Abstract
	             We determine square root domains for non-self-adjoint Sturm-Liouville operators of the type $$ L_{p,q,r,s} = - \frac{d}{dx}p\frac{d}{dx}+r\frac{d}{dx}-\frac{d}{dx}s+q $$ in $L^2((c,d);dx)$, where either $(c,d)$ coincides with the real line $\mathbb R$, the half-line $(a,\infty)$, $a \in \mathbb R$, or with the bounded interval $(a,b) \subset \mathbb R$, under very general conditions on the coefficients $q, r, s$. We treat Dirichlet and Neumann boundary conditions at $a$ in the half-line case, and Dirichlet and/or Neumann boundary conditions at $a,b$ in the final interval context. (In the particular case $p=1$ a.e. on $(a,b)$, we treat all separated boundary conditions at $a, b$.)
	          	             Key words: Square root domains, Kato problem, additive perturbations, Sturm–Liouville operators.
	          	          Full Text
	          	             
                     
         
                            
           
		  
		       Article Information
		       
		       | Title | On square root domains for non-self-adjoint Sturm-Liouville operators | 
		       | Source | Methods Funct. Anal. Topology, Vol. 19 (2013), no. 3, 227-259 | 
		       
		       		       | MathSciNet   | 
		              MR3136729 | 
		       | zbMATH | 
		              1289.47091 | 
		       | Milestones   | Received 10/05/2013; Revised: 14/06/2013 | 
		       | Copyright | The Author(s) 2013 (CC BY-SA) | 
               
                                  Authors Information
		     	   Fritz Gesztesy 
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
Steve Hofmann 
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
Roger Nichols 
Mathematics Department, The University of Tennessee at Chattanooga, 415 EMCS Building, Dept. 6956, 615 McCallie Ave, Chattanooga, TN 37403, USA 
               
                             
               
                              
               
                              Citation Example
               Fritz Gesztesy, Steve Hofmann, and Roger Nichols, On square root domains for non-self-adjoint Sturm-Liouville operators, Methods Funct. Anal. Topology 19
                  (2013), no. 3, 227-259.
BibTex
@article {MFAT697,
    AUTHOR = {Gesztesy, Fritz and Hofmann, Steve and Nichols, Roger},
     TITLE = {On square root domains for non-self-adjoint Sturm-Liouville operators},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {19},
      YEAR = {2013},
    NUMBER = {3},
     PAGES = {227-259},
      ISSN = {1029-3531},
  MRNUMBER = {MR3136729},
 ZBLNUMBER = {1289.47091},
       URL = {https://mfat.imath.kiev.ua/article/?id=697},
}