M. R. Abdollahpour

Search this author in Google Scholar


Articles: 1

$pg$-frame in Banach spaces

M. R. Abdollahpour, M. H. Faroughi, A. Rahimi

↓ Abstract   |   Article (.pdf)

MFAT 13 (2007), no. 3, 201-210

201-210

For extending the concepts of $p$-frame, frame for Banach spaces and atomic decomposition, we will define the concept of $pg$-frame and $g$-frame for Banach spaces, by which each $f\in X$ ($X$ is a Banach space) can be represented by an unconditionally convergent series $f=\sum g_{i}\Lambda_{i},$ where $\{\Lambda_{i}\}_{i\in J}$ is a $pg$-frame, $\{g_{i}\}\in(\sum\oplus Y_{i}^{*})_{l_q}$ and $\frac{1}{p}+\frac{1}{q}=1$. In fact, a $pg$-frame $\{\Lambda_{i}\}$ is a kind of an overcomplete basis for $X^{*}.$ We also show that every separable Banach space $X$ has a $g$-Banach frame with bounds equal to $1.$


All Issues