Methods of Functional Analysis
and Topology

Editors-in-Chief: A. N. Kochubei, Yu. G. Kondratiev
ISSN: 1029-3531 (Print), 2415-7503 (Online)

Founded by Yu. M. Berezansky in 1995.

Methods of Functional Analysis and Topology (MFAT), founded in 1995, is a peer-reviewed journal publishing original articles and surveys on general methods and techniques of functional analysis and topology with a special emphasis on applications to modern mathematical physics.

MFAT is an open access journal, free for authors and free for readers.

MFAT is indexed in: MathSciNet, zbMATH, Scopus, Web of Science, DOAJ, Google Scholar


Volumes: 26 | Issues: 99 | Articles: 768 | Authors: 582

Latest Articles (September, 2020)


Norm inequalities for accretive-dissipative block matrices

Fadi Alrimawi, Mohammad Al-Khlyleh, Fuad A. Abushaheen

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 26 (2020), no. 3, 201-215

Let $ T=[T_{ij}]\in \mathbb{M} _{mn}(\mathbb{C})$ be accretive-dissipative, where $T_{ij}\in \mathbb{M} _{n}(\mathbb{C} )$ for $i,j=1,2,...,m.$ Let $f$ be a function that is convex and increasing on $ [0,\infty )$ where $f(0)=0.$ Then $$ \left\vert \left\vert \left\vert f\left(\sum_{i < j}\left\vert T_{ij}\right\vert^{2}\right) +f\left(\sum_{i < j}\left\vert T_{ji}^{\ast}\right\vert^{2}\right) \right\vert \right\vert \right\vert \leq \left\vert \left\vert \left\vert f\left( \frac{m^{2}-m}{2}\left\vert T\right\vert^{2}\right) \right\vert \right\vert \right\vert. $$ Also, if $f$ is concave and increasing on $[0,\infty )$ where $f(0)=0$, then% \begin{equation*} \left\vert \left\vert \left\vert f\left( \sum\limits_{i < j}\left\vert T_{ij}\right\vert ^{2}\right) +f\left( \sum\limits_{i < j}\left\vert T_{ji}^{\ast }\right\vert ^{2}\right) \right\vert \right\vert \right\vert \leq (2m^{2}-2m)\left\vert \left\vert \left\vert f\left( \frac{\left\vert T\right\vert ^{2}}{4}\right) \right\vert \right\vert \right\vert. \end{equation*}

Нехай $T=T_{ij}\in \mathbb{M}_{mn}(\mathbb{C} )$, де $T_{ij}\in \mathbb{M}_{n}(\mathbb {C})$ при $i,j=1,2,...,m.$, -- акретивно-дисипативна матриця. Нехай $f$ - опукла функція, яка зростає на $ [0,\infty )$, де $f(0)=0.$ Тоді \begin{equation*} \left\vert \left\vert \left\vert f\left( \sum\limits_{i < j}\left\vert T_{ij}\right\vert ^{2}\right) +f\left( \sum\limits_{i < j}\left\vert T_{ji}^{\ast }\right\vert ^{2}\right) \right\vert \right\vert \right\vert \leq \left\vert \left\vert \left\vert f\left( \frac{m^{2}-m}{2}\left\vert T\right\vert ^{2}\right) \right\vert \right\vert \right\vert. \end{equation*} Також, якщо $f$ є угнутою, зростає на $[0,\infty )$ і $f(0)=0$, то \begin{equation*} \left\vert \left\vert \left\vert f\left( \sum\limits_{i < j}\left\vert T_{ij}\right\vert ^{2}\right) +f\left( \sum\limits_{i < j}\left\vert T_{ji}^{\ast }\right\vert ^{2}\right) \right\vert \right\vert \right\vert \leq (2m^{2}-2m)\left\vert \left\vert \left\vert f\left( \frac{\left\vert T\right\vert ^{2}}{4}\right) \right\vert \right\vert \right\vert. \end{equation*}

Semi-continuous $G$-frames in Hilbert spaces

Anirudha Poria

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 26 (2020), no. 3, 249-261

In this paper, we introduce the concept of semi-continuous $g$-frames in Hilbert spaces. We first construct an example of semi-continuous $g$-frames using the Fourier transform of the Heisenberg group and study the structure of such frames. Then, as an application we provide some fundamental identities and inequalities for semi-continuous $g$-frames. Finally, we present a classical perturbation result and prove that semi-continuous $g$-frames are stable under small perturbations.

Вводиться поняття напівнеперервного $g$-фрейму в гільбертовім просторі. Спочатку будується приклад напівнеперервного $g$-фрейму, який спирається на перетворення Фур'є на групі Гейзенберга. Досліджується структура таких фреймів. Як застосування, отримані деякі фундаментальні тотожності та нерівності для напівнеперервних $g$-фреймів. Нарешті, доведено теорему про збурення: напівнеперервні $g$-фрейми стійкі відносно малих збурень.

Nonlocal eigenvalue problems with indefinite weight

Said Taarabti

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 26 (2020), no. 3, 283-294

In the present paper, we consider a class of eigenvalue problems driven by a nonlocal integro-differential operator $\mathcal{L}_{K}^{p(x)}$ with Dirichlet boundary conditions. Under certain assumptions on p and q, we establish that any $\lambda>0$ suficiently small is an eigenvalue of the nonhomogeneous nonlocal problem ($\mathcal{P}_{\lambda}$).

Розглядається клас спектральних задач, пов'язаних із нелокальним інтегро-диференціальним оператором $\mathcal{L}_{K}^{p(x)}$ із крайовою умовою Дирихле. За певних припущень щодо $p$ і $q$ доведено, що кожне достаньо мале $\lambda>0$ є власним значенням неоднорідної нелокальної задачі ($\mathcal{P}_{\lambda}$).

Cantor's intersection theorem and some generalized fixed point theorems over a locally convex topological vector space

A. P. Baisnab, K. Roy, M. Saha

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 26 (2020), no. 3, 262-271

In this present paper, we establish Cantor's intersection like theorem in a locally convex topological vector spaces. Some fixed point and common fixed point theorems are proved for Reich and Caccioppoli type contractive mappings in such a locally convex topological vector space. Also in this setting we prove a fixed point theorem for some mapping which is the uniform limit of a sequence of Reich type contractive mappings therein.

Встановлена теорема, подібна теоремі Кантора про перетин, у випадку локально опуклих векторних просторів. Для стискуючих відображень типу Райха і Каччіополі відповідних просторів доведені теореми про нерухому точку та спільну нерухому точку. Також у цій постановці доведена теорема про нерухому точку для відображення, яке є рівномірною границею послідовності стискуючих відображень типу Райха.

All Issues