The numerical radius points of ${\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})$
Abstract
For $n\geq 2$ and a Banach space $E$ we let
$$
\Pi(E)=\{[x^*, x_1, \ldots, x_n]:
x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{for}~{j=1, \ldots, n}~\},
$$
${\mathcal L}(^n E:E)$ denote the space of all continuous $n$-linear
mappings from $E$ to itself. An element
$[x^*, x_1, \ldots, x_n]\in \Pi(E)$ is called a numerical
radius point of $T\in {\mathcal L}(^n E:E)$ if
$$
|x^{*}(T(x_1, \ldots, x_n))|=v(T),
$$
where $v(T)$ is the numerical radius of $T$. By
$\rm{Nradius}({T})$ we denote the set of all numerical
radius points of $T$.
Let $0\leq \theta\leq\frac{\pi}{2}$ and
$\ell^2_{{({\infty}, \theta)}}=\mathbb{R}^2$ with the rotated
supremum norm
$$
\|(x, y)\|_{{({\infty}, \theta)}}=\max\Big\{|x \cos \theta+y \sin
\theta|,~ |x \sin \theta-y \cos \theta|\Big\}.
$$
In this paper, we show that the numerical radius of
$T\in{\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}:
\ell^2_{{({\infty}, \theta)}})$ equals to its norm $\|T\|.$ Using
this, we classify $\rm{Nradius}({T})$ for every
$T\in {\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}:
\ell^2_{{({\infty}, \theta)}})$ in connection with the norming
points of the bilinear mapping associated with $T$. Let
$$
\mbox{NA}({\mathcal L}(^n E:E))=\{T\in {\mathcal L}(^n E:E):
T~\mbox{is norm attaining} \}
$$
and
$$
\mbox{NRA}({\mathcal L}(^n E:E))=\{T\in {\mathcal L}(^n E:E):
T~\mbox{is numerical radius attaining} \}.
$$
We also show that
$ \mbox{NA}({\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}:
\ell^2_{{({\infty}, \theta)}}))=\mbox{NRA}({\mathcal L}(^2~
\ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})),$
which generalizes some results in [12].
Для $n\geq 2$ і банахова простору $E$ покладемо
$$
\Pi(E)=\{[x^*, x_1, \ldots, x_n]:
x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{для}~{j=1, \ldots, n}~\},
$$
де ${\mathcal L}(^n E:E)$ позначає простір усіх неперервних
$n$-лінійних відображень $E$ на себе. Елемент
$[x^*, x_1, \ldots, x_n]\in \Pi(E)$ називається точкою чисельного
радіусу $T\in {\mathcal L}(^n E:E)$, якщо
$$
|x^{*}(T(x_1, \ldots, x_n))|=v(T),
$$
де $v(T)$ — чисельний радіус $T$. За $\rm{Nradius}({T})$
позначимо множину всіх точок чисельного радіусу $T$.
Нехай $0\leq \theta\leq\frac{\pi}{2}$ і
$\ell^2_{{({\infty}, \theta)}}=\mathbb{R}^2$ із поверненою
супремум нормою
$$
\|(x, y)\|_{{({\infty}, \theta)}}=\max\Big\{|x \cos \theta+y \sin
\theta|,~ |x \sin \theta-y \cos \theta|\Big\}.
$$
Показано, що чисельний радіус
$T\in{\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}:
\ell^2_{{({\infty}, \theta)}})$ дорівнює своїй нормі $\|T\|.$
Використовуючи це, ми класифікуємо $\rm{Nradius}({T})$
для кожного
$T\in {\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}:
\ell^2_{{({\infty}, \theta)}})$, пов'язуючи з нормуючими точками
білінійного відображення, відповідного $T$. Нехай
$$
\mbox{NA}({\mathcal L}(^n E:E))=\{T\in {\mathcal L}(^n E:E):
T~\mbox{досягає норми} \}
$$
і
$$
\mbox{NRA}({\mathcal L}(^n E:E))=\{T\in {\mathcal L}(^n E:E):
T~\mbox{досягає чисельного радіусу} \} .
$$
Ми також показуємо що
$ \mbox{NA}({\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}:
\ell^2_{{({\infty}, \theta)}}))=\mbox{NRA}({\mathcal L}(^2~
\ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})),$ що
узагальнює деякі результати роботи [12].
Key words: Numerical radius, norm, numerical radius attaining bilinear mappings, numerical radius points.