Vol. 25 (2019), no. 1 (Current Issue)

Measure of noncompactness, essential approximation and defect pseudospectrum

Aymen Ammar, Aref Jeribi, Kamel Mahfoudhi

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 25 (2019), no. 1, 1-11

The scope of the present research is to establish some findings concerning the essential approximation pseudospectra and the essential defect pseudospectra of closed, densely defined linear operators in a Banach space, building upon the notion of the measure of noncompactness. We start by giving a refinement of the definition of the essential approximation pseudospectra and that of the essential defect pseudospectra by means of the measure of noncompactness. From these characterizations we shall deduce several results and we shall give sufficient conditions on the perturbed operator to have its invariance.

On a localization of the spectrum of a complex Volterra operator

Miron B. Bekker, Joseph A. Cima

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 25 (2019), no. 1, 12-14

A complex Volterra operator with the symbol $g=\log{(1+u(z))}$, where $u$ is an analytic self map of the unit disk $\mathbb D$ into itself is considered. We show that the spectrum of this operator on $H^p(\mathbb D)$, $1\le p<\infty$, is located in the disk $\{\lambda:|\lambda+p/2|\leq p/2\}$.

Complex moment problem and recursive relations

K. Idrissi, E. H. Zerouali

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 25 (2019), no. 1, 15-34

We introduce a new methodology to solve the truncated complex moment problem. To this aim we investigate recursive doubly indexed sequences and their characteristic polynomials. A characterization of recursive doubly indexed \emph{moment} sequences is given. A simple application gives a computable solution to the complex moment problem for cubic harmonic characteristic polynomials of the form $z^3+az+b\overline{z}$, where $a$ and $b$ are arbitrary real numbers. We also recapture a recent result due to Curto-Yoo given for cubic column relations in $M(3)$ of the form $Z^3=itZ+u\overline{Z}$ with $t,u$ real numbers satisfying some suitable inequalities. Furthermore, we solve the truncated complex moment problem with column dependence relations of the form $Z^{k+1}= \sum\limits_{0\leq n+ m \leq k} a_{nm} \overline{Z}^n Z^m$ ($a_{nm} \in \mathbb{C}$).

A gentle introduction to James’ weak compactness theorem and beyond

Warren B. Moors

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 25 (2019), no. 1, 35-83

The purpose of this paper is twofold: firstly, to provide an accessible proof of James' weak compactness theorem that is able to be taught in a first-year graduate class in functional analysis and secondly, to explore some of the latest and possible future extensions and applications of James' theorem.

Boundary triples for integral systems on the half-line

D. Strelnikov

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 25 (2019), no. 1, 84-96

Let $P$, $Q$ and $W$ be real functions of locally bounded variation on $[0,\infty)$ and let $W$ be non-decreasing. In the case of absolutely continuous functions $P$, $Q$ and $W$ the following Sturm-Liouville type integral system: \begin{equation} \label{eq:abs:is} J\vec{f}(x)-J\vec{a} = \int_0^x \begin{pmatrix}\lambda dW-dQ & 0\\0 & dP\end{pmatrix} \vec{f}(t), \quad J = \begin{pmatrix}0 & -1\\1 & 0\end{pmatrix} \end{equation} (see [5]) is a special case of so-called canonical differential system (see [16, 20, 24]). In [27] a maximal $A_{\max}$ and a minimal $A_{\min}$ linear relations associated with system (1) have been studied on a compact interval. This paper is a continuation of [27] , it focuses on a study of $A_{\max}$ and $A_{\min}$ on the half-line. Boundary triples for $A_{\max}$ on $[0,\infty)$ are constructed and the corresponding Weyl functions are calculated in both limit point and limit circle cases at $\infty$.


All Issues