Matrices Induced by Scaled Hypercomplex Numbers over the Real Field $\mathbb{R}$
Abstract
In this paper, we construct, and study a certain type of definite, or indefinite inner product spaces over the real field $\mathbb{R}$, induced by the scaled hypercomplex numbers $\mathbb{H}_{t}$ for a fixed scale $t\in\mathbb{R}$, and some bounded operators acting on such vector spaces. In particular, we are interested in the vector spaces $\mathbb{H}_{t}^{N}$ consisting of all $N$-tuples of scaled hypercomplex numbers of $\mathbb{H}_{t}$, and the $\left(N\times N\right)$-matrices acting on $\mathbb{H}_{t}^{N}$ whose entries are from $\mathbb{H}_{t}$, i.e., $\mathbb{H}_{t}$-matrices, for all $N\in\mathbb{N}$. For an arbitrarily fixed $N\in\mathbb{N}$, we define $\mathbb{H}_{t}^{N}$ as a subspace of a certain functional vector space $\mathbf{H}_{t:2}$ equipped with a well-defined definite (if $t<0$), or indefinite (if $t\geq0$) inner product introduced in [6, 7, 8]. So, one can check immediately that our subspace $\mathbb{H}_{t}^{N}$ becomes a restricted definite, or indefinite inner product Banach space. Operator-theoretic, operator-algebraic and free-probabilistic properties of $\mathbb{H}_{t}$-matrices are considered and characterized on $\mathbb{H}_{t}^{N}$.
Key words: Scaled Hypercomplexes $\mathbb{H}_{t}$, Matrices over $\mathbb{H}_{t}$.