O. Ostrovska

Search this author in Google Scholar


Articles: 3

A class of representations of $C^*$-algebra generated by $q_{ij}$-commuting isometries

Olha Ostrovska, Vasyl Ostrovskyi, Danylo Proskurin, Yurii Samoilenko

↓ Abstract   |   Article (.pdf)

MFAT 28 (2022), no. 1, 89-94

89-94

For a $C^*$-algebra generated by a finite family of isometries $s_j$, $j=1,\dots,d$, satisfying the $q_{ij}$-commutation relations \[ s_j^* s_j = I, \quad s_j^* s_k = q_{ij}s_ks_j^*, \qquad q_{ij} = \bar q_{ji}, |q_{ij}|<1, \ 1\le i \ne j \le d, \] we construct an infinite family of unitarily non-equivalent irreducible representations. These representations are deformations of a corresponding class of representations of the Cuntz algebra $\mathcal O_d$.

Для $C^*$-алгебри, породженої скінченною сім’єю ізометрій $s_j$, $j=1,\dots,d$, що задовольняє $q_{ij}$-комутаційним співвідношенням \[ s_j^* s_j = I, \quad s_j^* s_k = q_{ij}s_ks_j^*, \qquad q_{ij} = \bar q_{ji}, |q_{ij}|<1, \ 1\le i \ne j \le d, \] ми будуємо нескінченну сім'ю унітарно нееквівалентних незвідних представлень. Ці представлення є деформаціями відповідного класу представлень алгебри Кунца $\mathcal O_d$.

Unitary representations of Poincaré group ${\mathrm{P}(1,n)}$ in ${\mathrm{SO}(1,n)}$-basis

Olha Ostrovska, Ivan I. Yuryk

↓ Abstract   |   Article (.pdf)

MFAT 27 (2021), no. 3, 258-276

258-276

This paper concerns the problem of reduction of unitary irreducible representations of the Poincaré group $\mathrm{P}(1,n)$ with respect to representations of its subgroup $\mathrm{SO}(1,n)$. Based on a generalization of the Wigner-Eckart theorem, we obtain matrix elements of the shift operators in the $\mathrm{SO}(1,n)$-basis.

Робота присвячена проблемі редукції унітарних незвідних представлень групи Пуанкаре $P(1, n)$ відносно представлень її підгрупи $SO(1, n)$. На основі узагальнення теореми Вігнера-Еккарта отримано матричні елементи операторів зсуву в $SO(1, n)$-базисі.

On isometries satisfying deformed commutation relations

Olha Ostrovska, Roman Yakymiv

↓ Abstract   |   Article (.pdf)

MFAT 25 (2019), no. 2, 152-160

152-160

We consider an $C^*$-algebra $\mathcal{E}_{1,n}^q$, $q\le 1$, generated by isometries satisfying $q$-deformed commutation relations. For the case $|q|<1$, we prove that $\mathcal E_{1,n}^q \simeq\mathcal E_{1,n}^0=\mathcal O_{n+1}^0$. For $|q|=1$ we show that $\mathcal E_{1,n}^q$ is nuclear and prove that its Fock representation is faithul. In this case we also discuss the representation theory, in particular construct a commutative model for representations.


All Issues