Abstract
	             In this paper we study Green measures of certain classes of Markov
processes. In particular Brownian motion and processes with jump generators
with different tails. The Green measures are represented as a sum
of a singular and a regular part given in terms of the jump generator.
The main technical question is to find a bound for the regular
part.
Ми вивчаємо міри Ґріна для деяких класів марківських процесів.
Зокрема для броунівського руху і стрибкових процесів. Міри Ґріна містять сингулярну
і регулярну компоненти. Основна задача полягає в оцінці регулярної частини.
	          	             Key words: Markov processes, Green measures, compound Poisson process, Brownian motion.
	          	          Full Text
	          	             
                     
         
                            
           
		  
		       Article Information
		       
		       | Title | Green measures for Markov processes | 
		       | Source | Methods Funct. Anal. Topology, Vol. 26 (2020), no. 3, 241-248 | 
		       
		       | DOI | 10.31392/MFAT-npu26_3.2020.05 | 
		       | MathSciNet | MR4165155 | 
		       		       | Milestones | Received 12/06/2020 | 
		       | Copyright | The Author(s) 2020 (CC BY-SA) | 
               
                                  Authors Information
		     	   Yuri Kondratiev
Department of Mathematics, University of Bielefeld, D-33615 Bielefeld, Germany; Dragomanov University, Kiev, Ukraine
José L. da Silva
CIMA, University of Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
 
               
                             
               
                              
               
                              Citation Example
                Yuri Kondratiev and  José L. da Silva, Green measures for Markov processes, Methods Funct. Anal. Topology 26
                  (2020), no. 3, 241-248.
BibTex
@article {MFAT1396,
    AUTHOR = {Yuri Kondratiev and José L. da Silva},
     TITLE = {Green measures for Markov processes},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {26},
      YEAR = {2020},
    NUMBER = {3},
     PAGES = {241-248},
      ISSN = {1029-3531},
  MRNUMBER = {MR4165155},
       DOI = {10.31392/MFAT-npu26_3.2020.05},
       URL = {https://mfat.imath.kiev.ua/article/?id=1396},
}