Open Access

On $m$-quasi-$n$-power-totally-$(\alpha,\beta)$-normal operators


Abstract

In this paper, we introduce the notion of $m$-quasi-$n$-power-totally-$(\alpha,\beta)$-normal operators on a Hilbert space $\mathscr{H}$ as : An operator $\mathcal{L}$ is called $m$-quasi-$n$-power-totally-$(\alpha,\beta)$-normal $(0\leq \alpha \leq 1 \leq \beta)$ if \begin{align*} \alpha^{2}\mathcal{L}^{m*}(\mathcal{L}-\lambda)^{*}(\mathcal{L}-\lambda )^{n}\mathcal{L}^{m}& \leq \mathcal{L}^{m*}(\mathcal{L}-\lambda)^{n}(\mathcal{L}-\lambda)^{*}\mathcal{L}^{m}\\ &\leq \beta^{2} \mathcal{L}^{m*}(\mathcal{L}-\lambda)^{*}(\mathcal{L}-\lambda )^{n}\mathcal{L}^{m} \end{align*} for natural numbers $m$ and $n$ and for all $\lambda \in \mathbb{C}$. This paper aims to study several properties of $m$-quasi-$n$-power-totally-$(\alpha,\beta)$-normal operators.

Key words: $(\alpha,\beta)$-normal, $m$-quasi-totally-$(\alpha,\beta)$-normal, $m$-quasi-$n$-power-totally-$(\alpha,\beta)$-normal.


Full Text






Article Information

TitleOn $m$-quasi-$n$-power-totally-$(\alpha,\beta)$-normal operators
SourceMethods Funct. Anal. Topology, Vol. 31 (2025), no. 3, 247-260
DOI10.31392/MFAT-npu26_3.2025.08
Milestones  Received 18/01/2025; Revised 03/06/2025
CopyrightThe Author(s) 2025 (CC BY-SA)

Authors Information

Pradeep Radhakrishnan
Department of Mathematics, Sri Ramakrishna Engineering College, Coimbatore-641 022,Tamil Nadu, India

Sid Ahmed Ould Ahmed Mahmoud
Mathematics Department, College of Science, Jouf University, Sakaka P.O.Box 2014. Saudi Arabia

P. Maheswari Naik
Department of Mathematics, Sri Ramakrishna Engineering College, Coimbatore-641 022,Tamil Nadu, India


Export article

Save to Mendeley



Citation Example

Pradeep Radhakrishnan, Sid Ahmed Ould Ahmed Mahmoud, and P. Maheswari Naik, On $m$-quasi-$n$-power-totally-$(\alpha,\beta)$-normal operators, Methods Funct. Anal. Topology 31 (2025), no. 3, 247-260.


BibTex

@article {MFAT2128,
    AUTHOR = {Pradeep Radhakrishnan and Sid Ahmed Ould Ahmed Mahmoud and P. Maheswari Naik},
     TITLE = {On $m$-quasi-$n$-power-totally-$(\alpha,\beta)$-normal operators},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {31},
      YEAR = {2025},
    NUMBER = {3},
     PAGES = {247-260},
      ISSN = {1029-3531},
       DOI = {10.31392/MFAT-npu26_3.2025.08},
       URL = {https://mfat.imath.kiev.ua/article/?id=2128},
}


References

Coming Soon.

All Issues