Methods of Functional Analysis
and Topology

Editors-in-Chief: A. N. Kochubei, G. M. Torbin
ISSN: 1029-3531 (Print), 2415-7503 (Online)

Founded by Yu. M. Berezansky in 1995.

Methods of Functional Analysis and Topology (MFAT), founded in 1995, is a peer-reviewed journal publishing original articles and surveys on general methods and techniques of functional analysis and topology with a special emphasis on applications to modern mathematical physics.

MFAT is an open access journal, free for authors and free for readers.

Indexed in: MathSciNet, zbMATH, Scopus, Web of Science, DOAJ, Google Scholar


Volumes: 29 | Issues: 111 | Articles: 855 | Authors: 711

Latest Articles (September, 2023)


Second degree semiclassical linear functionals of class one. The quasi-antisymmetric case

Mohamed Zaatra

↓ Abstract   |   Article (.pdf)

MFAT 29 (2023), no. 3-4, 134-144

134-144

An orthogonal sequence with respect to a regular linear functional $w$ is said to be semiclassical if there exist a monic polynomial $\Phi$ and a polynomial $\Psi$ with $\deg(\Psi)\geq1$, such that $(\Phi w)^{'}+\Psi w=0$. Recently, all semiclassical monic orthogonal polynomial sequences of class one satisfying a three term recurrence relation with $\beta_{0}=-\alpha_{0}$, $\beta_{n+1}=\alpha_{n}-\alpha_{n+1}$ and $\gamma_{n+1}=-\alpha_{n}^{2}$ with $ \alpha_{n}\neq0\,,\;n\geq0,$ have been determined [17].

In this paper, we point sequences of the above family such that their corresponding Stieltjes function $S(w)(z)=-\displaystyle\sum_{n\geq0}\frac{(w)_{n}}{z^{n+1}}$ satisfies a quadratic equation $B(z)S^{2}(w)(z)+C(z)S(w)(z)+D(z)=0$, where $B$, $C$, $D$ are polynomials.

Ортогональна послідовність відносно регулярного лінійного функціонала $w$ називається напівкласичною, якщо існує моном $\Phi$ і поліном $\Psi$, $\deg(\Psi)\geq1$, такі, що $(\Phi w)^{'}+\Psi w=0$. Останнім часом всі напівкласичні монічні ортогональні поліноміальні послідовності першого класу, що задовольняють тричленному рекурентному відношенню, коли $\beta_{0}=-\alpha_{0}$, $\beta_{n+1}=\alpha_{n}-\alpha_{n+1}$ і $\gamma_{n+1}=-\alpha_{n}^{2}$ з $ \alpha_{n}\neq0$, $n\geq0,$ були визначені [17].

В статті вказуються послідовності вищевказаної сім'ї такі, що їх відповідна функція Стілтьєса $S(w)(z)=-\displaystyle\sum_{n\geq0}\frac{(w)_{n}}{z^{n+1}}$ задовольняє квадратичному рівнянню $B(z)S^{2}(w)(z)+C(z)S(w)(z)+D(z)=0$, де $B$, $C$, $D$ -- поліноми.

The numerical radius points of ${\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})$

Sung Guen Kim, Chang Yeol Lee

↓ Abstract   |   Article (.pdf)

