Methods of Functional Analysis
and Topology

Editors-in-Chief: A. N. Kochubei, Yu. G. Kondratiev
ISSN: 1029-3531 (Print), 2415-7503 (Online)

Founded by Yu. M. Berezansky in 1995.

Methods of Functional Analysis and Topology (MFAT), founded in 1995, is a peer-reviewed journal publishing original articles and surveys on general methods and techniques of functional analysis and topology with a special emphasis on applications to modern mathematical physics.

MFAT is an open access journal, free for authors and free for readers.

MFAT is indexed in: MathSciNet, zbMATH, Scopus, Web of Science, DOAJ, Google Scholar


Volumes: 26 | Issues: 100 | Articles: 779 | Authors: 600

Latest Articles (December, 2020)


A Glimpse on Birkhoff-James Orthogonality in Banach Spaces

B. P. Ojha, P. M. Bajracharya

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 26 (2020), no. 4, 373-383

This paper is an overview of various results on Birkhoff-James orthogonality of operators in Hilbert space and Banach spaces. We mainly focus on Birkhoff orthogonality of linear(bounded and compact) operators in terms of matrices, projection angles, Hilbert $C^{*}$-modules as well as on Banach modules. The article concludes with some open problems regarding possible correlation between Birkhoff-James orthogonality and Carlsson orthogonality, particularly in the case of Pythagorean orthogonality.

Дано огляд різноманітних результатів щодо ортогональності в сенсі Біркгофа-Джеймса операторів у гільбертових і банахових просторах. Переважно розгля\-дається ортогональність за Біркгофом лінійних (обмежених і компактних) операторів у термінах матриць, кутів, гільбертових С*-модулів, а також банахових модулів. Наведені деякі відкриті питання стосовно співвідношень ортогональністю Біркгофа-Джеймса та ортогональністю Карлссона, зокрема для випадку піфагорової ортогональності.

Generalization of Statistically Convergent

Rabia Savaş, Richard F. Patterson

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 26 (2020), no. 4, 384-389

In the late 1950's and early 1960's Kurzweil and Henstock presented the concept of Gauge integral. Following their results, Savas and Patterson extended this concept to summability theory by considering $\,f(\psi)$ real valued function which is integrable in the Gauge sense on $(1,\infty) $. The goal of this paper includes the extension of these notion to statistical convergence. This will be accomplished by presenting the definition of statistically convergent to $L$ via cardinality in Lebesgue sense. Natural implications and variations are also presented.

В кінці 1950-х та на початку 1960-х років Курцвайль і Хенсток сформулювали концепцію калібрувального інтеграла. Савас і Паттерсон поширили це на теорію підсумовування, розглянувши дійсні функції $\,f(\psi) $, інтегровні в калібрувальному сенсі на $(1, \infty)$. Метою цієї роботи є поширення цього поняття на випадок статистичної збіжності. Для цього дається визначення статистичної збіжності за мірою Лебега. Обговорюються наслідки та можливі варіанти цього підходу.

The quenched central limit theorem for a model of random walk in random environment

Viktor Bezborodov, Luca Di Persio

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 26 (2020), no. 4, 311-316

In the present paper we provide a proof of the quenched central limit theorem for the random walk in random environment model introduced by Boldrighini, Minlos, and Pellegrinotti in [3].

У цій статті дано доведення квенч-центральної граничної теореми для випадкових блукань у моделі з випадковим середовищем, запропонованій Болдрігіні, Мінлосом і Пеллегринотті [3].

Representations of the Infinite-Dimensional Affine Group

Yuri Kondratiev

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 26 (2020), no. 4, 348-355

We introduce an infinite-dimensional affine group and construct its irreducible unitary representation. Our approach follows the one used by Vershik, Gelfand and Graev for the diffeomorphism group, but with modifications made necessary by the fact that the group does not act on the phase space. However it is possible to define its action on some classes of functions.

Вводиться нескінченновимірна аффінна група і будується її незвідне унітарне представлення. Наш підхід наслідує метод Вершика-Гельфанда-Граєва для групи дифеоморфізмів, з необхідними модифікаціями, пов’язаними з тим, що група не діє на фазовому просторі, але можна визначити її дію на деяких класах функцій.

All Issues