J. E. Ruziev

Search this author in Google Scholar


Articles: 1

Algebras of unbounded operators over the ring of measurable functions and their derivations and automorphisms

S. Albeverio, Sh. A. Ayupov, A. A. Zaitov, J. E. Ruziev

↓ Abstract   |   Article (.pdf)

MFAT 15 (2009), no. 2, 177-187

177-187

In the present paper derivations and $*$-automorphisms of algebras of unbounded operators over the ring of measurable functions are investigated and it is shown that all $L^0$-linear derivations and $L^{0}$-linear $*$-automorphisms are inner. Moreover, it is proved that each $L^0$-linear automorphism of the algebra of all linear operators on a $bo$-dense submodule of a Kaplansky-Hilbert module over the ring of measurable functions is spatial.


All Issues