Open Access

The Alaoglu Theorem for topological $\mathbb{BC}-$module


Abstract

In this paper we prove the bicomplex version of the Alaoglu theorem for a topological $\mathbb{BC}$-module $X$. The concept of a $\mathbb{BC}$-dual pair and a product-type open cover in bicomplex is also introduced.

Доведено бікомплексну версію теореми Alaoglu у топологічному $\mathbb{BC}$-модулі $X.$ Також наведено поняття про $\mathbb{BC}$-дуальну пару та відкрите покриття типу добутку в бікомплексі.

Key words: $\mathbb{BC}$-modules, $\mathbb{D}$-modules, product-type set, hyperbolic numbers, $\mathbb{D}$-convex, $\mathbb{BC}$-convex function.


Full Text






Article Information

TitleThe Alaoglu Theorem for topological $\mathbb{BC}-$module
SourceMethods Funct. Anal. Topology, Vol. 29 (2023), no. 3-4, 83–93
DOI10.31392/MFAT-npu26_3–4.2023.01
CopyrightThe Author(s) 2023 (CC BY-SA)

Authors Information

Amjad Ali
Department of Mathematics, University of Jammu, Jammu 180 001, India

Aditi Sharma
Department of Mathematics, University of Jammu, Jammu, J&K - 180 006, India


Export article

Save to Mendeley



Citation Example

Amjad Ali and Aditi Sharma, The Alaoglu Theorem for topological $\mathbb{BC}-$module, Methods Funct. Anal. Topology 29 (2023), no. 3, 83–93.


BibTex

@article {MFAT1941,
    AUTHOR = {Amjad Ali and Aditi Sharma},
     TITLE = {The Alaoglu Theorem for topological $\mathbb{BC}-$module},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {29},
      YEAR = {2023},
    NUMBER = {3},
     PAGES = {83–93},
      ISSN = {1029-3531},
       DOI = {10.31392/MFAT-npu26_3–4.2023.01},
       URL = {http://mfat.imath.kiev.ua/article/?id=1941},
}


References

Coming Soon.

All Issues