problem in a two-sided refined scale of spaces, Ukrainian Math. J. 60 (2008), no. 4, 574-597. MathSciNet CrossRef
- V. A. Mikhailets and A. A. Murach, Elliptic operators on a closed compact manifold, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (2009), no. 3, 29-35 (Russian). MathSciNet
- V. A. Mikhailets and A. A. Murach, The refined Sobolev scale, interpolation, and elliptic problems, Banach J. Math. Anal. 6 (2012), no. 2, 211-281. MathSciNet CrossRef
- V. A. Mikhailets and A. A. Murach, Extended Sobolev scale and elliptic operators, Ukrainian Math. J. 65 (2013), no. 3, 435-447. MathSciNet CrossRef
- V. A. Mikhailets and A. A. Murach, Hormander spaces, interpolation, and elliptic problems, De Gruyter Studies in Mathematics, vol. 60, De Gruyter, Berlin, 2014. MathSciNet CrossRef
- V. A. Mikhailets and A. A. Murach, Interpolation Hilbert spaces between Sobolev spaces, Results Math. 67 (2015), no. 1-2, 135-152. MathSciNet CrossRef
- Aleksandr A. Murach and Tetiana Zinchenko, Parameter-elliptic operators on the extended Sobolev scale, Methods Funct. Anal. Topology 19 (2013), no. 1, 29-39. MathSciNet
- Fabio Nicola and Luigi Rodino, Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators. Theory and Applications, vol. 4, Birkhauser Verlag, Basel, 2010. MathSciNet CrossRef
- V. I. Ovchinnikov, The method of orbits in interpolation theory, Math. Rep. 1 (1984), no. 2, 349-515. MathSciNet
- Boris P. Paneah, The oblique derivative problem, Mathematical Topics, vol. 17, Wiley-VCH, Berlin, 2000. MathSciNet
- J. Peetre, On interpolation functions, Acta Sci. Math. (Szeged) 27 (1966), 167-171. MathSciNet
- J. Peetre, On interpolation functions. II, Acta Sci. MAth. (Szeged) 29 (1968), 91-92. MathSciNet
- Yakov Roitberg, Elliptic boundary value problems in the spaces of distributions, Mathematics and its Applications, vol. 384, Kluwer Academic Publishers Group, Dordrecht, 1996. MathSciNet CrossRef
- Yakov Roitberg, Boundary value problems in the spaces of distributions, Mathematics and its Applications, vol. 498, Kluwer Academic Publishers, Dordrecht, 1999. MathSciNet CrossRef
- Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MathSciNet
- G. Slenzak, Elliptic problems in a refined scale of spaces, Moscow Univ. Math. Bull. 29 (1974), no. 3--4, 80-88.
- Hans Triebel, Interpolation theory, function spaces, differential operators, Johann Ambrosius Barth, Heidelberg, 1995. MathSciNet
- Hans Triebel, The structure of functions, Monographs in Mathematics, vol. 97, Birkhauser Verlag, Basel, 2001. MathSciNet CrossRef
- L. R. Volevich and B. P. Panejah, Some spaces of generalized functions and embedding theorems, Russian Math. Surveys 20 (1965), no. 1, 1-73.
- T. N. Zinchenko and A. A. Murach, Douglis-Nirenberg elliptic systems in Hormander spaces, Ukrainian Math. J. 64 (2013), no. 11, 1672-1687. MathSciNet CrossRef
- Tetiana N. Zinchenko and Aleksandr A. Murach, Petrovskii elliptic systems in the extended Sobolev scale, J. Math. Sci. (N. Y.) 196 (2014), no. 5, 721-732. MathSciNet CrossRef