Abstract
In this paper we prove the bicomplex version of the Alaoglu theorem
for a topological $\mathbb{BC}$-module $X$. The concept of a
$\mathbb{BC}$-dual pair and a product-type open cover in bicomplex
is also introduced.
Доведено бікомплексну версію теореми Alaoglu у топологічному
$\mathbb{BC}$-модулі $X.$ Також наведено поняття про
$\mathbb{BC}$-дуальну пару та відкрите покриття типу добутку в
бікомплексі.
Key words: $\mathbb{BC}$-modules, $\mathbb{D}$-modules, product-type
set, hyperbolic numbers, $\mathbb{D}$-convex, $\mathbb{BC}$-convex
function.
Full Text
Article Information
Title | The Alaoglu Theorem for topological $\mathbb{BC}-$module |
Source | Methods Funct. Anal. Topology, Vol. 29 (2023), no. 3-4, 83–93 |
DOI | 10.31392/MFAT-npu26_3–4.2023.01 |
Copyright | The Author(s) 2023 (CC BY-SA) |
Authors Information
Amjad Ali
Department of Mathematics, University of Jammu, Jammu 180 001, India
Aditi Sharma
Department of Mathematics, University of Jammu, Jammu, J&K - 180 006, India
Citation Example
Amjad Ali and Aditi Sharma, The Alaoglu Theorem for topological $\mathbb{BC}-$module, Methods Funct. Anal. Topology 29
(2023), no. 3, 83–93.
BibTex
@article {MFAT1941,
AUTHOR = {Amjad Ali and Aditi Sharma},
TITLE = {The Alaoglu Theorem for topological $\mathbb{BC}-$module},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {29},
YEAR = {2023},
NUMBER = {3},
PAGES = {83–93},
ISSN = {1029-3531},
DOI = {10.31392/MFAT-npu26_3–4.2023.01},
URL = {http://mfat.imath.kiev.ua/article/?id=1941},
}