A. Jabbari
Search this author in Google Scholar
A class of distal functions on semitopological semigroups
MFAT 15 (2009), no. 2, 188-194
188-194
The norm closure of the algebra generated by the set $\{n\mapsto {\lambda}^{n^k}:$ $\lambda\in{\mathbb {T}}$ and $k\in{\mathbb{N}}\}$ of functions on $({\mathbb {Z}}, +)$ was studied in \cite{S} (and was named as the Weyl algebra). In this paper, by a fruitful result of Namioka, this algebra is generalized for a general semitopological semigroup and, among other things, it is shown that the elements of the involved algebra are distal. In particular, we examine this algebra for $({\mathbb {Z}}, +)$ and (more generally) for the discrete (additive) group of any countable ring. Finally, our results are treated for a bicyclic semigroup.