MFAT 29 (2023), no. 3-4, 101-110

101-110

For $n\geq 2$ and a Banach space $E$ we let $$ \Pi(E)=\{[x^*, x_1, \ldots, x_n]: x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{for}~{j=1, \ldots, n}~\}, $$ ${\mathcal L}(^n E:E)$ denote the space of all continuous $n$-linear mappings from $E$ to itself. An element $[x^*, x_1, \ldots, x_n]\in \Pi(E)$ is called a numerical radius point of $T\in {\mathcal L}(^n E:E)$ if $$ |x^{*}(T(x_1, \ldots, x_n))|=v(T), $$ where $v(T)$ is the numerical radius of $T$. By $\rm{Nradius}({T})$ we denote the set of all numerical radius points of $T$. Let $0\leq \theta\leq\frac{\pi}{2}$ and $\ell^2_{{({\infty}, \theta)}}=\mathbb{R}^2$ with the rotated supremum norm $$ \|(x, y)\|_{{({\infty}, \theta)}}=\max\Big\{|x \cos \theta+y \sin \theta|,~ |x \sin \theta-y \cos \theta|\Big\}. $$ In this paper, we show that the numerical radius of $T\in{\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})$ equals to its norm $\|T\|.$ Using this, we classify $\rm{Nradius}({T})$ for every $T\in {\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})$ in connection with the norming points of the bilinear mapping associated with $T$. Let $$ \mbox{NA}({\mathcal L}(^n E:E))=\{T\in {\mathcal L}(^n E:E): T~\mbox{is norm attaining} \} $$ and $$ \mbox{NRA}({\mathcal L}(^n E:E))=\{T\in {\mathcal L}(^n E:E): T~\mbox{is numerical radius attaining} \}. $$ We also show that $ \mbox{NA}({\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}}))=\mbox{NRA}({\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})),$ which generalizes some results in [12].

Для $n\geq 2$ і банахова простору $E$ покладемо $$ \Pi(E)=\{[x^*, x_1, \ldots, x_n]: x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{для}~{j=1, \ldots, n}~\}, $$ де ${\mathcal L}(^n E:E)$ позначає простір усіх неперервних $n$-лінійних відображень $E$ на себе. Елемент $[x^*, x_1, \ldots, x_n]\in \Pi(E)$ називається точкою чисельного радіусу $T\in {\mathcal L}(^n E:E)$, якщо $$ |x^{*}(T(x_1, \ldots, x_n))|=v(T), $$ де $v(T)$ — чисельний радіус $T$. За $\rm{Nradius}({T})$ позначимо множину всіх точок чисельного радіусу $T$. Нехай $0\leq \theta\leq\frac{\pi}{2}$ і $\ell^2_{{({\infty}, \theta)}}=\mathbb{R}^2$ із поверненою супремум нормою $$ \|(x, y)\|_{{({\infty}, \theta)}}=\max\Big\{|x \cos \theta+y \sin \theta|,~ |x \sin \theta-y \cos \theta|\Big\}. $$ Показано, що чисельний радіус $T\in{\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})$ дорівнює своїй нормі $\|T\|.$ Використовуючи це, ми класифікуємо $\rm{Nradius}({T})$ для кожного $T\in {\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})$, пов'язуючи з нормуючими точками білінійного відображення, відповідного $T$. Нехай $$ \mbox{NA}({\mathcal L}(^n E:E))=\{T\in {\mathcal L}(^n E:E): T~\mbox{досягає норми} \} $$ і $$ \mbox{NRA}({\mathcal L}(^n E:E))=\{T\in {\mathcal L}(^n E:E): T~\mbox{досягає чисельного радіусу} \} . $$ Ми також показуємо що $ \mbox{NA}({\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}}))=\mbox{NRA}({\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})),$ що узагальнює деякі результати роботи [12].

Yuri Kondratiev

Editorial Board

MFAT 29 (2023), no. 3-4, 81-82

81-82

Weaving operator Frames for $B(\mathcal{H})$

Mohamed Rossafi, Khadija Mabrouk, M'hamed Ghiati, Mohammed Mouniane

↓ Abstract   |   Article (.pdf)

MFAT 29 (2023), no. 3-4, 111-124

111-124

This paper aims to study the concept of weaving operator frames within Hilbert spaces $\mathcal{H}$. Properties of weaving operator frames are explored. An investigation into the dual aspect of weaving operator frames within $B(\mathcal{H})$ spaces is presented. The behavior and characteristics of weaving operator responses within the context of Hilbert spaces are discuted. Finally, perturbation results concerning weaving operator frames are obtained.

В статті вивчається концепція фреймів сплітаючих операторів в гільбертових просторах $\mathcal{H}$. Досліджуються властивості фреймів сплітаючих операторів. Вивчено подвійний аспект фреймів сплітаючих операторів в просторах $B(\mathcal{H})$. Обговорено поведінку та характеристики реакцій сплітаючего оператора в контексті гільбертових просторів. Отримано результати збурення фреймів сплітаючих операторів.

All Issues